Skip to main content

Photostasis in Plants, Green Algae and Cyanobacteria: The Role of Light Harvesting Antenna Complexes

  • Chapter
Light-Harvesting Antennas in Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 13))

Summary

The structural, as well as the functional, light-harvesting antenna size of the photosystems in plants, green algae and cyanobacteria may vary as a function of either short term stress or long term acclimation to high or low irradiance, suboptimal or supraoptimal temperatures as well as limitations in nutrient and water availability. Modulation of antenna size in response to such environmental perturbations is part of a complex response called photoacclimation. A common effect of changes in these environmental factors is the creation of an imbalance between the energy absorbed through photochemistry and the energy utilized through the electrochemical reactions of electron transport which are coupled to the metabolic reduction of C, N and S. Either short term stress or long term acclimation to these environmental conditions, independently or in combination, may lead to irreversible photodamage or the induction of photoprotective mechanisms. Since there is a consensus in the literature that the structure and function of Photosystem II are generally more sensitive to changes in these environmental conditions than Photosystem I, we focus our discussion on the role of the light-harvesting antenna of Photosystem II in photoprotection through the maintenance of a balance between energy input through photochemistry and subsequent energy utilization through metabolism. The predisposition of photosynthetic organisms to maintain such a balance in energy budget is defined as photostasis. Any change in either photon flux, temperature, nutrient status or water availability may cause an imbalance in energy budget which occurs whenever σ psII •I >n • τ −1 where σ PSII is the functional absorption cross section of PS II, I is the incident photon flux, n is the number of photosynthetic units and τ−1 is the rate at which metabolism consumes photosynthetically genereated electrons. Photosynthetic acclimation, induced by short and long term exposures to low or high light, low temperature, nutrient and water limitation, is discussed with respect to the modulation of σ PSII, I, and metabolic sink capacity (τ −1) to restore photostasis and minimize photodamage to PS II in plants, green algae and cyanobacteria. It appears that the plastoquinone pool and/or the Cyt b6f complex may act as the primary sensor for the maintenance of photostasis. We suggest that sensing/signaling associated with environmentally induced energy imbalances in terrestrial plants, green algae and cyanobacteria appears to exert a broad influence on diverse molecular, physiological and developmental process which is consistent with the concept of a ‘grand design of photosynthesis’ initially proposed by Daniel Arnon in 1982.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

EPS:

epoxidation state of xanthophyll cycle pigments

I:

absorbed photon flux

Lhca, Lhcb(l–6):

polypeptides of LHCI, LHCII

LHCI, LHCII:

light-harvesting antennas of PS I, PS II

PQ:

plastoquinone

PsaA/PsaB:

polypeptides of PS I reaction center

QA :

primary quinone acceptor of PS II

qE:

energy-dependent quenching of fluorescence

qN:

non-photochemical quenching of fluorescence

qP:

photochemical quenching of fluorescence

ΦappCO2 :

apparent quantum yield of C02 assimilation

ΦappO2 :

apparent quantum yield of 02 evolution

σPSII :

functional absorption cross-section of PS II

τ−1 :

rate of electron consumption

References

  • Abadía J, Morales F and Abadía A (2000) Photosystem II efficiency in low chlorophyll, iron deficient leaves. Plant and Soil 215: 183–192

    Article  Google Scholar 

  • Adamska I (1997) ELIPs-light -induced stress proteins. Physiol Plant 100: 794–805

    Article  CAS  Google Scholar 

  • Akoyunoglou G (1984) Thylakoid biogenesis in higher plants: Assembly and reorganization. In: Sybesma C (ed) Advances in Photosynthesis Research, Vol 4, pp 595–602. Martinus Nijhoff/ Dr W Junk Publishers, The Hague

    Google Scholar 

  • Allen JF and Pfannschmidt T (2000) Balancing the two photosystems: Photosynthetic electron transfer governs transcription of reaction center genes in chloroplasts. Phil Trans R Soc Lond B 355: 1351–1359

    Article  CAS  Google Scholar 

  • Allen JF, Bennett J, Steinback KE and Arntzen CJ (1981) Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems. Nature 291: 21–25

    Article  Google Scholar 

  • Anderson JM (1986) Photoregulation of the composition, function and structure of thylakoid membranes. Annu Rev Plant Physiol 37: 93–136

    Article  CAS  Google Scholar 

  • Anderson JM, Chow WS and Park Y-I (1995) The grand design of photosynthesis: Acclimation of the photosynthetic apparatus to environmental cues. Photosynth Res 46: 129–139

    Article  CAS  Google Scholar 

  • Anderson JM, Park Y-I and Chow WS (1998) Unifying model for the inactivation of Photosystem II in vivo under steady-state photosynthesis. Photosynth Res 56: 1–13

    Article  CAS  Google Scholar 

  • Armond PA and Staehelin A (1979) Lateral and vertical displacement of integral membrane proteins during lipid phase transitions in Anacystis nidulans. Proc Natl Acad Sci USA 76: 1901–1905

    Article  PubMed  CAS  Google Scholar 

  • Armond PA, Schreiber U and Bjorkman O (1978) Photosynthetic acclimation to temperature in the desert shrub, Larrea divaricata. II. Ligharvesting efficiency and electron transport. Plant Physiol 61: 411–415

    Article  PubMed  CAS  Google Scholar 

  • Arnon DI (1982) Sunlight, earth life: The grand design of photosynthesis. The Sciences 22: 22–27

    Google Scholar 

  • Aro E-M, Virgin I and Andersson B (1993) Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143: 113–134

    Google Scholar 

  • Asada K (1996) Radical production and scavenging in the chloroplasts. In: Baker NR (ed) Photosynthesis and the Environment, 123–150. Kluwer, Dordrecht

    Google Scholar 

  • Baker NR (1991) A possible role for Photosystem II in environmental perturbations of photosynthesis. Physiol Plant 81: 563–570

    Article  CAS  Google Scholar 

  • Bailaré CL (1999) Keeping up with neighbours: Phytochrome sensing and other signalling mechanisms. Trends Plant Sci 4: 97–102

    Article  Google Scholar 

  • Banet G, Pick U and Zamir A (2000) Light-harvesting complex II pigments and proteins in association with Cbr, a homolog of higher-plant early light-inducible proteins in the unicellular green alga Dunaliella. Planta 210: 947–955

    Article  PubMed  CAS  Google Scholar 

  • Baroli I and Melis A (1996) Photoinhibition and repair in Dunaliella salina acclimated to different growth irradiances. Planta 198: 640–646

    Article  CAS  Google Scholar 

  • Baroli I and Melis A (1998) Photoinhibitory damage is modulated by the rate of and by the Photosystem II light-harvesting chlorophyll antenna. Planta 205: 288–296

    Article  PubMed  CAS  Google Scholar 

  • Beale SI and Appleman D (1971) Chlorophyll synthesis in Chlorella. Plant Physiol 47: 230–235

    Article  PubMed  CAS  Google Scholar 

  • Berry J and Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31: 491–543

    Article  Google Scholar 

  • Bibby TS, Nield J and Barber J (2001) Iron deficiency induces the formation of an antenna ring around trimeric Photosystem I in cyanobacteria. Nature 412: 743–745

    Article  PubMed  CAS  Google Scholar 

  • Bjorkman O and Ludlow MM (1972) Characterization of the light climate on the floor of a Queensland rainforest. Carnegie Inst Washington Year Book 71: 85–94

    Google Scholar 

  • Boekema EJ, Hifney A, Yakushevska AE, Piotrowski M, Keegstra W, Berry S, Michel K-P, Pistorius EK and Kruip J (2002) A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteria. Nature 412: 745–748

    Article  Google Scholar 

  • Bruce D, Brimble S and Bryant DA (1989) State transitions in a phycobilisome-less mutant of the cyanobacterium Synecho-coccus sp. PCC 7002. Biochim Biophys Acta 974: 66–73

    Article  PubMed  CAS  Google Scholar 

  • Brugnoli E and Bjorkman O (1992) Chloroplast movements in leaves: Influence on chlorophyll fluorescence and measurements of light induced absorbance changes related to pH and zeaxanthin formation. Photosynth Res 32: 23–35

    Article  CAS  Google Scholar 

  • Bruick RK and Mayfield SP (1999) Light-activated translation of chloroplast mRNAs. Trends Plant Sci 4: 190–195

    Article  PubMed  Google Scholar 

  • Burnap RL, Troyan T and Sherman LA (1993) The highly abundant chlorophyll-protein complex of iron-deficient Synechococcus sp PCC7942 (CP43’) is encoded by the isiA gene. Plant Physiol 103: 893–902

    Article  PubMed  CAS  Google Scholar 

  • Campbell D, Houmard J and Tandeau de Marsac N (1993) Electron transport regulates cellular differentiation in the filamentous cyanobacterium Calothrix. Plant Cell 5: 451–463

    PubMed  CAS  Google Scholar 

  • Campbell D, Zhou G, Gustafsson P, Oquist G and Clarke AK (1995) Electron transport regulates exchange of two forms of Photosystem II Dl protein in the cyanobacterium Synechococcus. EMBO J 14: 5457–5466

    PubMed  CAS  Google Scholar 

  • Cheniae GM, and Martin IF (1970) Site of manganese within Photosystem II. Roles in 02 evolution. Biochim Biophys Acta 197: 219–239

    Article  PubMed  CAS  Google Scholar 

  • Chory J (1997) Light modulation of vegetative development. Plant Cell 9: 1225–1234

    Article  PubMed  CAS  Google Scholar 

  • Cleland R and Melis A (1987) Probing the events of photoinhibition by altering electron transport activity and light-harvesting capacity in chloroplast thylakoids. Plant Cell Environ 10: 747–752

    CAS  Google Scholar 

  • Cornic G (2000) Drought stress inhibits photosynthesis by decreasing stomatal aperture—not by affecting ATP synthesis. Trends Plant Sci 5: 187–188

    Article  Google Scholar 

  • Demmig-Adams B and Adams III WW (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1: 21–26

    Article  Google Scholar 

  • Demmig-Adams B, Adams III WW, Ebbert V and Logan BA (1999) Ecophysiology of the xanthophyll cycle. In: Frank HA, Young AJ, Britton G and Cogdell RJ (eds) The Photochemistry of Carotenoids, pp 245–269. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Drzymalla C, Schroda M and Beck CF (1996) Light-inducible gene HSP70B encodes a chloroplast-localized heat shock protein in Chlamydomonas reinhardtii. Plant Mol Biol 31: 1185–1194

    Article  PubMed  CAS  Google Scholar 

  • Durnford DG and Falkowski PG (1997) Chloroplast redox regulation of nuclear gene transcription during photo-acclimation. Photosynth Res 53: 229–241

    Article  CAS  Google Scholar 

  • Escoubas J-M, Lomas M, LaRoche J and Falkowski PG (1995) Light intensity regulates cab gene transcription via the redox state of the plastoquinone pool in the green alga, Dunaliella tertiolecta. Proc Nat Acad Sci USA 92: 10237–10241

    Article  PubMed  CAS  Google Scholar 

  • Falk S, Krol M, Maxwell DP, Rezansoff DA, Gray GR and Huner NPA (1994) Changes in in vivo fluorescence quenching in rye and barley as a function of reduced PS II light-harvesting antenna size. Physiol Plant 91: 551–558

    Article  CAS  Google Scholar 

  • Falk S, Samson G, Bruce D, Huner NPA and Laudenbach DE (1995) Functional analysis of the iron-stress induced CP43’ polypeptide of PS II in the cyanobacterium Synechococcus sp. PCCC 7942. Photosynth Res 45: 51–60

    Article  CAS  Google Scholar 

  • Falk S, Maxwell DP, Laudenbach DE and Huner NPA (1996) Photosynthetic adjustment to temperature. In: Baker NR (ed) Photosynthesis and the Environment, pp 367–385. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Falkowski PG (1983) Light -shade adaptation and vertical mixing of marine phytoplankton: A comparative field study. J Mar Res 41: 215–237

    Article  Google Scholar 

  • Falkowski PG and LaRoche J (1991) Acclimation to spectral irradiance in algae. J Phycol 27: 8–14

    Article  Google Scholar 

  • Fujita Y, Murakami A, Aizawa K and Ohki K (1994) Short-term and long-term adaptation of the photosynthetic apparatus: homeostatic properties of thylakoids. In: Bryant DA (ed) The molecular biology of cyanobacteria, pp 677–692. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Funk C, Schroder WP, Green BR, Renger G and Andersson B (1995) The PS II-S protein of higher plants: a new type of pigment-binding protein. Biochemistry 34: 11133–11141

    Article  PubMed  CAS  Google Scholar 

  • Gantt E (1994) Supramolecular membrane organization. In: Bryant DA (ed) Molecular Biology of Cyanobacteria, pp 119–138. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Ghirardi M, McCauley S and Melis A (1986) Photochemical apparatus organization in the thylakoid membrane of Hordeum vulgare wild type and chlorophyll ¿-less chlorina f2 mutant. Biochim Biophys Acta 851: 331–339

    Article  CAS  Google Scholar 

  • Gilmore AM (1997) Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiol Plant 99: 197–209

    Article  CAS  Google Scholar 

  • Gilmore AM and Ball MC (2000) Photoprotection and storage of chlorophyll in overwintering evergreens. Proc Natl Acad Sci, USA 97: 11098–11101

    Article  CAS  Google Scholar 

  • Gilmore AM and Govindjee (1999) How higher plants respond to excess light: Energy dissipation in Photosystem II. In: Singhal GS, Renger G, Irrgang K-D, Sapory S and Govindjee (eds) Concepts in Photobiology: Photosynthesis and Photo-morphogenesis, pp 513–548. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Gilmore AM, Shinkarev VP, Hazlett TL and Govindjee (1998) Quantitative analysis of the effects of intrathylakoid pH and xanthophyll cycle pigments on chlorophyll a fluorescence lifetime distributions and intensity in thylakoids. Biochemistry 37: 13582–13593

    Article  PubMed  CAS  Google Scholar 

  • Golbeck JH (1994) Photosystem I in cyanobacteria. In: Bryant DA (ed) Molecular Biology of Cyanobacteria, pp 319–360. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Gray GR, Ivanov AG, Krol M and Huner NPA (1998) Adjustment of thylakoid plastoquinone content and electron donor pool size in response to growth temperature and growth irradiance in winter rye (Secale cereale L.). Photosynth Res 56: 209–221

    Article  CAS  Google Scholar 

  • Gray JC (1996) Regulation of expression of nuclear genes encoding polypeptides required for the light reactions of photosynthesis. In: Ort DR, Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, pp 621–641. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Green BR and Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47: 685–714

    Article  PubMed  CAS  Google Scholar 

  • Grossman AR, Schaefer MR, Chiang GG and Collier JL (1994) The responses of cyanobacteria to environmental conditions: Light and nutrients. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 641–675. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Guikema JA and Sherman LA (1983) Organization and function of chlorophyll in membranes of cyanobacteria during iron starvation. Plant Physiol 73: 250–256

    Article  PubMed  CAS  Google Scholar 

  • Haehnel W (1984) Photosynthetic electron transport in higher plants. Annu Rev Plant Physiol 35: 659–693

    Article  CAS  Google Scholar 

  • Harwood JL (1980) Plant acyl lipids: Structure, function, distribution and analysis. In: PK Stumpf and EE Conn (eds) The Biochemistry of Plants, pp 1–55. Academic Press, New York

    Google Scholar 

  • Havaux M (1998) Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci 3: 147–151

    Article  Google Scholar 

  • Havaux M and Davaud A (1994) Photoinhibition of photosynthesis in chilled potato leaves is not correlated with a loss of Photosystem II activity. Photosynth Res 40: 75–92

    Article  CAS  Google Scholar 

  • Havaux M, Tardy F and Lemoine Y (1998) Photosynthetic light-harvesting function of carotenoids in higher-plant leaves exposed to high light and irradiances. Planta 205: 242–250

    Article  CAS  Google Scholar 

  • Heckathorn S A, Downs C A, Sharkey TD and Coleman JS (1998) The small, methionine-rich chloroplast heat-shock protein protects Photosystem II electron transport during heat stress. Plant Physiol 116: 439–444

    Article  PubMed  CAS  Google Scholar 

  • Heddad M and Adamska I (2000) Light stress-regulated two-helix proteins in Arabidopsis thaliana related to the chlorophyll a/b-binding gene family. Proc Natl Acad Sci USA 97: 3741–3746

    Article  PubMed  CAS  Google Scholar 

  • Hobe S, Forster R, Klingler J and Paulsen H (1995) N-Proximal sequence motif in light-harvesting chlorophyll a/b-binding protein is essential for the trimerization of light-harvesting chlorophyll a/b complex. Biochemistry 34: 10224–10228

    Article  PubMed  CAS  Google Scholar 

  • Horton P, Oxborough K, Rees D and Scholes JD (1988) Regulation of the photochemical efficiency of Photosystem II; consequences for the light response of field photosynthesis. Plant Physiol Biochem 26: 453–460

    CAS  Google Scholar 

  • Horton P, Ruban Av and Walters RG (1996) Regulation of light-harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47: 655–684

    Article  PubMed  CAS  Google Scholar 

  • Huner NPA, Óquist G, Hurry V, Krol M, Falk S and Griffith M (1993) Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants. Photosynth Res 37: 19–39

    Article  CAS  Google Scholar 

  • Huner NPA, Óquist G and Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3: 224–230

    Article  Google Scholar 

  • Huner NPA, Krol M, Ivanov AG, Sveshnikov D and Óquist G (2001) CP43’ induced under Fe-stress in Synechococcus sp. PCC 7942 is associated with PS I. In: PS2001: Proceedings 12th International Congress on Photosynthesis, S3–061. CSIRO Publishing, Melbourne. [CD-ROM]

    Google Scholar 

  • Hurry VM and Huner NPA (1992) Effects of cold hardening on sensitivity of winter and spring wheat leaves to short-term photoinhibition and recovery of photosynthesis. Plant Physiol 100: 1283–1290

    Article  PubMed  CAS  Google Scholar 

  • Hurry VM, Krol M, Oquist G and Huner NPA (1992) Effect of long-term photoinhibition on growth and photosynthesis of cold hardened spring and winter wheat. Planta 188: 369–375

    Article  CAS  Google Scholar 

  • Hurry V, Huner N, Selstam E, Gardestrom P and Oquist G (1996a) Photosynthesis at low temperatures. In: Raghavendra AS (ed) Photosynthesis: A Comprehensive Treatise, pp 238–249. Cambridge University Press, Cambridge

    Google Scholar 

  • Hurry V, Anderson JM, Badger MR and Price GD (1996b) Reduced levels of cytochrome b6/f in transgenic tobacco the excitation pressure on Photosystem II without increasing sensitivity to photoinhibition in vivo. Photosynth Res 50: 159–169

    Article  CAS  Google Scholar 

  • Hurry VM, Anderson JM, Chow WS and Osmond CB (1997) Accumulation of zeaxanthin in abscisic acid-deficient mutants of Arabidopsis does not affect chlorophyll fluorescence quenching or sensitivity to photoinhibition in vivo. Plant Physiol 113: 639–648

    PubMed  CAS  Google Scholar 

  • Ivanov AG, Morgan RM, Gray GR, Velitchkova MY and Huner NPA (1998) Temperature/light dependent development of selective resistance to photoinhibition of Photosystem I. FEBS Lett 430: 288–292

    Article  PubMed  CAS  Google Scholar 

  • Jahns P and Krause GH (1994) Xanthophyll cycle and energy-dependent fluorescence quenching in leaves from pea plants grown under intermittent light. Planta 192: 176–182

    Article  CAS  Google Scholar 

  • Jang J-C and Sheen J (1994) Sugar sensing in higher plants. Plant Cell 6: 1665–1679

    PubMed  CAS  Google Scholar 

  • Jansson S (1994) The light-harvesting chlorophyll a/2?-binding proteins. Biochim Biophys Acta 1184: 1–19

    Article  PubMed  CAS  Google Scholar 

  • Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G and Mullineaux P (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284: 654–657

    Article  PubMed  CAS  Google Scholar 

  • Keck RW and Boyer JS (1974) Chloroplast response to low leaf water potentials. III. Differing inhibition of electron transport and photophosphorylation. Plant Physiol 53: 474–479

    Article  PubMed  CAS  Google Scholar 

  • Koenig F (1990) Shade adaptation in cyanobacteria. Photosynth Res 26: 29–37

    CAS  Google Scholar 

  • Kozaki A and Takeba G (1996) Photorespiration protects C3 plants from photoinhibition. Nature 384: 557–560

    Article  CAS  Google Scholar 

  • Krause GH (1994) Photoinhibition induced by low temperatures. In: Bker NR and Bowyer JR (eds) Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field, pp 331–348. Bios Scientific, Oxford

    Google Scholar 

  • Krause GH and Weis E (1991) Chlorophyll fluorescence and photosynthesis: The basics. Annu Rev Plant Physiol Plant Mol Biol 42: 313–349

    Article  CAS  Google Scholar 

  • Krause GH, Carouge N and Garden H (1999) Long-term effects of temperature shifts on xanthophyll cycle and photoinhibition in spinach (Spinacia oleracea). Aust J Plant Physiol 26: 125–134

    Article  Google Scholar 

  • Krol M, Huner NPA, Williams JP and Maissan E (1988) Chloroplast biogenesis at cold hardening temperatures. Kinetics of trans-3-hexadecenoic acid accumulation and the assembly of LHCII. Photosynth Res 15: 115–132

    Article  CAS  Google Scholar 

  • Krol M, Spangfort MD, Huner NPA, Oquist G, Gustafsson P and Jansson S (1995) Chlorophyll a/b-binding proteins, pigment conversions and early light-induced proteins in a Chi ¿-less barley mutant. Plant Physiol 107: 873–883

    Article  PubMed  CAS  Google Scholar 

  • Krol M Maxwell DP and Huner NPA (1997) Exposure of Dunaliella salina to low temperature mimics the high light-induced accumulation of carotenoids and the carotenoid binding protein (Cbr). Plant Cell Physiol 38: 213–216

    Google Scholar 

  • Krol M, Ivanov AG, Jansson S, Kloppstech K and Huner NPA (1999) Greening under high light or cold temperature affects the level of xanthophyll-cycle pigments, early light-inducible proteins, and light-harvesting polypeptides in wild-type barley and the chlorina f2 mutant. Plant Physiol 120: 193–203

    Article  PubMed  CAS  Google Scholar 

  • Kropat J, Oster U, Rüdiger W and Beck CF (1997) Chlorophyll precursors are signals of chloroplast origin involved in light induction of nuclear heat-shock genes. Proc Nat Acad Sei (USA) 94: 14168–14172

    Article  CAS  Google Scholar 

  • Kropat J, Oster U, Rüdiger W and Beck CF (2000) Chloroplast signalling in the light induction of nuclear HSP70 genes requires the accumulation of chlorophyll precursors and their accessibility to cytoplasm/nucleus. Plant J 24: 523–531

    Article  PubMed  CAS  Google Scholar 

  • Krupa Z, Williams JP and Huner N (1992) The role of acyl lipids in reconstitution of lipid-depleted light-harvesting complex II from cold hardened and nonhardened rye. Plant Physiol 100: 931–938

    Article  PubMed  CAS  Google Scholar 

  • Kühlbrandt W, Wang DN and Fuijyoshi Y (1994) Atomic model of plant light-harvesting determined by electron crystallography. Nature 367: 614–621

    Article  PubMed  Google Scholar 

  • Leech RM (1984) Chloroplast development in angiosperms: current knowledge and future prospects. In: Baker NR, Barber J (eds) Topics in Photosynthesis, Vol 5, Chloroplast Biogenesis, pp 1–21. Elsevier Science, Amsterdam

    Google Scholar 

  • Leonhardt KG and Straus NA (1994) Photosystem II genes isiA, psbDl ansd psbC in Anabaena sp. PCC 7120: Cloning, sequencing and transcriptional regulation in iron-stressed and iron-replete cells. Plant Mol Biol 24: 63–73

    Article  PubMed  CAS  Google Scholar 

  • Leverenz JW, Öquist G and Wingsle G (1992) Photosynthesis and photoinhibition in leaves of chlorophyll ¿-less barley in relation to absorbed light. Plant Physiol 85: 495–502

    Article  CAS  Google Scholar 

  • Levy H, Tal T, Shaish A and Zamir A (1993) Cbr, an algal homolog of plant early light inducible proteins, is a putative zeaxanthin binding protein. J Biol Chem 268: 20892–20896

    PubMed  CAS  Google Scholar 

  • Li X-P, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S and Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light-harvesting. Nature 403: 391–395

    Article  PubMed  CAS  Google Scholar 

  • Logan BA, Demmig-Adams B and Adams WW (1998a) Antioxidants and xanthophyll cycle-dependent energy in Cucurbitapepo L. and Vinca major L. upon a sudden increase in growth PPFD in the field. J Exp Bot 49: 1881–1888

    CAS  Google Scholar 

  • Logan BA, Grace SC, Adams WW and Demmig-Adams B (1998b) Seasonal differences in xanthophyll cycle characteristics and antioxidants in Mahonia repens growing in different light environments. Oecologia 116: 9–17

    Google Scholar 

  • Long SP, Humphries S and Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45: 633–662

    Article  CAS  Google Scholar 

  • Lunde C, Jensen PE, Haldrup A, Knoetzel J and Scheller HV (2000) The PS I-H subunit of Photosystem I is essential for state transitions in plant photosynthesis. Nature 408: 613–615

    Article  PubMed  CAS  Google Scholar 

  • Machalek KM, Davison IR and Falkowski PG (1996) Thermal acclimation and photoacclimation of photosynthesis in the brown alga Laminaria saccharina. Plant Cell Environ 19: 1005–1016

    Article  CAS  Google Scholar 

  • Maxwell DP, Falk S and Huner NPA (1995a) Photosystem II excitation pressure and development of resistance to photoinhibition I. LHCII abundance and zeaxanthin content in Chlorella vulgaris. Plant Physiol 107: 687–694

    PubMed  CAS  Google Scholar 

  • Maxwell DP, Laudenbach DE and Huner NPA (1995b) Redox regulation of light-harvesting complex II and cab mRNA abundance in Dunaliella salina. Plant Physiol 109: 787–795

    PubMed  CAS  Google Scholar 

  • Melis A (1991) Dynamics of photosynthetic membrane composition and function. Biochim Biophys Acta 1058: 87106

    Google Scholar 

  • Melis A (1998) Photostasis in plants. In: Williams TP and Thistle AB (eds) Photostasis and Related Phenomena, pp 207–220. Plenum Press, New York

    Chapter  Google Scholar 

  • Melis A (1999) Photosystem-II damage and repair cycle in chloroplasts: What modulates the rate of photodamage in vivo? Trends Plant Sci 4: 130–135

    Article  PubMed  Google Scholar 

  • Melis A, Manodori A, Glick RE, Ghirardi ML, McCauley SW and Neale PJ (1985) The mechanism of photosynthetic membrane adaptation to environmental stress conditions: A hypothesis on the role of electron-transport capacity and of ATP/NADPH pool in the regulation of thylakoid membrane organization and function. Physiol Veg 23: 757–765

    Google Scholar 

  • Meyer G and Kloppstech K (1984) A rapidly light-induced chloroplast protein with high turnover coded for by pea nuclear DNA. Eur J Biochem 138: 201–207

    Article  PubMed  CAS  Google Scholar 

  • Miskiewicz E, Ivanov AG, Williams JP, Khan MU, Falk S and Huner NPA (2000) Photosynthetic acclimation of the filamentous cyanobacterium, Plectonema boryanum UTEX 485, to temperature and light. Plant Cell Physiol 41: 767–775

    Article  PubMed  CAS  Google Scholar 

  • Montane M-H, Petzold B and Kloppstech K (1999) Formation of early-light-inducible-protein complexes and status of xanthophyll levels under high light and cold stress in barley (Hordeum vulgare L.). Planta 208: 519–527

    Article  CAS  Google Scholar 

  • Murata N and Los DA (1997) Membrane fluidity and temperature perception. Plant Physiol 115: 875–879

    PubMed  CAS  Google Scholar 

  • Nakajima Y, Tsuzuki M and Ueda R (1998) Reduced photoinhibition of a phycocyanin-deficient mutant of Synechocystis PCC 6714. J Appl Phycol 10: 447–452

    Article  CAS  Google Scholar 

  • Naus J and Melis A (1992) Response of the photosynthetic apparatus in Dunaliella salina to sublethal concentrations of the herbicide 3-(3’,4’-dichlorophenyl)-l,l-dimethyl urea. Photosynthetica 26: 67–78

    CAS  Google Scholar 

  • Nield J, Funk C and Barber J (2000) Supermolecular structure of Photosystem II and location of the PsbS protein. Phil Trans R Soc Lond B 355: 1337–1344

    Article  CAS  Google Scholar 

  • Nishida I and Murata N (1996) Chilling sensitivity in plants and cyanobacteria: The crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47: 541–568

    Article  PubMed  CAS  Google Scholar 

  • Niyogi KK, Grossman AR and Bjorkman O (1998) Arabidopsis mutants define a central role for the xanthophyll in the regulation of photosynthetic energy conversion. Plant Cell 10: 1121–1134

    Google Scholar 

  • Nufiberger S, Dorr K, Wang DN and Kuhlbrandt W (1993) Lipid-protein interactions in crystals of plant light-harvesting complex. J Mol Biol 234: 347–356

    Article  Google Scholar 

  • Ohad I, Keren N, Hagit Z, Gong H, Mor TS, Gal A, Tal S and Domovich Y (1994) Light-induced degradation of the Photosystem II reaction centre D1 protein in vivo: An integrative approach. In: Baker NR, Bowyer JR (eds) Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field, pp 161–177. Bios Scientific, Oxford

    Google Scholar 

  • Oquist G and Huner NPA (1992) Cold-hardening induced resistance to photoinhibition in winter rye is dependent upon an increased capacity for photosynthesis. Planta 189: 150–156

    Google Scholar 

  • Oquist G and Huner NPA (1993) The temperature dependence of the redox state of QA and the susceptibility of photosynthesis to photoinhibition. Plant Physiol Biochem 31: 683–691

    Google Scholar 

  • Oquist G and Martin B (1986) Cold Climates. In: Baker NR, Long SP (eds) Photosynthesis in Contrasting Environments, Vol 7, pp 237–293. Elsevier, New York

    Google Scholar 

  • Oquist G, Chow WS and Anderson JM (1992a) Photoinhibition of photosynthesis represents a mechanism for long term regulation of Photosystem II. Planta 186: 450–160

    Article  CAS  Google Scholar 

  • Oquist G, Chow WS, Mc Caffery S and Anderson J (1992b) Mechanistic differences in photoinhibition in sun and shade plants. Planta 188: 422–431

    Article  CAS  Google Scholar 

  • Oquist G, Hurry VM and Huner NPA (1993) Low temperature effects on photosynthesis and correlation with freezing tolerance in spring and winter cultivars of wheat and rye. Plant Physiol 101: 245–250

    PubMed  Google Scholar 

  • Osmond CB (1994) What is photoinhibition? Some insights from comparison of shade and sun plants. In: Baker NR, Bowyer JR (eds) Photoinhibition of Photosynthesis—From Molecular Mechanisms to the Field, pp 1–24. Bios Scientific Publishers, Oxford

    Google Scholar 

  • Ottander C, Campbell D and Oquist G (1995) Seasonal changes in Photosystem II organization and pigment composition in Pinus sylvestris. Planta 197: 176–183

    Article  CAS  Google Scholar 

  • Park Y-I, Anderson JM and Chow WS (1995) Photoinactivation of functional Photosystem II and D1-protein synthesis in vivo are independent of the modulation of the photosynthetic apparatus by growth irradiance. Planta 198: 300–309

    Google Scholar 

  • Park Y-I, Chow WS, Anderson JM and Hurry VM (1996a) Differential susceptibility of Photosystem II to light stress in light-acclimated pea leaves depends on the capacity for photochemical and non-radiative dissipation of light. Plant Sci 115: 137–149

    Article  CAS  Google Scholar 

  • Park Y-I, Chow WS, Osmond CB and Anderson JM (1996b) Electron transport to oxygen mitigates against the photoinactivation of Photosystem II in vivo. Photosynth Res 50: 23–32

    Article  CAS  Google Scholar 

  • Park Y-I, Chow WS and Anderson JM (1997) Antenna size dependency of photoinactivation of Photosystem II light-acclimated pea leaves. Plant Physiol 115: 151–157

    Article  PubMed  CAS  Google Scholar 

  • Park Y-I, Sandstrom S, Gustafsson P and Oquist G (1999) Expression of the isiA gene is essential for the survival of the cyanobacterium Synechococcus sp PCC 7942 by protecting Photosystem II from excess light under iron limitation. Mol Microbiol 32: 123–129

    Article  PubMed  CAS  Google Scholar 

  • Pfannschmidt T, Nilsson A and Allen JF (1999) Photosynthetic control of chloroplast gene expression. Nature 397: 625–628

    Article  CAS  Google Scholar 

  • RezansoffDA (1993) The Photoinhibitory Response of Periwinkle (Vinca minor L.). MSc Thesis, The University of Western Ontario, London, Canada

    Google Scholar 

  • Reddy KJ, Masamoto K, Sherman DM and Sherman LA (1989) DNA sequence and regulation of the gene (cbpA) encoding the 42-kilodalton cytoplasmic membrane carotenoprotein of the cyanobacterium Synechococcus sp. strain PCC7942. J Bacteriol 171: 3486–3493

    PubMed  CAS  Google Scholar 

  • Sakamoto T and Bryant DA (1998) Growth at low temperature causes nitrogen limitation in the cyanobacterium Synechococcus sp. PCC 7002. Arch Microbiol 169: 10–19

    Article  PubMed  CAS  Google Scholar 

  • Savitch LV, Maxwell DP and Huner NPA (1996) Photosystem II excitation pressure and photosynthetic carbon metabolism in Chlorella vulgaris. Plant Physiol 111: 127–136

    PubMed  CAS  Google Scholar 

  • Savitch LV, Massacci A, Gray GR and Huner NPA (2000) Acclimation to low temperature or high light mitigates sensitivity to photoinhibition: Roles of the Calvin cycle and the Mehler reaction. Aust J Plant Physiol 27: 253–264

    Google Scholar 

  • Schroda M, Vallon O, Wollman F-A, and Beck CF (1999) A chloroplast-targeted heat shock protein 70 (HSP70) contributes to the repair of Photosystem II during and after photoinhibition. Plant Cell 11: 1165–1178

    PubMed  CAS  Google Scholar 

  • Sharkey TD and Singsaas EL (1995) Why plants emit isoprene. Nature 374: 769

    Article  CAS  Google Scholar 

  • Somersalo S and Krause GH (1990) Photoinhibition at chilling temperatures and effects of freezing stress on cold acclimated spinach leaves in the field. A fluorescence study. Physiol Plant 79: 617–622

    Article  PubMed  CAS  Google Scholar 

  • Somerville CR and Ogren WL (1982) Genetic modification of photorespiration. Trends Biol Sci 7: 171–174

    Article  CAS  Google Scholar 

  • Sonoike K (1998) Various aspects of inhibition of photosynthesis under stress–photoinhibition at chilling temperatures versus chilling damage in the light. J Plant Res 111: 121–129

    Article  Google Scholar 

  • Spiller S and Terry N (1990) Limiting factors in photosynthesis. II. Iron stress diminishes photochemical capacity by reducing the number of photosynthetic units. Plant Physiol 65: 121–125

    Article  Google Scholar 

  • Straus NA (1994) Iron deprivation: Physiology and gene regulation. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 731–750. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Sukenik A, Wyman KD, Bennett J and Falkowski PG (1987) A novel mechanism for regulating the excitation of Photosystem II in a green alga. Nature 327: 704–707

    Article  CAS  Google Scholar 

  • Tanaka A and Melis A (1997) Irradiance dependent changes in the size and composition of the chlorophyll a-b light-harvesting complex in the green alga Dunaliella salina. Plant Cell Physiol 38: 17–24

    Article  CAS  Google Scholar 

  • Taylor SE and Terry N (1986) Variation in photosynthetic electron transport capacity and its effect on the light modulation of ribulose bisphosphate carboxylase. Photosynth Res 8: 249–256

    Article  CAS  Google Scholar 

  • Taylor WC (1989) Regulatory interactions between nuclear and plastid genomes. Ann Rev Plant Physiol Plant Mol Biol 40: 211–233

    Article  CAS  Google Scholar 

  • ten Lohuis MR and Miller DJ (1998) Light-regulated transcription of genes encoding peridinin chlorophyll a proteins and the major intrinsic light-harvesting complex proteins in the dinoflagellate Amphidinium carterae Hulburt (Dinophycae). Plant Physiol 117: 189–196

    Article  PubMed  Google Scholar 

  • Terashima I, Noguchi K, Itohnemoto T, Park YM, Kubo A and Tanaka K (1998) The cause of PS I photoinhibition at low temperatures in leaves of Cucumis sativus, a chilling-sensitive plant. Physiol Plant 103: 295–303

    Article  CAS  Google Scholar 

  • Terry N (1983) Limiting factors in photosynthesis. IV. Iron stress mediated changes in light-harvesting and electron transport capacity and its effects on photosynthesis in vivo. Plant Physiol 71: 855–860

    Article  PubMed  CAS  Google Scholar 

  • Tezara W, Mitchell VJ, Driscoll SD and Lawlor DW (1999) Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401: 914–917

    Article  CAS  Google Scholar 

  • Thayer SS and Bjorkman O (1992) Carotenoid distribution and deepoxidation in thylakoid pigment-protein complexes from cotton leaves and bundle-sheath cells of maize. Photosynth Res 33: 213–225

    Article  CAS  Google Scholar 

  • Turpin DH and Bruce D (1990) Regulation of photosynthetic light-harvesting by nitrogen assimilation in the green alga Selenastrum minutum. FEBS Lett 263: 99–103

    Article  CAS  Google Scholar 

  • Tyystjarvi E and Aro E-M (1996) The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. Proc Nat Acad Sci USA 93: 2213–2218

    Article  PubMed  CAS  Google Scholar 

  • Tyystjarvi E, Kettunen R and Aro E-M (1994) The rate constant of photoinhibition in vitro is independent of the antenna size of Photosystem II but depends on temperature. Biochim Biophys Acta 1186: 177–185

    Article  CAS  Google Scholar 

  • Verhoeven AS, Adams WW and Demmig-Adams B (1998) Two forms of sustained xanthophyll cycle-dependent energy dissipation in overwintering Euonymus kiautschovicus. Plant Cell Environ 21: 893–903

    Article  Google Scholar 

  • Verhoeven AS, Adams WW and Demmig-Adams B (1999) The xanthophyll cycle and acclimation of Pinus ponderosa and Malva neglecta to winter stress. Oecologia 118: 277–287

    Article  Google Scholar 

  • Vogelmann TC, Nishio JN and Smith WK (1996) Leaves and light capture: Light propagation and gradients of carbon fixation within leaves. Trends Plant Sci 1: 65–70

    Google Scholar 

  • Walters RG, Rogers JJM, Shephard F and Horton P (1999) Acclimation of Arabidopsis thaliana to the light environment: The role of photoreceptors. Planta 209: 517–527

    Google Scholar 

  • Weis E (1985) Light and temperature induced changes in the distribution of excitation energy between PS I and PS II in spinach leaves. Biochim Biophys Acta 807: 118–126

    Article  CAS  Google Scholar 

  • Wilson KE and Huner NPA (2000) The role of growth rate, redox-state of the plastoquinone pool and the trans-thylakoid ApH in photoacclimation of Chlorella vulgaris to growth irradiance and temperature. Planta 212: 93–102.

    Article  PubMed  CAS  Google Scholar 

  • Winder TL and Nishio J (1995) Early iron deficiency stress response in leaves of sugar beet. Plant Physiol 108: 1487–1494

    Article  PubMed  CAS  Google Scholar 

  • Wingler A, Quick WP, Bungard RA, Bailey KJ, Lea PJ and Leegood RC (1999) The role of photorespiration during drought stress: An analysis utilizing barley mutants with reduced activities of photorespiratory enzymes. Plant Cell Environ 22: 361–373

    Google Scholar 

  • Wingler A, Lea PJ, Quick WP and Leegood RC (2000) Photorespiration: Metabolic pathways and their role in stress protection. Phil Trans R Soc Lond B 355: 1517–1529

    Google Scholar 

  • Wykoff DD, Davies JP, Melis A and Grossman AR (1998) The regulation of photosynthetic electron transport during deprivation in Chlamydomonas reinhardtii. Plant Physiol 117: 129–139

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K and Nishimura M (2000) Reduction to below threshold levels of glycolate oxidase activities in transgenic tobacco enhances photoinhibition during irradiation. Plant Cell Physiol 41: 1397–1406

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto HY and Bassi R (1996) Carotenoids: Localization and function. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, pp 539–563. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Yamamoto HY, Bugos RC and Heiber AD (1999) Biochemistry and molecular biology of the xanthophyll cycle. In: Frank HA, Young AJ, Britton G and Cogdell RJ (eds) The Photochemistry of Carotenoids, pp 293–303. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Huner, N.P.A., Öquist, G., Melis, A. (2003). Photostasis in Plants, Green Algae and Cyanobacteria: The Role of Light Harvesting Antenna Complexes. In: Green, B.R., Parson, W.W. (eds) Light-Harvesting Antennas in Photosynthesis. Advances in Photosynthesis and Respiration, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2087-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2087-8_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5468-5

  • Online ISBN: 978-94-017-2087-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics