Skip to main content

The Responses of Cyanobacteria to Environmental Conditions: Light and Nutrients

  • Chapter
The Molecular Biology of Cyanobacteria

Part of the book series: Advances in Photosynthesis ((AIPH,volume 1))

Summary

Cyanobacteria are found in virtually all terrestrial niches and can be found in locations which exhibit widely fluctuating chemical and physical parameters including nutrient availability, light intensity, light wavelength, temperature, and water activity. Described throughout this volume are ways in which cyanobacteria respond to changes in their environment, and examples of the insights that molecular genetic analyses have provided into acclimation processes. This chapter will discuss the modification of the cyanobacterial light-harvesting apparatus in response to light quality and nutrient availability. Recent advances in understanding the regulation of nutrient acquisition systems during nutrient-limited growth will also be summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albright LM, Huala E and Ausubel (1989) Prokaryotic signal transduction mediated by sensor and regulator protein pairs. Ann Rev Genet 23: 311–336.

    PubMed  CAS  Google Scholar 

  • Allen MM (1984) Cyanobacterial cell inclusions. Annu Rev Microbiol 38: 1–25.

    PubMed  CAS  Google Scholar 

  • Allen MM and Hutchison F (1980) Nitrogen limitation and recovery in the cyanobacterium Aphanocapsa 6308. Arch Microbiol 128: 1–7.

    CAS  Google Scholar 

  • Allen MM and Smith AJ (1969) Nitrogen chlorosis in blue-green algae. Arch Microbiol 69: 114–120.

    CAS  Google Scholar 

  • Ames GF-L (1986) Bacterial periplasmic transport systems: Structure, mechanism, and evolution. Annu Rev Biochem 55: 397–425.

    PubMed  CAS  Google Scholar 

  • Anderson LK and Grossman AR (1990a) Genes for phycocyanin subunits in Synechocystis sp. Strain 6701 and the assembly mutant UV16. J Bacteriol 172: 1289–1296.

    PubMed  CAS  Google Scholar 

  • Anderson LK and Grossman AR (1990b) Structure and light-regulated expression of phycoerythrin genes in wild type and phycobilisome assembly mutants of Synechocystis sp. Strain PCC 6701. J Bacteriol 172: 1297–1305.

    PubMed  CAS  Google Scholar 

  • Badger MR and Price GD (1990) Carbon oxysulfide is an inhibitor of both CO2 and HCO3 - uptake in the cyanobacterium Synechococcus PCC7942. Plant Physiol 94: 35–39.

    PubMed  CAS  Google Scholar 

  • Batterton JC and Van Baalen C (1968) Phosphorus deficiency and phosphate uptake in the blue-green alga Anacystis nidulans. Can. J Microbiol 14: 341–348.

    PubMed  CAS  Google Scholar 

  • Beguin S, Guglielmi G, Rippka R, and Cohen-Bazire G (1985) Chromatic adaptation in a mutant of Fremyella diplosiphon incapable of phycoerythrin synthesis. Biochemie 67: 109–117.

    CAS  Google Scholar 

  • Belknap WR and Haselkorn R (1987) Cloning and light regulation of expression of the phycocyanin Operon of the cyanobacterium Anabaena. EMBO J 6: 871–884.

    PubMed  CAS  Google Scholar 

  • Björn LO and Björn GS (1980) Photochromic pigments and photoregulation in blue-green algae. Photochem Photobiol 32: 849–852.

    Google Scholar 

  • Block MA and Grossman AR (1988) Identification and purification of a derepressible alkaline phosphatase from Anacystis nidulans R2. Plant Physiol 86: 1179–1184.

    PubMed  CAS  Google Scholar 

  • Bogorad L (1975) Phycobiliproteins and complementary chromatic adaptation. Annu Rev Plant Physiol 26: 369–401.

    CAS  Google Scholar 

  • Bottin H and Lagoutte B (1992) Ferredoxin and flavodoxin from the cyanobacterium Synechocystis sp. PCC 6803. Biochim Biophys Acta 1101: 48–56.

    PubMed  CAS  Google Scholar 

  • Boussiba S and Richmond AE (1980) C-phycocyanin as a storage protein in the blue-green alga Spirulina platensis. Arch Microbiol 125: 143–147.

    CAS  Google Scholar 

  • Boussiba S, Resch CM and Gibson J (1984) Ammonia uptake and retention in some cyanobacteria. Arch Microbiol 138: 287–292.

    CAS  Google Scholar 

  • Bradley S and Carr NG (1976) Heterocyst and nitrogenase development in Anabaena cylindrica. J Gen Microbiol 96: 175–184.

    PubMed  CAS  Google Scholar 

  • Briggs LM, Pecoraro VL and Mcintosh L (1990) Copper-induced expression, cloning, and regulatory studies of the plastocyanin gene from the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol Biol 15: 633–642.

    PubMed  CAS  Google Scholar 

  • Bruns B, Briggs WR and Grossman AR (1989) Molecular characterization of phycobilisome regulatory mutants in Fremyella diplosiphon. J Bacteriol 171: 901–908.

    PubMed  CAS  Google Scholar 

  • Bryant DA (1981) The photoregulated expression of multiple phycocyanin species: General mechanism for control of phycocyanin synthesis in chromatically adapting cyanobacteria. Eur J Biochem 119: 425–429.

    PubMed  CAS  Google Scholar 

  • Bryant DA (1982) Phycoerythrocyanin and phycoerythrin: Properties and occurrence in cyanobacteria. J Gen Microbiol 128: 835–844.

    CAS  Google Scholar 

  • Bryant DA (1986) The cyanobacterial photosynthetic apparatus: Comparisons to those of higher plants and photosynthetic bacteria. Can Bull Fish Aquat Sci 214: 423–500.

    Google Scholar 

  • Bryant DA (1991) Cyanobacterial phycobilisomes: Progress toward complete structural and functional analysis via molecular genetics. In: Bogorad L and Vasil IK (ed) Cell Culture and Somatic Cell Genetics of Plants, Vol. 7B. The Photosynthetic Apparatus: Molecular Biology and Operation, pp 257–300. Academic Press, San Diego.

    Google Scholar 

  • Bryant DA and Cohen-Bazire G (1981) Effects of chromatic illumination on cyanobacterial phycobilisomes: Evidence for the specific induction of a second pair of phycocyanin subunits in Pseudanabaena 7409 grown in red light. Eur J Biochem 119: 415–424.

    PubMed  CAS  Google Scholar 

  • Bryant DA, Guglielmi G, Tandeau de Marsac N, Castets A-M and Cohen-Bazire G (1979) The structure of cyanobacterial phycobilisomes: A model. Arch Microbiol 123: 113–127.

    CAS  Google Scholar 

  • Cameron HJ and Julian GR (1988) Utilization of hydroxyapatite by cyanobacteria as their sole source of phosphate and calcium. Plant and Soil 109: 123–124.

    CAS  Google Scholar 

  • Capuano V, Braux A-S, Tandeau de Marsac, N and Houmard J (1991) The ‘anchor polypeptide’ of cyanobacterial phycobilisomes. Molecular characterization of the Synechococcus sp. PCC 6301 apcE gene. J Biol Chem 266: 7239–7247.

    PubMed  CAS  Google Scholar 

  • Chiang GG, Schaefer MR and Grossman AR (1992a) Complementation of a red-light indifferent cyanobacterial mutant. Proc Natl Acad Sci USA 89: 9415–9419.

    PubMed  CAS  Google Scholar 

  • Chiang GG, Schaefer MR and Grossman AR (1992b) Transformation of the filamentous cyanobacterium Fremyella diplosiphon by conjugation or electroporation. Plant Physiol Biochem 30: 315–325.

    CAS  Google Scholar 

  • Cobley JG and Miranda RD (1983) Mutations affecting chromatic adaptation in the cyanobacterium Fremyella diplosiphon. J Bacteriol 153: 1486–1492.

    PubMed  CAS  Google Scholar 

  • Cobley J, Zerweck E and Jaeger H (1987) An efficient gene transfer system for the chromatically adapting cyanobacterium, Fremyella diplosiphon. Plant Physiol 83: 64.

    Google Scholar 

  • Collier JL and Grossman AR (1992) Chlorosis induced by nutrient deprivation in Synechococcus sp. Strain PCC 7942: Not all bleaching is the same. J Bacteriol 174: 4718–4726.

    PubMed  CAS  Google Scholar 

  • Collier JL and Grossman AR (1994) A small polypeptide triggers complete degradation of light harvesting phycobilisomes in nutrient deprived cyanobacteria. EMBO J 13: 1039–1047.

    PubMed  CAS  Google Scholar 

  • Conley PB, Lemaux PG and Grossman AR (1985) Cyanobacterial light-harvesting complex subunits encoded in two red light-induced transcripts. Science 230: 550–553.

    PubMed  CAS  Google Scholar 

  • Conley PB, Lemaux PG, Lomax TL and Grossman AR (1986) Genes encoding major light-harvesting polypeptides are clustered on the genome of the cyanobacterium Fremyella diplosiphon. Proc Natl Acad Sci USA 83: 2928–3924.

    Google Scholar 

  • Conley PB, Lemaux PG and Grossman AR (1988) Molecular characterization and evolution of sequences encoding light harvesting components in the chromatically adapting cyanobacterium Fremyella diplosiphon. J Mol Biol 199: 447–465.

    PubMed  CAS  Google Scholar 

  • Daley RJ and Brown SR (1973) Chlorophyll, nitrogen, and photosynthetic patterns during growth and senescence of two blue-green algae. J Phycol 9: 395–401.

    CAS  Google Scholar 

  • Damerval T, Guglielmi G, Houmard J and Tandeau de Marsac N (1991) Hormogonium differentiation in cyanobacterium Calothrix sp. PCC 7601: A photoregulated developmental process. Plant Cell 3: 191–201.

    PubMed  Google Scholar 

  • de Lorimier R, Bryant DA, Porter RD, Liu W, Jay E and Stevens SE, Jr (1984) Genes for the α and β subunits of phycocyanin. Proc Natl Acad Sci USA 81: 7946–7950.

    PubMed  Google Scholar 

  • de Vasconcelos L and Fay P (1974) Nitrogen metabolism and ultrastructure in Anabaena cylindrica. I. The effect of nitrogen starvation. Arch Microbiol 96: 271–279.

    Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection in plants: A role forthe xanthophyll zeaxanthin. Biochim Biophys Acta 1020: 1–24.

    CAS  Google Scholar 

  • Diakoff S and Scheibe S (1973) Action spectra for chromatic adaptation in Tolypothrix tenuis. Plant Physiol 51: 382–385.

    PubMed  CAS  Google Scholar 

  • Doonan BB and Jensen TE (1980) Physiological aspects of alkaline phosphatase in selected cyanobacteria. Microbios 29: 185–207.

    PubMed  CAS  Google Scholar 

  • Duke CS and Allen MM (1990) Effect of nitrogen starvation on polypeptide composition, ribulose-1,5-bisphosphate carboxylase/oxygenase, and thylakoid carotenoprotein content of Synechocystis sp. Strain PCC6308. Plant Physiol 94: 752–759.

    PubMed  CAS  Google Scholar 

  • Duke CS, Cezeaux A and Allen MM (1989) Changes in polypeptide composition of Synechocystis sp. Strain 6308 phycobilisomes induced by nitrogen starvation. J Bacteriol 171: 1960–1966.

    PubMed  CAS  Google Scholar 

  • Edmond D, Rondeau N and Cedergren RJ (1979) Distinctive properties of glutamine synthetase from the cyanobacterium Anacystis nidulans. Can J Biochem 57: 843–851.

    Google Scholar 

  • Eley JH (1971) Effect of carbon dioxide concentration on pigmentation in the blue green alga Anacystis nidulans. Plant Cell Physiol 12: 311–316.

    CAS  Google Scholar 

  • Elmorjani K and Herdman M (1987) Metabolic control of phycocyanin degradation in the cyanobacterium Synechocystis PCC 6803: A glucose effect. J Gen Microbiol 133: 1685–1694.

    CAS  Google Scholar 

  • Engelmann TW (1883a) Farbe und Assimilation. Assimilation findet nur in den farbstoffhaltigen Plasmathielchen statt. II. Näherer Zusamennhang Zwischen Lichtabsorption und Assimilation. Botan Z 41: 1–13.

    Google Scholar 

  • Engelmann TW (1883b) Farbe und Assimilation. III. Weitere Folgerungen. Botan Z 41: 17–29.

    Google Scholar 

  • Engelmann TW (1884) Untersuchungen über die qualitativen Beziehungen Zwischen Absorption des Lichtes und Assimilation in Planzenzellen. I. Das Mikrospectrophotometer ein Apparat zur quantitativen Mikrospectralanalyse. II. Experimentelle Grundlagen zur Ermittelung der quantitativen Beziehungen zwischen Assimilationsenergie und Absorp-tionsgrösse. Botan Z 42: 97–105.

    Google Scholar 

  • Engelmann TW (1902) Ueber experimentelle Erzeugung Zwechmässiger Aenderungen der Färbung pflanzenlicher Chromophylle durch farbiges Licht. Archive Anatomie und Physiologie (physiological abstract) 333–335.

    Google Scholar 

  • Entsch B, Sim RG and Hatcher BG (1983) Indications from photosynthetic components that iron is a limiting nutrient in primary producers on coral reefs. Marine Biol 73: 17–30.

    CAS  Google Scholar 

  • Espie GS, Miller AG and Canvin DT (1991) High affinity transport of CO2 in the cyanobacterium Synechococcus UTEX 625. Plant Physiol 97: 943–953.

    PubMed  CAS  Google Scholar 

  • Federspiel NA and Grossman AR (1990) Characterization of the light-regulated operon encoding the phycoerythrin-associated linker proteins from the cyanobacterium Fremyella diplosiphon. J Bacteriol 172: 4072–4081.

    PubMed  CAS  Google Scholar 

  • Federspiel NA and Scott L (1992) Characterization of a light-regulated gene encoding a new phycoerythrin-associated linker protein from the cyanobacterium Fremyella diplosiphon. J Bacteriol 179: 5994–5998.

    Google Scholar 

  • Feuillade J, Feuillade F and Jolivet E (1982) Photosynthetic metabolism in the cyanophyta Oscillatoria rubescens D. C. II. Carbon metabolism under nitrogen starvation. Arch Microbiol 131: 107–111.

    CAS  Google Scholar 

  • Filiat MF, Borrias WE and Weisbeek PJ (1991) Isolation and overexpression in Escherichia coli of the flavodoxin gene from Anabaena PCC 7119. Biochem J 280: 187–191.

    Google Scholar 

  • Foulds IJ and Carr NG (1977) A proteolytic enzyme degrading phycocyanin in the cyanobacterium Anabaena cylindrica. FEMS Microbiol Lett 2: 117–119.

    CAS  Google Scholar 

  • Fresnedo O, Gomez R and Serra JL (1991) Carotenoid composition in the cyanobacterium Phormidium laminosum: Effect of nitrogen starvation. FEBS Lett 282: 300–304.

    PubMed  CAS  Google Scholar 

  • Fujita Y and Hattori A (1962) Photochemical interconversion between precursors of phycobilin chromoproteids in Tolypothrix tenuis. Plant Cell Physiol 3: 209–220.

    CAS  Google Scholar 

  • Gaidukov N (1903a) Die Farbervänderung bei den Prozessen der Komplementären chromatischen Adaptation. Ber Deut Botan Ges 21: 517–522.

    CAS  Google Scholar 

  • Gaidukov N (1903b) Weitere Untersuchungen über den Einfluss farbigen Lichtes auf die Färbung der Oscillatarien. Ber Deut Botan Ges 21: 484–492.

    CAS  Google Scholar 

  • Gaidukov N (1904) Zur Farbenanalyse der Algen. Berischte der Deutschen Botanischen Gesellschaft 22: 23–29.

    Google Scholar 

  • Gaidukov N (1906) Die komplementäre chromatische Adaptation bei Porphyra und Phormidium. Ber Deut Botan Ges 24: 1–5.

    Google Scholar 

  • Gantt E (1981) Phycobilisomes. Annu Rev Plant Physiol 32: 327–347.

    CAS  Google Scholar 

  • Gasparich GE, Buzby J, Bryant DA, Porter RD and Stevens Jr SE (1987) The effects of light intensity and nitrogen starvation on the phycocyanin promoter in the cyanobacterium Synechococcus PCC 7002. In: Biggins J (ed) Progress in Photosynthesis Research, Vol. IV, pp 761–764. Martinus-Nijhoff, Dordrecht.

    Google Scholar 

  • Glauser M, Sidler WA, Graham KW, Bryant DA, Frank G, Wehrli E and Zuber H (1992) Three C-phycoerythrin-associated linker polypeptides in the phycobilisome of green-light-grown Calothrix sp. PCC 7601 (cyanobacteria). FEBS Lett 297: 19–23.

    PubMed  CAS  Google Scholar 

  • Glazer AN (1985) Light harvesting by phycobilisomes. Annu Rev Biophys Biophysical Chem 14: 47–77.

    CAS  Google Scholar 

  • Glazer AN (1987) Phycobilisomes: Assembly and attachment. In: Fay P and Van Baalen C (ed) The Cyanobacteria, pp. 47–77. Elsevier Biomedical, Amsterdam.

    Google Scholar 

  • Glazer AN (1989) Light guides. Directional energy transfer in photosynthetic antenna. J Biol Chem 264: 1–4.

    PubMed  CAS  Google Scholar 

  • Glazer AN, Lundell DJ, Yamanaka G and Williams RC (1983) The structure of a’ simple’ phycobilisome. Ann Inst Pasteur Microbiol 134B: 159–180.

    CAS  Google Scholar 

  • Gombos Z and Vigh L (1986) Primary role of the cytoplasmic membrane in thermal acclimation evidenced in nitrate-starved cells of the blue-green alga, Anacystis nidulans. Plant Physiol 80: 415–419.

    PubMed  CAS  Google Scholar 

  • Green LS and Grossman AR (1988) Changes in sulfate transport characteristics and protein composition of Anacystis nidulans R2 during sulfur deprivation. J Bacteriol 170: 583–587.

    PubMed  CAS  Google Scholar 

  • Green LS, Laudenbach DE and Grossman AR (1989) A region of a cyanobacterial genome required for sulfate transport. Proc Natl Acad Sci USA 86: 1949–1953.

    PubMed  CAS  Google Scholar 

  • Grillo JF and Gibson J (1979) Regulation of phosphate accumulation in the cyanobacterium Synechococcus. J Bacteriol 140: 508–517.

    PubMed  CAS  Google Scholar 

  • Grossman AR (1990) Chromatic adaptation and the events involved in phycobilisome biosynthesis. Plant Cell Environ 13: 651–666.

    CAS  Google Scholar 

  • Grossman AR, Lemaux PG, Conley PB, Bruns BU and Anderson LK (1988) Characterization of phycobiliprotein and linker polypeptide genes in Fremyella diplosiphon and their regulated expression during complementary chromatic adaptation. Photosynth Res 17: 32–56.

    Google Scholar 

  • Grossman AR, Collier JL and Laudenbach DE (1992) The response of Synechococcus sp. Strain PCC 7942 to sulfur-limited growth. In: Murata N (ed) Research in Photosynthesis, Vol IV, pp 3–10. Kluwer, Dordrecht.

    Google Scholar 

  • Grossman AR, Schaefer MR, Chiang GG and Collier JL (1993) The phycobilisome, a light harvesting complex responsive to environmental conditions. Microbiol Rev 57: 725–749.

    PubMed  CAS  Google Scholar 

  • Guerrero MG and Lara C (1987) Assimilation of inorganic nitrogen. In: Fay P and Van Baalen C (ed) The Cyanobacteria, pp 163–186. Elsevier Biomedical, Amsterdam.

    Google Scholar 

  • Guikema JA and Sherman LA (1983) Organization and function of chlorophyll in membranes of cyanobacteria during iron starvation. Plant Physiol 73: 250–256.

    PubMed  CAS  Google Scholar 

  • Guikema JA and Sherman LA (1984) Influence of iron deprivation on the membrane composition of Anacystis nidulans. Plant Physiol 74: 90–95.

    PubMed  CAS  Google Scholar 

  • Hardie LP, Balkwill DL and Stevens Jr. SE (1983a) Effects of iron starvation on the physiology of the cyanobacterium Agmenellum quadruplicatum. Appl Environ Microbiol 45: 999–1006.

    PubMed  CAS  Google Scholar 

  • Hardie LP, Balkwill DL and Stevens Jr. SE (1983b) Effects of iron starvation on the ultrastructure of the cyanobacterium Agmenellum quadruplicatum. Appl Environ Microbiol 45: 1007–1017.

    PubMed  CAS  Google Scholar 

  • Haury JF and Bogorad L (1977) Action spectra for phycobiliprotein synthesis in a chromatically adapting cyanophyte. Plant Physiol 60: 835–839.

    PubMed  CAS  Google Scholar 

  • Healey FP (1973) Characteristics of phosphorus deficiency in Anabaena. J Phycol 9: 383–394.

    CAS  Google Scholar 

  • Healey FP (1982) Phosphate. In: Carr NG and Whitton BA (ed) The Biology of Cyanobacteria. Vol. 19, pp 105–124. University of California Press, Berkeley.

    Google Scholar 

  • Healey FP and Hendzel LL (1975) Effect of phosphorus deficiency on two algae growing in chemostats. J Phycol 11: 303–309.

    CAS  Google Scholar 

  • Healey FP and Hendzel LL (1979) Indicators of phosphorus and nitrogen deficiency in five algae in culture. J Fish Res Board Can 36: 1364–1369.

    CAS  Google Scholar 

  • Hecky RE and Kilham P (1988) Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment. Limnol Oceanog 33: 796–822.

    CAS  Google Scholar 

  • Hellinga HW and Evans PR (1985) Nucleotide sequence and high-level expression of the major E. coli phosphofructokinase. Eur J Biochem 149: 363–373.

    PubMed  CAS  Google Scholar 

  • Hershko A (1988) Ubiquitin-mediated protein degradation. J Biol Chem 263: 15237–15240.

    PubMed  CAS  Google Scholar 

  • Ho KK and Krogmann DW (1984) Electron donors to P700 in cyanobacteria and algae: An instance of unusual genetic variability. Biochim Biophys Acta 766: 310–316.

    CAS  Google Scholar 

  • Ho KK, Ulrich EL, Krogmann DW and Gomez-Lojero C (1979) Isolation of photosynthetic catalysts from cyanobacteria. Biochim Biophys Acta 545: 236–248.

    PubMed  CAS  Google Scholar 

  • Houmard J, Capuano V, Cousin T and Tandeau de Marsac N (1988a) Genes encoding core components of the phycobilisome in the cyanobacterium Calothrix sp. strain 7601. Occurence of a multigene family. J Bacteriol 170: 5512–5521.

    PubMed  CAS  Google Scholar 

  • Houmard J, Capuano V, Cousin T and Tandeau de Marsac (1988b) Isolation and molecular characterization of the gene encoding allophycocyanin B, a terminal energy acceptor in cyanobacterial phycobilisomes. Mol Microbiol 2: 101–107.

    PubMed  CAS  Google Scholar 

  • Houmard J, Capuano V, Columbano M V, Coursin T and Tandeau de Marsac N (1990) Molecular characterization of the terminal energy acceptor of cyanobacterial phycobilisomes. Proc Natl Acad Sci USA 87: 2152–2156.

    PubMed  CAS  Google Scholar 

  • Hryniewicz M, Sirko A, Palucha A, Bock A and Hulanicka D (1990) Sulfate and thiosulfate transport in Escherichia coli K-12: Identification of a gene encoding a novel protein involved in thiosulfate binding. J Bacteriol 172: 3358–3366.

    PubMed  CAS  Google Scholar 

  • Hutchins DA, Rueter JG and Fish W (1991) Siderophore production and nitrogen fixation are mutually exclusive strategies in Anabaena 7120. Limnol Oceanog 36: 1–12.

    CAS  Google Scholar 

  • Ihlenfeldt MJA and Gibson J (1975) Phosphate utilization and alkaline phosphatase activity in Anacystis nidulans (Synechococcus). Arch Microbiol 102: 23–28.

    PubMed  CAS  Google Scholar 

  • Islam MR and Whitton B A (1992a) Cell composition and nitrogen fixation by the deepwater rice-field cyanobacterium (blue-green alga) Calothrix D764. Microbios 69: 77–88.

    CAS  Google Scholar 

  • Islam MR and Whitton BA (1992b) Phosphorus content and phosphatase activity of the deepwater rice-field cyanobacterium (blue-green alga) Calothrix D764. Microbios 69: 7–16.

    CAS  Google Scholar 

  • Jeanjean R and Broda E (1977) Dependence of sulfate uptake by Anacystis nidulans on energy, on osmotic shock and on sulphate starvation. Arch Microbiol 114: 19–23.

    PubMed  CAS  Google Scholar 

  • Jenny FE Jr and Daldal F (1993) A novel membrane-associated c-type cytochrome, Cyt cy, can mediate the photosynthetic growth of Rhodobacter capsulatus and Rhodobacter sphaeroides. EMBO J 12: 1283–1292.

    Google Scholar 

  • Jensen TE and Rachlin JW (1984) Effect of varying sulphur deficiency on structural components of a cyanobacterium Synechococcus leopoliensis: A morphometric study. Cytobios 41: 35–46.

    CAS  Google Scholar 

  • Jensen TE and Sicko LM (1974) Phosphate metabolism in blue-green algae. I. Fine structure of the ‘polyphosphate overplus’ phenomenon in Plectonema boryanum. Can J Microbiol 20: 1235–1239.

    PubMed  CAS  Google Scholar 

  • Johnson TR, Haynes II JI, Wealand JL, Yarbrough LR and Hirschberg R (1988) Structure and regulation of genes encoding phycocyanin and allophycocyanin from Anabaena variabilis ATCC 29413. J Bacteriol 170: 1858–1865.

    PubMed  CAS  Google Scholar 

  • Kaplan A, Schwarz R, Lieman-Hurwitz J and Reinhold L (1991) Physiological and molecular aspects of the inorganic carbon-concentrating mechanism in cyanobacteria. Plant Physiol 97: 851–855.

    PubMed  CAS  Google Scholar 

  • Karagouni AD, Bloyce SA and Carr NG (1990) The presence and absence of inorganic carbon concentrating systems in unicellular cyanobacteria. FEMS Microbiol Lett 68: 137–142.

    CAS  Google Scholar 

  • Kashyap AK and Singh DP (1985) Ammonium transport in unicellular cyanobacterium Anacystis nidulans. Journal Plant Physiol 121: 319–330.

    CAS  Google Scholar 

  • Kerry A, Laudenbach DE and Trick CG (1988) The influence of iron limitation and nitrogen source on growth and siderophore production by cyanobacteria. J Phycol 24: 566–571.

    CAS  Google Scholar 

  • Kulasooriya SA, Lang NJ and Fay P (1972) The heterocysts of blue-green algae. III. Differentiation and nitrogenase activity. Proc Roy Soc Lond B 181: 199–209.

    CAS  Google Scholar 

  • Lammers PJ and Sanders-Loehr J (1982) Active transport of ferric schizokinen in Anabaena sp. J Bacteriol 151: 288–294.

    PubMed  CAS  Google Scholar 

  • Lang NJ (1965) Electron microscopic study of heterocyst development in Anabaena azollae Strasburger. J Phycol 1: 127–134.

    Google Scholar 

  • Lau RJ, Mackenzie MM and Doolittle WF (1977) Phycocyanin synthesis and degradation in the blue-green bacterium Anacystis nidulans. J Bacteriol 132: 771–778.

    PubMed  CAS  Google Scholar 

  • Laudenbach DE and Grossman AR (1991) Characterization and mutagenesis of sulfur-regulated genes in a cyanobacterium: Evidence for function in sulfate transport. J Bacteriol 173: 2739–2750.

    PubMed  CAS  Google Scholar 

  • Laudenbach DE and Straus NA (1988) Characterization of a cyanobacterial iron stress-induced gene similar to psbC. J Bacteriol 170: 5018–5026.

    PubMed  CAS  Google Scholar 

  • Laudenbach DE, Reith ME and Strauss NA (1988) Isolation, sequence analysis, and transcriptional studies of the flavodoxin gene from Anacystis nidulans R2. J Bacteriol 170: 258–265.

    PubMed  CAS  Google Scholar 

  • Laudenbach DE, Herbert SK, McDowell C, Fork DC, Grossman AR and Straus NA (1990) Cytochrome c-553 is not required for photosynthetic activity in the cyanobacterium Synechococcus. Plant Cell 2: 913–924.

    PubMed  CAS  Google Scholar 

  • Laudenbach DE, Ehrhardt D, Green L and Grossman AR (1991) Isolation and characterization of a sulfur-regulated gene encoding a periplasmically localized protein with sequence similarity to rhodanese. J Bacteriol 173: 2751–2760.

    PubMed  CAS  Google Scholar 

  • Lawry NH and Jensen TE (1979) Deposition of condensed phosphate as an effect of varying sulfur deficiency in the cyanobactenum Synechococcus sp. (Anacystis nidulans). Arch Microbiol 120: 1–7.

    CAS  Google Scholar 

  • Lawry NH and Jensen TE (1986) Condensed phosphate deposition, sulfur amino acid use, and unidirectional transsulfuration in Synechococcus leopoliensis. Arch Microbiol 144: 317–323.

    CAS  Google Scholar 

  • Lawry NH and Simon RD (1982) The normal and induced occurrence of cyanophycin inclusion bodies in several blue-green algae. J Phycol 18: 391–399.

    CAS  Google Scholar 

  • Lockau W, Massalsky B and Dirmeier A (1988) Purification and partial characterization of a calcium-stimulated protease from the cyanobacterium, Anabaena variabilis. Eur J Biochem 172: 433–438.

    PubMed  CAS  Google Scholar 

  • Lomax TL, Conley PB, Schilling J and Grossman AR (1987) Isolation and characterization of light-regulated phycobilisome linker polypeptide genes and their transcription as a polycistronic mRNA. J Bacteriol 169: 2675–2684.

    PubMed  CAS  Google Scholar 

  • Lönneborg A, Lind LK, Kalla SR, Gustafsson P and Öquist G (1985) Acclimation processes in the light-harvesting system of the cyanobacterium Anacystis nidulans following a light shift from white to red. Plant Physiol 78: 110–114.

    PubMed  Google Scholar 

  • Luque I, Herrero A, Flores E and Madueño F (1992) Clustering of genes involved in nitrate assimilation in the cyanobacterium Synechococcus. Mol Gen Genet 232: 7–11.

    PubMed  CAS  Google Scholar 

  • Mackerras AH, de Chazal NM and Smith GD (1990a) Transient accumulations of cyanophycin in Anabaena cylindrica and Synechocystis 6308. J Gen Microbiol 136: 2057–2065.

    CAS  Google Scholar 

  • Mackerras AH, Youens BN, Wier RC and Smith GD (1990b) Is cyanophycin involved in the integration of nitrogen and carbon metabolism in the cyanobacteria Anabaena cylindrica and Gleothece grown on light/dark cycles?. J Gen Microbiol 136: 2049–2056.

    CAS  Google Scholar 

  • Mahasneh IA (1991) Siderophore production in the Rivulariaceae, blue-green algae (cyanobacteria). Microbios 65: 97–103.

    Google Scholar 

  • Maldener I, Lockau W, Cai Y and Wolk CP (1991) Calcium-dependent protease of the cyanobacterium Anabaena: Molecular cloning and expression of the gene in Escherichia coli, sequencing and site directed mutagenesis. Mol Gen Genet 225: 113–120.

    PubMed  CAS  Google Scholar 

  • Manodori A and Melis A (1984) Photochemical apparatus organization in Anacystis nidulans (Cyanophyceae). Effect of CO2 concentration during cell growth. Plant Physiol 74: 67–71.

    PubMed  CAS  Google Scholar 

  • Manodori A and Melis A (1986a) Cyanobacterial acclimation to photosystem I or photosystem II light. Plant Physiol 82: 185–189.

    PubMed  CAS  Google Scholar 

  • Manodori A and Melis A (1986b) Light quality regulates photosystem stoichiometry in cyanobacteria. In: Akoyunoglou G and Senger H (ed) Regulation of Chloroplast Differentiation, pp 653–662. Alan R. Liss, New York.

    Google Scholar 

  • Marco E and Orús MI (1988a) Alkaline phosphatase activity in two cyanobacteria. Phyton 48: 27–32.

    CAS  Google Scholar 

  • Marco E and Orús MI (1988b) Variation in growth and metabolism with phosphorus nutrition in two cyanobacteria. J Plant Physiol 132: 339–344.

    CAS  Google Scholar 

  • Martin-Nieto J, Herrero A and Flores E (1991) Control of nitrogenase mRNA levels by products of nitrate assimilation in the cyanobacterium Anabaena sp. Strain PCC 7120. Plant Physiol 97: 825–828.

    PubMed  CAS  Google Scholar 

  • Mazel D and Marlière P (1989) Adaptive eradication of methionine and cysteine from cyanobacterial light-harvesting proteins. Nature 341: 245–248.

    PubMed  CAS  Google Scholar 

  • Mazel D, Guglielmi G, Houmard J, Sidler W, Bryant DA and Tandeau de Marsac N (1986) Green light induces transcription of phycoerythrin Operon in the cyanobacterium Calothrix 7601. Nucl Acids Res 14: 8279–8290.

    PubMed  CAS  Google Scholar 

  • Mazel D, Houmard J and Tandeau de Marsac N (1988) A multigene family in Calothrix sp. PCC 7601 encodes phycocyanin, the major component of the cyanobacterial light-harvesting antenna. Mol Gen Genet 211: 296–304.

    CAS  Google Scholar 

  • Mazel D, Houmard J, Castets AM and Tandeau de Marsac N (1990) Highly repetitive DNA sequences in cyanobacterial genome. J Bacteriol 172: 2755–2761.

    PubMed  CAS  Google Scholar 

  • Mazel D, Bernard C, Schwarz R, Castets AM, Houmard J and Tandeau de Marsac N (1991) Characterization of two insertion sequences, IS701 and IS702, from the cyanobacterium Calothrix sp. PCC 7601. Mol Microbiol 5: 2165–2170.

    PubMed  CAS  Google Scholar 

  • McKnight DM and Morel FMM (1980) Copper complexation by siderophores from filamentous blue-green algae. Limnol Oceanog 25: 62–71.

    CAS  Google Scholar 

  • Melis A, Manodori A, Glick RE, Ghirardi ML, McCauley SW and Neale PJ (1985) The mechanism of photosynthetic membrane adaptation to environmental stress conditions: A hypothesis on the role of electron transport capacity and of ATP/NADPH pool in the regulation of thylakoid membrane organization and function. Physiol Vég 23: 757–765.

    CAS  Google Scholar 

  • Merida A, Leurentop L, Candau P and Florencio FJ (1990) Purification and properties of glutamine synthetases from the cyanobacteria Synechocystis sp. Strain PCC 6803 and Calothrix sp. Strain PCC 7601. J Bacteriol 172: 4732–4735.

    PubMed  CAS  Google Scholar 

  • Merida A, Candau P and Florencio FJ (1991) Regulation of glutamine synthetase activity in the unicellular cyanobacterium Synechocystis sp. Strain PCC 6803 by the nitrogen source: Effect of ammonium. J Bacteriol 173: 4095–4100.

    PubMed  CAS  Google Scholar 

  • Miller AG, Turpin DH and Canvin DT (1984) Growth and photosynthesis of the cyanobacterium Synechococcus leopoliensis in HCO3 --limited chemostats. Plant Physiol. 75: 1064–1070.

    PubMed  CAS  Google Scholar 

  • Miller AG, Espie GS and Canvin DT (1990) Physiological aspects of CO2 and HCO3 - transport by cyanobacteria: A review. Can J Bot 68: 1291–1302.

    CAS  Google Scholar 

  • Miller LS and Holt SC (1977) Effect of carbon dioxide on pigment and membrane content in Synechococcus lividus. Arch Microbiol 115: 185–198.

    PubMed  CAS  Google Scholar 

  • Miranda-Riós J, Sánchez-Pescador R, Urdea M and Cavarrubias A (1987) The complete nucleotide sequence of glnALG Operon of E. coli K12. Nucl Acids Res 15: 2757–2770.

    PubMed  Google Scholar 

  • Muñoz-Dorado J, Inouye S and Inouye M (1991) A gene encoding a protein-serine/threonine kinase is required for normal development of M. xanthus, a gram negative bacterium. Cell 67: 995–1006.

    PubMed  Google Scholar 

  • Naes H and Post AF (1988) Transient states of geosmin, pigments, carbohydrates and proteins in continuous cultures of Oscillatoria brevis induced by changes in nitrogen supply. Arch Microbiol 150: 333–337.

    CAS  Google Scholar 

  • Neilson A, Rippka R and Kunisawa R (1971) Heterocyst formation and nitrogenase synthesis in Anabaena sp. A kinetic study. Arch Mikrobiol 76: 139–150.

    CAS  Google Scholar 

  • Nierzwicki-Bauer SA, Balkwill DL and Stevens Jr. SE (1984) Heterocyst differentiation in the cyanobacterium Mastigocladus laminosus. J Bacteriol 157: 514–525.

    PubMed  CAS  Google Scholar 

  • Oelmüller R, Conley PB, Federspiel N, Briggs WR and Grossman AR (1988a) Changes in accumulation and synthesis of transcripts encoding phycobilisome components during acclimation of Fremyella diplosiphon to different light qualities. Plant Physiol 88: 1077–1083.

    PubMed  Google Scholar 

  • Oelmüller R, Grossman AR and Briggs WR (1988b) Photoreversibility of the effect of red and green light pulses on the accumulation in darkness of mRNAs coding for phycocyanin and phycoerythrin in Fremyella diplosiphon. Plant Physiol 88: 1084–1091.

    PubMed  Google Scholar 

  • Oelmüller R, Grossman AR and Briggs WR (1989) Role of protein synthesis in regulation of phycobiliprotein mRNA abundance by light quality in Fremyella diplosiphon. Plant Physiol 90: 1486–1499.

    PubMed  Google Scholar 

  • Ogawa T (1992) Identification and characterization of the ictA/ ndhL gene product essential to inorganic carbon transport of Synechocystis PCC6803. Plant Physiol 99: 1604–1608.

    PubMed  CAS  Google Scholar 

  • Ohad I, Schneider HAW, Gendel S and Bogorad L (1980) Light-induced changes in allophycocyanin. Plant Physiol 65: 6–12.

    PubMed  CAS  Google Scholar 

  • Ohki K and Fujita Y (1979a) In vivo transformation of phycobiliproteins during bleaching of Tolypothrix tenuis to forms active in photoreversible absorption changes. Plant Cell Physiol 20: 1341–1347.

    CAS  Google Scholar 

  • Ohki K and Fujita Y (1979b) Photoreversible absorption changes of guanidine-HCL-treated phycocyanin and allophycocyanin isolated from the blue-green alga Tolypothrix tenuis. Plant Cell Physiol 20: 483–490.

    CAS  Google Scholar 

  • Ohki K and Fujita Y (1981) On the relationship between photocontrol of phycoerythrin formation and the photoreversible pigment of Scheibe. Plant Cell Physiol 22: 347–357.

    CAS  Google Scholar 

  • Ohki K, Watanabe M and Fujita Y (1982) Action of near UV and blue light on the photocontrol of phycobiliprotein formation: A complementary chromatic adaptation. Plant Cell Physiol 23: 651–656.

    CAS  Google Scholar 

  • Omata T (1991) Cloning and characterization of the nrtA gene that encodes a 45 kDa protein involved in nitrate transport in the cyanobacterium Synechococcus PCC 7942. Plant Cell Physiol 32: 151–157.

    CAS  Google Scholar 

  • Omata T, Carlson TJ, Ogawa T and Pierce J (1990) Sequencing and modification of the gene encoding the 42-kilodalton protein in the cytoplasmic membrane of Synechococcus PCC 7942. Plant Physiol 93: 305–311.

    PubMed  CAS  Google Scholar 

  • Öquist G (1974a) Distribution of chlorophyll between the two photoreactions in photosynthesis of the blue-green alga Anacystis nidulans grown at two different light intensities. Physiol Plant 30: 38–40.

    Google Scholar 

  • Öquist G (1974b) Iron deficiency in the blue-green alga Anacystis nidulans: Changes in pigmentation and photosynthesis. Physiol Plant. 30: 30–37.

    Google Scholar 

  • Öquist G (1974c) Light-induced changes in pigment composition of photosynthetic lamellae and cell-free extracts obtained from the blue-green alga Anacystis nidulans. Physiol Plant 30: 45–48.

    Google Scholar 

  • Ownby JD, Shannahan M and Hood E (1979) Protein synthesis and degradation in Anabaena during nitrogen starvation. J Gen Microbiol 110: 255–261.

    CAS  Google Scholar 

  • Pakrasi HB, Goldenberg A and Sherman LA (1985) Membrane development in the cyanobacterium, Anacystis nidulans, during recovery from iron starvation. Plant Physiol 79: 290–295.

    PubMed  CAS  Google Scholar 

  • Paone DAM and Stevens Jr. SE (1981) Nitrogen starvation and the regulation of glutamine synthetase in Agmenellum quadruplicatum. Plant Physiol 67: 1097–1100.

    PubMed  CAS  Google Scholar 

  • Peterson RB, Dolan E, Calvert HE and Ke B (1981) Energy transfer from phycobiliproteins to photosystem I in vegetative cells and heterocysts of Anabaena variabilis. Biochim Biophys Acta 634: 237–248.

    PubMed  CAS  Google Scholar 

  • Pierce J and Omata T (1988) Uptake and utilization of inorganic carbon by cyanobacteria. Photosynth Res 16: 141–154.

    CAS  Google Scholar 

  • Platt T (1986) Transcription termination and the regulation of gene expression. Annu Rev Biochem 55: 339–372.

    PubMed  CAS  Google Scholar 

  • Potts M, Sun H, Mockaitis K, Kennelly PJ, Reed D, and Tonks NK (1993) A protein-tyrosine/ serine phosphatase encoded by the genome of the cyanobacterium Nostoc commune UTEX 584. J Biol Chem 268: 7632–7635.

    PubMed  CAS  Google Scholar 

  • Prasad P and Kashyap AK (1990) Characteristics of ammonium transport in an alkalophilic diazotrophic cyanobacterium Nostoc calicola: influence of temperature and methionine sulfoximine. J Plant Physiol 136: 149–154.

    CAS  Google Scholar 

  • Prasad P and Kashyap AK (1991) Ammonium transport in the alkalophilic diazotrophic cyanobacterium Nostoc calicola: Influence of phosphate limitation and metabolic inhibitors. J Plant Physiol 138: 244–247.

    CAS  Google Scholar 

  • Ray JM, Bhaya D, Block MA and Grossman AR (1991) Isolation, transcription, and inactivation of the gene for an atypical alkaline phosphatase of Synechococcus sp. Strain PCC 7942. J Bacteriol 173: 4297–4309.

    PubMed  CAS  Google Scholar 

  • Reddy KJ, Bullerjahn GS, Sherman DM and Sherman LA (1988) Cloning, nucleotide sequence, and mutagenesis of a gene (irpA) involved in iron-deficient growth of the cyanobacterium Synechococcus sp. Strain PCC7942. J Bacteriol 170: 4466–4476.

    PubMed  CAS  Google Scholar 

  • Reddy KJ, Masamoto K, Sherman DM and Sherman LA (1989) DNA sequence and regulation of the gene (cbpA) encoding the 42-kilodalton cytoplasmic membrane carotenoprotein of the cyanobacterium Synechococcus sp. Strain PCC 7942. J Bacteriol 171: 3486–3493.

    PubMed  CAS  Google Scholar 

  • Reithman H, Bullerjahn G, Reddy KJ and Sherman LA (1988) Regulation of cyanobacterial pigment-protein composition and organization by environmental factors. Photosynth Res 18: 133–161.

    Google Scholar 

  • Rodriguez R, Lara C and Guerrero MG (1992) Nitrate transport in the cyanobacterium Anacystis nidulans R2. Kinetic and energetic aspects. Biochem J 282: 639–643.

    PubMed  CAS  Google Scholar 

  • Roush CL, Kennelly PJ, Glaccum MB, Helfman DH, Scott JD and Krebs EG (1988) Isolation of cDNA encoding rat skeletal muscle light chain kinase. J Biol Chem 263: 10510–10516.

    PubMed  CAS  Google Scholar 

  • Rueter JG (1988) Iron stimulation of photosynthesis and nitrogen fixation in Anabaena 7120 and Trichodesmium (Cyanophyceae). J Phycol 24: 249–254.

    CAS  Google Scholar 

  • Sandmann G (1985) Consequences of iron deficiency on photosynthetic and respiratory electron transport in blue-green algae. Photosynth Res 6: 261–271.

    CAS  Google Scholar 

  • Sandmann G (1986) Formation of plastocyanin and cytochrome c-553 in different species of blue-green algae. Arch Microbiol 145: 76–79.

    CAS  Google Scholar 

  • Sandmann G, Peleato ML, Fillat MF, Lázaro MC and Gómez-Moreno C (1990) Consequences of the iron-dependent formation of ferredoxin and flavodoxin on photosynthesis and nitrogen fixation on Anabaena strains. Photosynth Res 26: 119–125.

    CAS  Google Scholar 

  • Scanlan DJ, Mann NH and Carr NG (1989) Effect of iron and other nutrient limitations on the pattern of outer membrane proteins in the cyanobacterium Synechococcus PCC7942. Arch Microbiol 152: 224–228.

    CAS  Google Scholar 

  • Schäfer E Briggs WR (1986) Photomorphogenesis from signal perception to gene expression. Photobiochem Photobiophys 12: 305–320.

    Google Scholar 

  • Scheibe J (1972) Photoreversible pigment: Occurrence in a blue-green alga. Science 176: 1037–1039.

    PubMed  CAS  Google Scholar 

  • Schmidt A and Christen U (1978) A factor-dependent sulfotransferase specific for 3′-phosphoadenosine-5′-phosphosulfate (PAPS) in the cyanobacterium Synechococcus 6301. Planta 140: 239–244.

    CAS  Google Scholar 

  • Schmidt A, Erdle I and Köst H-P (1982) Changes of c-phycocyanin in Synechococcus 6301 in relation to growth on various sulfur compounds. Z Naturforsch 37c: 870–876.

    CAS  Google Scholar 

  • Seki T, Yoshikawa H, Takahashi H and Saito H (1987) Cloning and nucleotide sequence of phoP, the regulatory gene for alkaline phosphatase and phosphodiesterase in Bacillus subtilis. J Bacteriol 169: 2913–2916.

    PubMed  CAS  Google Scholar 

  • Sherman DM and Sherman LA (1983) Effect of iron deficiency and iron restoration on ultrastructure of Anacystis nidulans. J Bacteriol 156: 393–401.

    PubMed  CAS  Google Scholar 

  • Shuman HA (1982) Active transport of maltose in Escherichia coli K-12: Role of the periplasmic maltose-binding protein and evidence for a substrate recognition site in the cytoplasmic membrane. J Biol Chem 257: 5455–5461.

    PubMed  CAS  Google Scholar 

  • Sicko-Goad L and Jensen TE (1976) Phosphate metabolism in blue-green algae. II. Changes in phosphate distribution during starvation and the ‘polyphosphate overplus’ phenomenon in Plectonema boryanum. Amer J Bot 63: 183–188.

    CAS  Google Scholar 

  • Simon RD (1987) Inclusion bodies in the cyanobacteria: Cyanophycin, polyphosphate, polyhedral bodies. In: Fay P and Van Baalen C (ed) The Cyanobacteria, pp 199–225. Elsevier Biomedical Publishers, Amsterdam.

    Google Scholar 

  • Singh S (1990) Urea uptake in cyanobacteria Anabaena doliolum and Anacystis nidulans. Indian J Exp Biol 28: 378–379.

    CAS  Google Scholar 

  • Smoker JA, Owen HA, Lehnen Jr. LP and Barnum SR (1989) Ultrastructure of the nitrogen-fixing, filamentous, nonhetero-cystous cyanobacterium, Plectonema boryanum. Protoplasma 152: 130–135.

    Google Scholar 

  • Sobczyk A, Schyns G, Tandeau de Marsac N and Houmard J (1993) Transduction of the light signal during complementary chromatic adaptation in the cyanobacterium Calothrix sp. PCC 7601: DNA-binding proteins and modulations by phosphorylation. EMBO J 12: 997–1004.

    PubMed  CAS  Google Scholar 

  • Stevens SE Jr and Poane DAM (1981) Accumulation of cyanophycin granules as a result of phosphate limitation in Agmenellum quadruplicatum. Plant Physiol 67: 716–719.

    PubMed  CAS  Google Scholar 

  • Stevens SE Jr, Balkwill DL and Paone DAM (1981) The effects of nitrogen limitation on the ultrastructure of the cyanobacterium Agmenellum quadruplicatum. Arch Microbiol 140: 204–212.

    Google Scholar 

  • Stevens SE Jr, Nierzwicki-Bauer SA and Balkwill DL (1985) Effect of nitrogen starvation on the morphology and ultrastructure of the cyanobacterium Mastigocladus laminosus. J Bacteriol 161: 1215–1218.

    PubMed  CAS  Google Scholar 

  • Stewart WDP and Lex M (1970) Nitrogenase activity in the blue-green alga Plectonema boryanum Strain 594. Arch Mikrobiol 73: 250–260.

    PubMed  CAS  Google Scholar 

  • Stock JB, Ninfa AJ and Stock AM (1990) Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53: 450–490.

    Google Scholar 

  • Suzuki I, Omata T and Sugiyama T (1992) Gene expression and regulation of nitrate assimilating enzymes in Synechococcus PCC7942. In: Murata N (ed) Research in Photosynthesis, Vol IV, pp 75–78. Kluwer, Dordrecht.

    Google Scholar 

  • Szalontai B and Csatorday K (1979) Changes in phycocyanin-carotenoid association during nitrate starvation of Anacystis nidulans. Biochem Biophys Res Comm 88: 1294–1300.

    PubMed  CAS  Google Scholar 

  • Tandeau de Marsac N (1977) Occurrence and nature of chromatic adaptation in cyanobacteria. J Bacteriol 130: 82–91.

    PubMed  CAS  Google Scholar 

  • Tandeau de Marsac N (1983) Phycobilisomes and complementary adaptation in cyanobacteria. Bull Inst Pasteur 81: 201–254.

    CAS  Google Scholar 

  • Tandeau de Marsac N, Castets A-M, and Cohen-Bazire G (1980) Wavelength modulation of phycoerythrin synthesis in Synechocystis sp. 6701. J Bacteriol 142: 310–314.

    CAS  Google Scholar 

  • Tandeau de Marsac N, Mazel D, Damerval T, Guglielmi G, Capuano V and Houmard J (1988) Photoregulation of gene expression in the filamentous cyanobacterium Calothrix sp. 7601: Light-harvesting complexes and cell differentiation. Photosynth Res 18: 99–132.

    Google Scholar 

  • Tandeau de Marsac N, Mazel D, Capuano V, Damerval T and Houmard J (1990) Genetic analysis of the cyanobacterial light-harvesting antenna complex. In: Drews G and Dawes EA (eds) The Molecular Biology of Membrane-bound Complexes in Phototrophic Bacteria, pp 143–153. Plenum, New York.

    Google Scholar 

  • Thiel T (1990) Protein turnover and heterocyst differentiation in the cyanobacterium Anabaena variabilis. J Phycol 26: 50–54.

    CAS  Google Scholar 

  • Tomizawa K-I, Nagatani A and Furuya M (1990) Phytochrome genes: Studies using the tools of molecular biology and photomorphogentic mutants. Photochem Photobiol 52: 265–275.

    PubMed  CAS  Google Scholar 

  • Tsang ML-S and Schiff JA (1975) Studies of sulfate utilization by algae 14. Distribution of adenosine 5′-phosphosulfate (APS) and adenosine 3′-phosphate 5′-phosphosulfate (PAPS) sulfotransferase in assimilatory sulfate reducers. Plant Sci Lett 4: 301–307.

    CAS  Google Scholar 

  • Tsinoremas NF, Castets AM, Harrison MA, Allen JF and Tandeau de Marsac N (1991) Photosynthetic electron transport controls nitrogen assimilation in cyanobacteria by means of posttranslational modification of the glnB gene product. Proc Natl Acad Sci USA 88: 4565–4569.

    PubMed  CAS  Google Scholar 

  • Turpin DH, Miller AG and Canvin DT (1984) Carboxysome content of Synechococcus leopoliensis (Cyanophyta) in response to inorganic carbon. J Phycol 20: 249–253.

    CAS  Google Scholar 

  • Tyagi WS, Ray TB, Mayne BC and Peters GA (1981) The Azolla-Anabaena azollae relationship. XL Phycobiliproteins in the action spectrum for nitrogenase-catalyzed acetylene reduction. Plant Physiol 68: 1479–1484.

    PubMed  CAS  Google Scholar 

  • Utkilen HC, Heldal M and Knutsen G (1976) Characterization of sulfate uptake in Anacystis nidulans. Physiol Plant 38: 217–220.

    CAS  Google Scholar 

  • Van der Plas J, de Groot R, Woortman M, Cremers F, Borrias M, van Arkel G and Weisbeek P (1988) Genes encoding ferredoxins from Anabaena sp. PCC 7937 and Synechococcus sp. PCC 7942: Structure and regulation. Photosynth Res 18: 179–204.

    Google Scholar 

  • Van der Pias J, Bovy A, Kryut F, de Vrieze G, Dassen E, Klein B and Weisbeek P (1989) The gene for the precursor of plastocyanin from the cyanobacterium Anabaena sp. PCC 7937: Isolation, sequence and regulation. Mol Microbiol 3: 275–284.

    Google Scholar 

  • Vasil’eva VE and Levitin MG (1974) Effect of carbon dioxide starvation on certain blue-green algae. Fiziologiya Rastenii 21: 1207–1211.

    CAS  Google Scholar 

  • Vega-Palas MA, Madueño F, Herrero A and Flores E (1990) Identification and cloning of a regulatory gene for nitrogen assimilation in the cyanobacterium Synechococcus sp. Strain PCC 7942. J Bacteriol 172: 643–647.

    PubMed  CAS  Google Scholar 

  • Vega-Palas MA, Flores E and Herrero A (1992) NtcA, a global nitrogen regulator from the cyanobacterium Synechococcus that belongs to the Crp family of bacterial regulators. Mol Microbiol 6: 1853–1859.

    PubMed  CAS  Google Scholar 

  • Vogelman TC and Scheibe J (1978) Action spectrum for chromatic adaptation in the blue-green alga Fremyella diplosiphon. Planta 143: 233–239.

    Google Scholar 

  • Wagner SJ, Thomas SP, Kaufman RI, Nixon BT and Stevens SE Jr (1993) The glnA gene of the cyanobacterium Agmenellum quadruplicatum PR-6 is nonessential for ammonium assimilation. J Bacteriol 175: 604–612.

    PubMed  CAS  Google Scholar 

  • Wanner G, Henkelmann G, Schmidt A and Köst H-P (1986) Nitrogen and sulfur starvation of the cyanobacterium Synechococcus 6301. An ultrastructural, morphometrical, and biochemical comparison. Z Naturforsch 41c: 741–750.

    Google Scholar 

  • Wealand JL, Myers JA and Hirschberg R (1989) Changes in gene expression during nitrogen starvation in Anabaena variabilis ATCC 29413. J Bacteriol 171: 1309–1313.

    PubMed  CAS  Google Scholar 

  • Whitton BA, Potts M, Simon JW and Grainger SLJ (1990) Phosphatase activity of the blue-green alga (cyanobacterium) Nostoc commune UTEX 584. Phycologia 29: 139–145.

    Google Scholar 

  • Willey JM and Waterbury JB (1989) Chemotaxis toward nitrogenous compounds by swimming strains of marine Synechococcus spp. Appl Environ Microbiol 55: 1888–1894.

    PubMed  CAS  Google Scholar 

  • Wood NB and Haselkorn R (1979) Proteinase activity during heterocyst differentiation in nitrogen-fixing cyanobacteria. In: Cohen GN and Holzer H (ed) Limited Proteolysis in Microorganisms, pp 159–166. US DHEW Publication No. (NIH) 79-1591, Bethesda, MD.

    Google Scholar 

  • Wood NB and Haselkorn R (1980) Control of phycobiliprotein proteolysis and heterocyst differentiation in Anabaena. J Bacteriol 141: 1375–1385.

    PubMed  CAS  Google Scholar 

  • Wood P, Peat A and Whitton BA (1986) Influence of phosphorus status on fine structure of the cyanobacterium (blue-green alga) Calothrix parietina. Cytobios 47: 89–99.

    CAS  Google Scholar 

  • Wyman M, Gregory RPF and Carr NG (1985) Novel role for phycoerythrin in a marine cyanobacterium, Synechococcus strain DC2. Science 230: 818–820.

    PubMed  CAS  Google Scholar 

  • Xie W-Q, Whitton BA, Simon JW, Jäger K, Reed D and Potts M (1989) Nostoc commune UTEX 584 gene expressing indole phosphate hydrolase activity in Escherichia coli. J Bacteriol 171: 708–713.

    PubMed  CAS  Google Scholar 

  • Yamanaka G and Glazer AN (1980) Dynamic aspects of phycobilisome structure. Phycobilisome turnover during nitrogen starvation in Synechococcus sp. Arch Microbiol 124: 39–47.

    CAS  Google Scholar 

  • Yamanaka G and Glazer AN (1983) Phycobiliproteins in Anabaena 7119 heterocysts. In: Papageorgiou GC and Packer L (ed) Photosynthetic Prokaryotes: Cell Differentiation and function, pp 69–90. Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Yeh SW, Ong LJ and Glazer AN (1986) Role of phycoerythrin in marine picoplankton Synechococcus spp. Science 234: 1422–1423.

    PubMed  CAS  Google Scholar 

  • Zhang L, McSpadden B, Pakrasi HB and Whitmarsh J (1992) Copper-mediated regulation of cytochrome c553 and plastocyanin in the cyanobacterium Synechocystis 6803. J Biol Chem 267: 19054–19059.

    PubMed  CAS  Google Scholar 

  • Zuber H (1986) Structure of light harvesting antenna complexes of photosynthetic bacteria, cyanobacteria and red algae. Trends Biochem Sci 11: 414–419.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grossman, A.R., Schaefer, M.R., Chiang, G.G., Collier, J.L. (1994). The Responses of Cyanobacteria to Environmental Conditions: Light and Nutrients. In: Bryant, D.A. (eds) The Molecular Biology of Cyanobacteria. Advances in Photosynthesis, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0227-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0227-8_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3273-2

  • Online ISBN: 978-94-011-0227-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics