Skip to main content
Log in

Model of amino acid substitution in proteins encoded by mitochondrial DNA

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Mitochondrial DNA (mtDNA) sequences are widely used for inferring the phylogenetic relationships among species. Clearly, the assumed model of nucleotide or amino acid substitution used should be as realistic as possible. Dependence among neighboring nucleotides in a codon complicates modeling of nucleotide substitutions in protein-encoding genes. It seems preferable to model amino acid substitution rather than nucleotide substitution. Therefore, we present a transition probability matrix of the general reversible Markov model of amino acid substitution for mtDNA-encoded proteins. The matrix is estimated by the maximum likelihood (ML) method from the complete sequence data of mtDNA from 20 vertebrate species. This matrix represents the substitution pattern of the mtDNA-encoded proteins and shows some differences from the matrix estimated from the nuclear-encoded proteins. The use of this matrix would be recommended in inferring trees from mtDNA-encoded protein sequences by the ML method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi J (1995) Modeling of molecular evolution and maximum likelihood inference of molecular phylogeny. PhD dissertation, The Graduate University for Advanced Studies, Tokyo, Japan

    Google Scholar 

  • Adachi J, Cao Y, Hasegawa M (1993) Tempo and mode of mitochondrial DNA evolution in vertebrates at the amino acid sequence level: rapid evolution in warm-blooded vertebrates. J Mol Evol 36:270–281

    Article  PubMed  CAS  Google Scholar 

  • Adachi J, Hasegawa M (1995) Phylogeny of whales: dependence of the inference on species sampling. Mol Biol Evol 12:177–179

    PubMed  CAS  Google Scholar 

  • Adachi J, Hasegawa M (1996) MOLPHY: programs for molecular phylogenetics, ver 2.3. Institute of Statistical Mathematics, Tokyo

    Google Scholar 

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith ALH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–464

    Article  PubMed  CAS  Google Scholar 

  • Anderson S, de Bruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG (1982) The complete sequence of bovine mitochondrial DNA: conserved features of the mammalian mitochondrial genome. J Mol Biol 156:683–717

    Article  PubMed  CAS  Google Scholar 

  • Árnason Ú, Gullberg A (1993) Comparison between the complete mtDNA sequences of the blue and the fin whale, two species that can hybridize in nature. J Mol Evol 37:312–322

    PubMed  Google Scholar 

  • Árnason Ú, Gullberg A, Johnsson E, Ledje C (1993) The nucleotide sequence of the mitochondrial DNA molecule of the grey seal,Halichoerus grypus, and a comparison with mitochondrial sequences of other true seals. J Mol Evol 37:323–330

    PubMed  Google Scholar 

  • Árnason Ú, Gullberg A, Widegren B (1991) The complete nucleotide sequence of the mitochondrial DNA of the fin whale,Balaenoptera physalus. J Mol Evol 33:556–568

    Article  PubMed  Google Scholar 

  • Árnason Ú, Johnsson E (1992) The complete mitochondrial DNA sequence of the harbor seal,Phoca vitulina. J Mol Evol 34:493–505

    Article  PubMed  Google Scholar 

  • Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167–180

    Article  PubMed  CAS  Google Scholar 

  • Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primtes: tempo and mode of evolution. J Mol Evol 18:225–239

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Adachi J, Janke A, Pääbo S, Hasegawa M (1994) Phylogenetic relationships among eutherian orders estimated from inferred sequences of mitochondrial proteins: instability of a tree based on a single gene. J Mol Evol 39:519–527

    Article  PubMed  CAS  Google Scholar 

  • Chang YS, Huang FL, Lo TB (1994) The complete nucleotide sequence and gene organization of carp (Cyprinus carpio) mitochondrial genome. J Mol Evol 38:138–155

    Article  PubMed  CAS  Google Scholar 

  • Collins TM, Wimberger PH, Naylor GJP (1994) Compositional bias, character-state bias, and character-state reconstruction using parsimony. Syst Biol 43:482–496

    Article  Google Scholar 

  • Dayhoff MO, Schwartz RM, Orcutt BC (1978) A model of evolutionary change in proteins. In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, suppl 3. National Biomedical Research Foundation, Washington DC, pp 345–352

    Google Scholar 

  • Desjardins P, Morais R (1990) Sequence and gene organization of the chicken mitochondrial genome: a novel gene order in higher vertebrates. J Mol Biol 212:599–634

    Article  PubMed  CAS  Google Scholar 

  • Edwards AWF (1995) Assessing molecular phylogenies. Science 267:253–253

    PubMed  CAS  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  PubMed  CAS  Google Scholar 

  • Gadaleta G, Pepe G, De Candia G, Quagliariello C, Sbisa E, Saccone C (1989) The complete nucleotide sequence of theRattus norvegicus mitochondrial genome: cryptic signals revealed by comparative analysis between vertebrates. J Mol Evol 28:497–516

    PubMed  CAS  Google Scholar 

  • Goldman N (1990) Maximum likelihood inference of phylogenetic trees, with special reference to a Poisson process model of DNA substitution and to parsimony analyses. Syst Zool 39:345–361

    Article  Google Scholar 

  • Goldman N, Yang Z (1994) A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 11:725–736

    PubMed  CAS  Google Scholar 

  • Grantham R (1974) Amino acid differences formula to help explain protein evolution. Science 185:862–864

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa M, Fujiwara M (1993) Relative efficiencies of the maximum likelihood, maximum parsimony, and neighbor-joining methods for estimating protein phylogeny. Mol Phyl Evol 2:1–5

    Article  Google Scholar 

  • Hasegawa M, Kishino H (1989) Heterogeneity of tempo and mode of mitochondrial DNA evolution among mammalian orders. Jpn J Genet 64:243–258

    PubMed  CAS  Google Scholar 

  • Horai S, Hayasaka K, Kondo R, Tsugane K, Takahata N (1995) The recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proc Natl Acad Sci USA 92:532–536

    Article  PubMed  CAS  Google Scholar 

  • Horai S, Satta Y, Hayasaka K, Kondo R, Inoue T, Ishida T, Hayashi S, Takahata N (1992) Man's place in Hominoidea revealed by mitochondrial DNA genealogy. J Mol Evol 35:32–43

    Article  PubMed  CAS  Google Scholar 

  • Irwin DM, Kocher TD, Wilson AC (1991) Evolution of the cytochromeb gene of mammals. J Mol Evol 32:128–144

    PubMed  CAS  Google Scholar 

  • Janke A, Feldmaier-Fuchs G, Thomas WK, von Haeseler A, Pääbo S (1994) The marsupial mitochondrial genome and the evolution of placental mammals. Genetics 137:243–256

    PubMed  CAS  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comp Appl Biosci 8:275–282

    PubMed  CAS  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179

    Article  PubMed  CAS  Google Scholar 

  • Kishino H, Miyata T, Hasegawa M (1990) Maximum likelihood inference of protein phylogeny, and the origin of chloroplasts. J Mol Evol 31:151–160

    Article  CAS  Google Scholar 

  • Lee WJ, Kocher TD (1995) Complete sequence of a sea lamprey (Petromyzon marinus) mitochondrial genome: early establishment of the vertebrate genome organization. Genetics 139:873–887

    PubMed  CAS  Google Scholar 

  • McLachlan AD (1971) Tests for comparing related amino-acid sequences. Cytochromec and cytochromec 551. J Mol Biol 61:409–424

    Article  PubMed  CAS  Google Scholar 

  • Muse SV, Gaut BS (1994) A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. Mol Biol Evol 11:715–724

    PubMed  CAS  Google Scholar 

  • Naylor GJP, Collins TM, Brown WM (1995) Hydrophobicity and phylogeny. Nature 373:565–566

    Article  PubMed  CAS  Google Scholar 

  • Ozawa T, Tanaka M, Ino H, Ohno K, Sano T, Wada Y, Yoneda M, Tanno Y, Miyatake T, Tanaka T, Itoyama S, Ikebe S, Hattori N, Mizuno Y (1991) Distinct clustering of point mutations in mitochondrial DNA among patients with mitochondrial encephalomy-opathies and Parkinson's disease. Biochem Biophys Res Commun 176:938

    Article  PubMed  CAS  Google Scholar 

  • Perna NT, Kocher TD (1995) Unequal base frequencies and the estimation of substitution rates. Mol Biol Evol 12:359–361

    CAS  Google Scholar 

  • Roe BA, Ma DP, Wilson RK, Wong JFH (1985) The complete nucleotide sequence of theXenopus laevis mitochondrial genome. J Biol Chem 260:9759–9774

    PubMed  CAS  Google Scholar 

  • Schöniger M, Hofacker GL, Borstnik B (1990) Stochastic traits of molecular evolution—acceptance of point mutations in native actin genes. J Theor Biol 143:287–306

    PubMed  Google Scholar 

  • Sidow A (1994) Parsimony of statistics? Nature 367:26–26

    Article  PubMed  CAS  Google Scholar 

  • Stewart CB (1993) The powers and pitfalls of parsimony. Nature 361:603–607

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Ozawa T (1994) Strand asymmetry in human mitochondrial DNA mutations. Genomics 22:327–335

    Article  PubMed  CAS  Google Scholar 

  • Thorne JL, Kishino H, Felsenstein J (1992) Inching toward reality: an improved likelihood model of sequence evolution. J Mol Evol 34:3–16

    Article  PubMed  CAS  Google Scholar 

  • Tzeng CS, Hui CF, Shen Huang PC (1992) The complete nucleotide sequence of theCrossostoma lacustre mitochondrial genome: conservation and variations among vertebrates. Nucleic Acids Res 20:4853–4858

    PubMed  CAS  Google Scholar 

  • Xu X, Árnason Ú (1994) The complete mitochondrial DNA sequence of the horse,Equus caballus: extensive heteroplasmy of the control region. Gene 148:357–362

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (1994) Estimating the pattern of nucleotide substitution. J Mol Evol 39:105–111

    PubMed  Google Scholar 

  • Zardoya R, Garrido-Pertierra A, Bautista JM (1995) The complete nucleotide sequence of mitochondrial DNA genome of the rainbow trout,Oncorhynchus mykiss. J Mol Evol 41:942–951

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adachi, J., Hasegawa, M. Model of amino acid substitution in proteins encoded by mitochondrial DNA. J Mol Evol 42, 459–468 (1996). https://doi.org/10.1007/BF02498640

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02498640

Key words

Navigation