Skip to main content

Cyanobacterial Mats and Stromatolites

  • Chapter
  • First Online:
Ecology of Cyanobacteria II

Summary

Cyanobacteria are often the key organisms comprising microbial mats. They form dense micrometer-scale communities in which the full plethora of microbial metabolism can be present. Such mats are therefore excellent model systems and because of their analogy with Precambrian stromatolites they are also attractive subjects for evolutionary studies. Growth and metabolism of the oxygenic phototrophic cyanobacteria enrich the sediment with organic matter. However, in mature mats net growth of cyanobacteria appears to be of less importance. Most of the organic matter produced from photosynthetic CO2 fixation is liberated in the sediment by one of the following: fermentation, photorespiration, pouring out of solutes or secretion of mucus although grazing may also be important. This organic matter is degraded by chemotrophic microorganisms, among which sulphate-reducing bacteria are particularly prominent. The combined activities of the cyanobacteria and sulphate-reducing bacteria result in steep and fluctuating gradients of sulphide and oxygen. Cyanobacteria therefore have to cope with high concentrations of sulphide, oxygen supersaturated – and anoxic conditions. These physicochemical gradients force different functional groups of microorganisms to particular vertical stratified positions in the mat. This, and the fact that accretion of sediment fluctuates, gives rise to one of the most conspicuous properties of microbial mats namely their laminated structure. Modern microbial mats have this laminated structure in common with Precambrian stromatolites. Most modern mats do not lithify but this may also have been the case for Archean microbial mats. Only a few examples of modern calcifying stromatolithic microbial mats are known. A hypothesis has been developed which conceives a role for extracellular polysaccharides in calcification. Extracellular polysaccharides in cyanobacterial mats are often produced as the result of unbalanced growth caused by nitrogen deficiency. The mat organisms are embedded in the extensive polysaccharide matrix that inhibits calcification. All cyanobacterial mats can fix atmospheric dinitrogen, which covers part of their nitrogen demand, but the fluctuating physicochemical gradients limits the efficiency of this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abed RMM, Garcia-Pichel F, Hernández-Mariné M (2002) Polyphasic characterization of benthic, moderately halophilic, moderately thermophilic cyanobacteria with very thin trichomes and the proposal of Halomicronema excentricum gen. nov., sp. nov. Arch Microbiol 177:361–370

    Article  PubMed  CAS  Google Scholar 

  • Adam MM, Gómez-García MR, Grossman AR, Bhaya D (2008) Phosphorus deprivation responses and phosphonate utilization in a thermophilic Synechococcus sp. from microbial mats. J Bacteriol 190:8171–8184

    Article  CAS  Google Scholar 

  • Albertano P, Kovacik L (1996) Light and temperature responses of terrestrial sciaphilous strains of Leptolyngbya sp. in cross-gradient cultures. Algol Stud 83:17–28

    Google Scholar 

  • Allen MM, Smith AJ (1969) Nitrogen chlorosis in blue-green algae. Arch Mikrobiol 69:114–120

    Article  PubMed  CAS  Google Scholar 

  • Allewalt JP, Bateson MM, Revsbech NP, Slack K, Ward DM (2006) Effect of temperature and light on growth of and photosynthesis by Synechococcus isolates typical of those predominating in the Octopus Spring microbial mat community of Yellowstone National Park. Appl Environ Microbiol 72:544–550

    Article  PubMed  CAS  Google Scholar 

  • Anderson KL, Tayne TA, Ward DM (1987) Formation and fate of fermentation products in hot spring cyanobacterial mats. Appl Environ Microbiol 53:2343–2352

    PubMed  CAS  Google Scholar 

  • Arp G, Reimer A, Reitner J (2001) Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science 292:1701–1704

    Article  PubMed  CAS  Google Scholar 

  • Artus NN, Somerville SC, Somerville CR (1986) The biochemistry and cell biology of photorespiration. CRC Crit Rev Plant Sci 4:121–147

    Article  CAS  Google Scholar 

  • Awramik SM (1984) Ancient stromatolites and microbial mats. In: Cohen Y, Castenholz RW, Halvorson HO (eds) Microbial mats: stromatolites. Alan R. Liss Inc, New York, pp 1–22, 498 pp

    Google Scholar 

  • Badger MR, Andrews TJ (1982) Photosynthesis and inorganic carbon usage by the marine cyanobacterium, Synechococcus sp. Plant Physiol 70:517–523

    Article  PubMed  CAS  Google Scholar 

  • Bak F, Pfennig N (1987) Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds. Arch Microbiol 147:184–189

    Article  CAS  Google Scholar 

  • Bar-Or Y, Shilo M (1987) Characterization of macromolecular flocculants produced by Phormidium sp. strain J-1 and by Anabaenopsis circularis PCC 6720. Appl Environ Microbiol 53:2226–2230

    PubMed  CAS  Google Scholar 

  • Bar-Or Y, Shilo M (1988) The role of cell-bound flocculants in coflocculation of benthic cyanobacteria with clay particles. FEMS Microbiol Ecol 53:169–174

    Article  Google Scholar 

  • Bar-Or Y, Kessel M, Shilo M (1985) Modulation of cell surface hydrophobicity in the benthic cyanobacterium Phormidium J-1. Arch Microbiol 142:21–27

    Article  CAS  Google Scholar 

  • Bateson MM, Ward DM (1988) Photoexcretion and fate of glycolate in a hot spring cyanobacterial mat. Appl Environ Microbiol 54:1738–1743

    PubMed  CAS  Google Scholar 

  • Bauer MR, Haddad RI, Des Marais DJ (1991) Method for determining stable isotope ratios of dissolved organic carbon in interstitial and other natural marine waters. Mar Chem 33:335–351

    Article  PubMed  CAS  Google Scholar 

  • Bauersachs T, Kremer B, Schouten S, Sinninghe Damsté JS (2009) A biomarker and δ15N study of thermally altered Silurian cyanobacterial mats. Org Geochem 40:149–157

    Article  CAS  Google Scholar 

  • Bauld J (1984) Microbial mats in marginal marine environments: Shark Bay, Western Australia, and Spencer Gulf, South Australia. In: Cohen Y, Castenholz RW, Halvorson HO (eds) Microbial mats: stromatolites. Alan R. Liss Inc, New York, pp 39–58, 498 pp

    Google Scholar 

  • Baumgartner LK, Reid RP, Dupraz C, Decho AW, Buckley DH, Spear JR, Przekop KM, Visscher PT (2006) Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries. Sediment Geol 185:131–145

    Article  CAS  Google Scholar 

  • Bebout BM, Garcia-Pichel F (1995) UV B-induced vertical migrations of cyanobacteria in a microbial mat. Appl Environ Microbiol 61:4215–4222

    PubMed  CAS  Google Scholar 

  • Bender J, Rodriguezeaton S, Ekanemesang UM, Phillips P (1994) Characterization of metal-binding bioflocculants produced by the cyanobacterial component of mixed microbial mats. Appl Environ Microbiol 60:2311–2315

    PubMed  CAS  Google Scholar 

  • Bergman B, Gallon JR, Rai AN, Stal LJ (1997) N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiol Rev 19:139–185

    Article  CAS  Google Scholar 

  • Berner R, Jensen T (1982) Ultrastructure of two hypolithic cyanobacteria from the Negev desert of Israel. Cytobios 35:7–18

    Google Scholar 

  • Bertocchi C, Navarini L, Cesaro A (1990) Polysaccharides from cyanobacteria. Carbohydr Polym 12:127–153

    Article  CAS  Google Scholar 

  • Bhaya D (2004) Light matters: phototaxis and signal transduction in unicellular cyanobacteria. Mol Microbiol 53:745–754

    Article  PubMed  CAS  Google Scholar 

  • Bolhuis H, Severin I, Confurius-Guns V, Wollenzien UIA, Stal LJ (2010) Horizontal transfer of the nitrogen fixation gene cluster in the cyanobacterium Microcoleus chthonoplastes. ISME J 4:121–130

    Article  PubMed  CAS  Google Scholar 

  • Borman AH, De Jong EW, Huizinga M, Kok DJ, Westbroek P, Bosch L (1982) The role in CaCO3 crystallization of an acid Ca2+-binding polysaccharide associated with coccliths of Emiliania huxleyi. Eur J Biochem 129:179–183

    Article  PubMed  CAS  Google Scholar 

  • Borman AH, De Jong EW, Thierry R, Westbroek P, Bosch L (1987) Coccolith-associated polysaccharides from cells of Emiliania huxleyi (Haptophyceae). J Phycol 23:118–123

    Article  CAS  Google Scholar 

  • Bosak T, Greene SE, Newman DK (2007) A likely role for anoxygenic photosynthetic microbes in the formation of ancient stromatolites. Geobiology 5:119–126

    Article  PubMed  CAS  Google Scholar 

  • Boudreau BP, Canfield DE (1993) A comparison of closed- and open-system models for porewater pH and calcite-saturation state. Geochim Cosmochim Acta 57:317–334

    Article  CAS  Google Scholar 

  • Braissant O, Decho AW, Przekop KM, Gallagher KL, Glunk C, Dupraz C, Visscher PT (2009) Characteristics and turnover of exopolymeric substances in a hypersaline microbial mat. FEMS Microbiol Ecol 67:293–307

    Article  PubMed  CAS  Google Scholar 

  • Brock TD (1975) Effect of water potential on a Microcoleus (Cyanophyceae) from a desert crust. J Phycol 11:316–320

    Google Scholar 

  • Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer, New York, 465 pp

    Book  Google Scholar 

  • Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036

    Article  PubMed  CAS  Google Scholar 

  • Brown II, Mummey D, Cooksey KE (2005) A novel cyanobacterium exhibiting an elevated tolerance for iron. FEMS Microbiol Ecol 52:307–314

    Article  PubMed  CAS  Google Scholar 

  • Budinoff CR, Hollibaugh JT (2008) Arsenite-dependent photoautotrophy by an Ectothiorhodospira-dominated consortium. ISME J 2:340–343

    Article  PubMed  CAS  Google Scholar 

  • Caiola MG, Ocampo-Friedmann R, Friedmann EI (1993) Cytology of long-term desiccation in the desert cyanobacterium Chroococcidiopsis (Chroococcales). Phycologia 32:315–322

    Article  PubMed  CAS  Google Scholar 

  • Caiola MG, Billi D, Friedmann EI (1996) Effect of desiccation on envelopes of the cyanobacterium Chroococcidiopsis sp. (Chroococcales). Eur J Phycol 31:99–105

    Article  Google Scholar 

  • Cairns-Smith AG (1978) Precambrian solution photochemistry, inverse segregation, and banded iron formations. Nature 276:807–808

    Article  CAS  Google Scholar 

  • Camacho A, de Wit R (2003) Effect of nitrogen and phosphorus additions on a benthic microbial mat from a hypersaline lake. Aquat Microb Ecol 32:261–273

    Article  Google Scholar 

  • Camacho A, Rochera C, Silvestre JJ, Vicente E, Hahn MW (2005) Spatial dominance and inorganic carbon assimilation by conspicuous autotrophic biofilms in a physical and chemical gradient of a cold sulfurous spring: the role of differential ecological strategies. Microb Ecol 50:172–184

    Article  PubMed  CAS  Google Scholar 

  • Campbell SE (1979) Soil stabilization by a prokaryotic desert crust: implications for Precambrian land biota. Orig Life 9:335–348

    Article  PubMed  CAS  Google Scholar 

  • Canfield DE, Des Marais DJ (1991) Aerobic sulfate reduction in microbial mats. Science 251:1471–1473

    Article  PubMed  CAS  Google Scholar 

  • Canfield DE, Des Marais DJ (1994) Cycling of carbon, sulfur, oxygen and nutrients in a microbial mat. In: Stal LJ, Caumette P (eds) Microbial mats. Structure, development and environmental significance. Springer, Heidelberg, pp 255–263, 463 pp

    Google Scholar 

  • Canfield DE, Raiswell R (1991) Carbonate precipitation and dissolution. Its relevance to fossil preservation. In: Allison PA, Briggs DEG (eds) Taphonomy: releasing the data locked in the fossil record. Topics in geobiology, vol 9. Plenum Press, New York, pp 411–453, 546 pp

    Google Scholar 

  • Canfield DE, Thamdrup B (1996) Fate of elemental sulfur in an intertidal sediment. FEMS Microbiol Ecol 19:95–103

    Article  CAS  Google Scholar 

  • Capone DG, O’Neil JM, Zehr J, Carpenter EJ (1990) Basis for diel variation in nitrogenase activity in the marine planktonic cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol 56:3532–3536

    PubMed  CAS  Google Scholar 

  • Carlile MJ, Dudeney AWL (2000) A microbial mat composed of iron bacteria. Microbiology 146:2092–2093

    PubMed  CAS  Google Scholar 

  • Castenholz RW (1973) Movements. In: Carr NG, Whitton BA (eds) The biology of blue-green algae. Blackwell Scientific Publications, Oxford, pp 320–339, 676 pp

    Google Scholar 

  • Castenholz RW (1976) The effect of sulfide on the blue green algae of hot springs. I. New Zealand and Iceland. J Phycol 12:54–68

    CAS  Google Scholar 

  • Castenholz RW (1977) The effect of sulfide on the blue-green algae of hot springs. II. Yellowstone National Park. Microb Ecol 3:79–105

    Article  CAS  Google Scholar 

  • Castenholz RW (1982) Motility and taxes. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. Blackwell Scientific Publishers, Oxford, pp 413–439, 688 pp

    Google Scholar 

  • Castenholz RW, Utkilen HC (1984) Physiology of sulfide tolerance in a thermophilic Oscillatoria. Arch Microbiol 138:299–305

    Article  CAS  Google Scholar 

  • Castenholz RW, Jørgensen BB, Damelio E, Bauld J (1991) Photo­synthetic and behavioral versatility of the cyanobacterium Oscillatoria boryana in a sulfide-rich microbial mat. FEMS Microbiol Ecol 86:43–58

    Article  CAS  Google Scholar 

  • Chafetz HS (1994) Bacterially induced precipitates of calcium carbonate and lithification of microbial mats. In: Krumbein WE, Paterson DM, Stal LJ (eds) Biostabilization of sediments. BIS Verlag, Oldenburg, pp 149–163, 526 pp

    Google Scholar 

  • Chafetz HS, Buczynski C (1992) Bacterially induced lithification of microbial mats. Palaios 7:277–293

    Article  Google Scholar 

  • Chan CS, Fakra SC, Edwards DC, Emerson D, Banfield JF (2009) Iron oxyhydroxide mineralization on microbial extracellular polysaccharides. Geochim Cosmochim Acta 73:3807–3818

    Article  CAS  Google Scholar 

  • Chen M, Schliep M, Willows RD, Cai Z-L, Neilan BA, Scheer H (2010) A red-shifted chlorophyll. Science. doi:10.1126/science.1191127

  • Choi JS, Chung YH, Moon YJ, Kim C, Watanabe M, Song P-S, Joe C-O, Bogorad L, Park YM (1999) Photomovement of the gliding cyanobacterium Synechocystis sp. PCC 6803. Photochem Photobiol 70:95–102

    Article  PubMed  CAS  Google Scholar 

  • Christensen BE, Kjosbakken J, Smidsrod O (1985) Partial chemical and physical characterization of two extracellular polysaccharides produced by marine periphytic Pseudomonas sp. strain NCMB 2021. Appl Environ Microbiol 50:837–845

    PubMed  CAS  Google Scholar 

  • Cloud PE, Semikhatov MA (1969) Proterozoic stromatolite zonation. Am J Sci 267:1017–1061

    Article  Google Scholar 

  • Cohen Y (1989) Photosynthesis in cyanobacterial mats and its relation to the sulfur cycle: a model for microbial sulfur interactions. In: Cohen Y, Rosenberg E (eds) Microbial mats. Physiological ecology of benthic microbial communities. ASM, Washington, DC, pp 22–36, 511 pp

    Google Scholar 

  • Cohen Y, Jørgensen BB, Revsbech NP, Poplawski R (1986) Adaptation to hydrogen sulfide of oxygenic and anoxygenic photosynthesis among cyanobacteria. Appl Environ Microbiol 51:398–407

    PubMed  CAS  Google Scholar 

  • Cox G, Benson D, Dwarte DM (1981) Ultrastructure of a cave-wall cyanophyte Gloeocapsa NS4. Arch Microbiol 130:165–174

    Article  Google Scholar 

  • Crowe SA, Jones C, Katsev S, Magen C, O’Neill AH, Sturm A, Canfield DE, Haffner GD, Mucci A, Sundby B, Fowle DA (2008) Photoferrotrophs thrive in an Archean ocean analogue. Proc Natl Acad Sci USA 105:15938–15943

    Article  PubMed  CAS  Google Scholar 

  • Cullen JJ, Neale PJ (1994) Ultraviolet radiation, ozone depletion, and marine photosynthesis. Photosynth Res 39:303–320

    Article  CAS  Google Scholar 

  • Cypionka H, Widdel F, Pfennig N (1985) Survival of sulfate-reducing bacteria after oxygen stress and growth in sulfate-free oxygen-sulfide gradients. FEMS Microbiol Ecol 31:39–45

    Article  CAS  Google Scholar 

  • D’Antoni D’Amelio E, Cohen Y, Des Marais DJ (1989) Comparative functional ultrastructure of two hypersaline submerged cyanobacterial mats: Guerrero Negro, Baja California Sur, Mexico, and Solar Lake, Sinai, Egypt. In: Cohen Y, Rosenberg E (eds) Microbial mats. Physiological ecology of benthic microbial communities. ASM, Washington, DC, pp 97–113, 511 pp

    Google Scholar 

  • Dahanayake K, Krumbein WE (1985) Ultrastructure of a microbial mat-generated phosphorite. Miner Deposita 20:260–265

    Article  Google Scholar 

  • Davey A (1983) Effects of abiotic factors on nitrogen fixation by blue-green algae in Antarctica. Polar Biol 2:95–100

    Article  CAS  Google Scholar 

  • Davey MC, Clarke KJ (1992) Fine structure of a terrestrial cyanobacterial mat from Antarctica. J Phycol 28:199–202

    Article  Google Scholar 

  • Davey A, Marchant HJ (1983) Seasonal variation in nitrogen fixation by Nostoc commune Vaucher at the Vesthold Hills, Antarctica. Phycologia 22:377–385

    Article  Google Scholar 

  • De Nobel WT, Snoep JL, Westerhoff HV, Mur LR (1997) Interaction of nitrogen fixation and phosphorus limitation in Aphanizomenon flos-aquae (Cyanophyceae). J Phycol 33:794–799

    Article  Google Scholar 

  • De Philippis R, Vincenzini M (1998) Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Rev 22:151–175

    Article  Google Scholar 

  • De Philippis R, Margheri MC, Vincenzini M (1996) Fermentation in symbiotic and free-living cyanobacteria. Arch Hydrobiol 83:459–468

    Google Scholar 

  • De Philippis R, Sili C, Paperi R, Vincenzini M (2001) Exopolysaccharide-producing cyanobacteria and their possible exploitation: a review. J Appl Phycol 13:293–299

    Article  Google Scholar 

  • De Winder B, Matthijs HCP, Mur LR (1989a) The role of water retaining substrata on the photosynthetic response of three drought tolerant phototrophic micro-organisms isolated from a terrestrial habitat. Arch Microbiol 152:458–462

    Article  Google Scholar 

  • De Winder B, Pluis J, De Reus L, Mur LR (1989b) Characterization of a cyanobacterial, algal crust in the coastal dunes of the Netherlands. In: Cohen Y, Rosenberg E (eds) Microbial mats. Physiological ecology of benthic microbial communities. ASM, Washington, DC, pp 77–83, 511 pp

    Google Scholar 

  • De Winder B, Stal LJ, Mur LR (1990) Crinalium epipsammum sp. nov.: a filamentous cyanobacterium with trichomes composed of elliptical cells and containing poly-beta-(1,4) glucan (cellulose). J Gen Microbiol 136:1645–1653

    Article  Google Scholar 

  • De Wit R, Van Gemerden H (1987) Oxidation of sulfide to thiosulfate by Microcoleus chthonoplastes. FEMS Microbiol Ecol 45:7–13

    Article  Google Scholar 

  • De Wit R, Van Gemerden H (1988) Interactions between phototrophic bacteria in sediment ecosystems. Hydrobiol Bull 22:135–145

    Article  Google Scholar 

  • De Wit R, Van Boekel WHM, Van Gemerden H (1988) Growth of the cyanobacterium Microcoleus chtonoplastes on sulfide. FEMS Microbiol Ecol 53:203–209

    Article  Google Scholar 

  • De Wit R, van den Ende FP, van Gemerden H (1995) Mathematical simulation of the interactions among cyanobacteria, purple sulfur bacteria and chemotrophic sulfur bacteria in microbial mat communities. FEMS Microbiol Ecol 17:117–135

    Article  Google Scholar 

  • Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr Mar Biol Annu Rev 28:73–153

    Google Scholar 

  • Decho AW (1994) Molecular-scale events influencing the macroscale cohesiveness of exopolymers. In: Krumbein WE, Paterson DM, Stal LJ (eds) Biostabilization of sediments. BIS Verlag, Oldenburg, pp 135–148, 526 pp

    Google Scholar 

  • Decho AW (2000) Microbial biofilms in intertidal systems: an overview. Cont Shelf Res 20:1257–1273

    Article  Google Scholar 

  • Decho AW, Moriarty DJW (1990) Bacterial exopolymer utilization by a harpacticoid copepod: a methodology and results. Limnol Oceanogr 35:1039–1049

    Article  CAS  Google Scholar 

  • Decho AW, Visscher PT, Reid RP (2005) Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. Palaeogr Palaeoclim Palaeoecol 219:71–86

    Article  Google Scholar 

  • Défarge C, Trichet J, Couté A (1994a) On the appearance of cyano­bacterial calcification in modern stromatolites. Sediment Geol 94:11–19

    Article  Google Scholar 

  • Défarge C, Trichet J, Maurin A, Hucher M (1994b) Kopara in Polynesian atolls: early stages of formation of calcareous stromatolites. Sediment Geol 89:9–23

    Article  Google Scholar 

  • Des Marais DJ, Canfield DE (1994) The carbon isotope biogeochemistry of microbial mats. In: Stal LJ, Caumette P (eds) Microbial mats. Structure, development and environmental significance. Springer, Heidelberg, pp 289–298, 463 pp

    Google Scholar 

  • Des Marais DJ, D’Amelio E, Farmer JD, Jørgensen BB, Palmisano AC, Pierson BK (1992) Case study of a modern microbial mat-building community: the submerged cyanobacterial mats of Guerrero Negro, Baja California Sur, Mexico. In: Schopf JW, Klein C (eds) The proterozoic biosphere. A multidisciplinary study. Cambridge University Press, New York, pp 325–333, 1348 pp

    Google Scholar 

  • Dilling W, Cypionka H (1990) Aerobic respiration in sulfate-reducing bacteria. FEMS Microbiol Lett 71:123–127

    CAS  Google Scholar 

  • Dillon JG, Miller S, Bebout B, Hullar M, Pinel N, Stahl DA (2009) Spatial and temporal variability in a stratified hypersaline microbial mat. FEMS Microbiol Ecol 68:46–58

    Article  PubMed  CAS  Google Scholar 

  • Donkor V, Häder DP (1991) Effects of solar and ultraviolet radiation on motility, photomovement and pigmentation in filamentous, gliding cyanobacteria. FEMS Microbiol Ecol 86:159–168

    Article  Google Scholar 

  • Donkor VA, Amewowor DHAK, Häder DP (1993) Effects of tropical solar radiation on the motility of filamentous cyanobacteria. FEMS Microbiol Ecol 12:143–148

    Article  Google Scholar 

  • Dor I, Paz N (1989) Temporal and spatial distribution of mat microalgae in the experimental solar ponds, Dead Sea area, Israel. In: Cohen Y, Rosenberg E (eds) Microbial mats. Physiological ecology of benthic microbial communities. ASM, Washington, DC, pp 114–122, 511 pp

    Google Scholar 

  • Druschel GK, Emerson D, Sutka R, Suchecki P, Luther GW III (2008) Low-oxygen and chemical kinetic constraints on the geochemical niche of neutrophilic iron(II) oxidizing microorganisms. Geochim Cosmochim Acta 72:3358–3370

    Article  CAS  Google Scholar 

  • Dubinin AV, Gerasimenko LM, Zavarzin GA (1992) Nitrogen fixation by cyanobacterium Microcoleus chthonoplastes from hypersaline lagoons of lake Sivash. Microbiology 61:593–597

    Google Scholar 

  • Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13:429–438

    Article  PubMed  CAS  Google Scholar 

  • Dupraz C, Visscher PT, Baumgartner LK, Reid RP (2004) Microbe-mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 51:745–765

    Article  CAS  Google Scholar 

  • Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96:141–162

    Article  CAS  Google Scholar 

  • Dyhrman ST, Chappell PD, Haley ST, Moffett JW, Orchard ED, Waterbury JB, Webb EA (2006) Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature 439:68–71

    Article  PubMed  CAS  Google Scholar 

  • Dyhrman ST, Benitez-Nelson CR, Orchard ED, Haley ST, Pellechia PJ (2009) A microbial source of phosphonates in oligotrophic marine systems. Nat Geosci 2:696–699

    Article  CAS  Google Scholar 

  • Ehrenberg CG (1838) Über das im Jahre 1686 in Curland vom Himmel gefallene Meteorpapier und über dessen Zusammensetzung aus Conferven und Infusorien. Abh Kgl Akad Wiss Berlin, pp 45–58

    Google Scholar 

  • Ehrenreich A, Widdel F (1994) Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl Environ Microbiol 60:4517–4526

    PubMed  CAS  Google Scholar 

  • Ehrlich HL (1996) Geomicrobiology. Marcel Dekker Inc, Basel, 719 pp

    Google Scholar 

  • Eisenhut M, Ruth W, Haimovich M, Bauwe H, Kaplan A, Hagemann M (2008) The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. Proc Natl Acad Sci USA 105:17199–17204

    Article  PubMed  CAS  Google Scholar 

  • Eloff JN, Steinitz Y, Shilo M (1976) Photooxidation of cyanobacteria in natural conditions. Appl Environ Microbiol 31:119–126

    PubMed  CAS  Google Scholar 

  • Elser JJ, Schampel JH, Garcia-Pichel F, Wade BD, Souza V, Eguiarte L, Escalante A, Farmer JD (2005) Effects of phosphorus enrichment and grazing snails on modern stromatolitic microbial communities. Freshw Biol 50:1808–1825

    Article  CAS  Google Scholar 

  • Emerson D, Revsbech NP (1994a) Investigation of an iron-oxidizing microbial mat community located near Aarhus, Denmark: field studies. Appl Environ Microbiol 60:4022–4031

    PubMed  CAS  Google Scholar 

  • Emerson D, Revsbech NP (1994b) Investigation of an iron-oxidizing microbial mat community located near Aarhus, Denmark: laboratory studies. Appl Environ Microbiol 60:4032–4038

    PubMed  CAS  Google Scholar 

  • Falcón LI, Cerritos R, Eguiarte LE, Souza V (2007) Nitrogen fixation in microbial mat and stromatolite communities from Cuatro Cienegas, Mexico. Microb Ecol 54:363–373

    Article  PubMed  CAS  Google Scholar 

  • Fechner R (1915) Die Chemotaxis der Oscillarien und ihre Bewegungs-erscheinungen überhaupt. Z Bot 7:289–364

    CAS  Google Scholar 

  • Ferris MJ, Ruff Roberts AL, Kopczynski ED, Bateson MM, Ward DM (1996) Enrichment culture and microscopy conceal diverse thermophilic Synechococcus populations in a single hot spring microbial mat habitat. Appl Environ Microbiol 62:1045–1050

    PubMed  CAS  Google Scholar 

  • Flores E, Herrero A (1994) Assimilatory nitrogen metabolism and its regulation. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 487–517, 881 pp

    Chapter  Google Scholar 

  • Fouke BW, Farmer JD, Des Marais DJ, Pratt L, Sturchio NC, Burns PC, Discipulo MK (2000) Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, USA). J Sediment Res 70:565–585

    Article  CAS  Google Scholar 

  • Friedman I, Lipkin Y, Ocampo-Paus R (1967) Desert algae of the Negev (Israel). Phycologia 6:185–200

    Article  Google Scholar 

  • Friedrich M, Schink B (1993) Hydrogen formation from glycolate driven by reversed electron transport in membrane vesicles of a syntrophic glycolate-oxidizing bacterium. Eur J Biochem 217:233–240

    Article  PubMed  CAS  Google Scholar 

  • Friedrich M, Schink B (1995) Isolation and characterization of a desulforubidin-containing sulfate-reducing bacterium growing with glycolate. Arch Microbiol 164:271–279

    Article  CAS  Google Scholar 

  • Fründ C, Cohen Y (1992) Diurnal cycles of sulfate reduction under oxic conditions in cyanobacterial mats. Appl Environ Microbiol 58:70–77

    PubMed  Google Scholar 

  • Gallon JR, Hashem MA, Chaplin AE (1991) Nitrogen fixation by Oscillatoria Spp under autotrophic and photoheterotrophic conditions. J Gen Microbiol 137:31–39

    Article  CAS  Google Scholar 

  • Garcia-Pichel F, Bebout BM (1996) Penetration of ultraviolet radiation into shallow water sediments: high exposure for photosynthetic communities. Mar Ecol Prog Ser 131:257–262

    Article  Google Scholar 

  • Garcia-Pichel F, Castenholz RW (1991) Characterization and biological implications od scytonemin, a cyanobacterial sheath pigment. J Phycol 27:395–409

    Article  CAS  Google Scholar 

  • Garcia-Pichel F, Castenholz RW (1994) On the significance of solar ultraviolet radiation for the ecology of microbial mats. In: Stal LJ, Caumette P (eds) Microbial mats. Structure development and environmental significance. Springer, Heidelberg, pp 77–84, 463 pp

    Google Scholar 

  • Garcia-Pichel F, Pringault O (2001) Cyanobacteria track water in desert soils. Nature 413:380–381

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Pichel F, Wojciechowski MF (2009) The evolution of a capacity to build supra-cellular ropes enabled filamentous cyanobacteria to colonize highly erodible substrates. PLoS One 4:e7801

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Pichel F, Mechling M, Castenholz RW (1994) Diel migrations of microorganisms within a benthic, hypersaline mat community. Appl Environ Microbiol 60:1500–1511

    PubMed  CAS  Google Scholar 

  • Garcia-Pichel F, Prufert-Bebout L, Muyzer G (1996) Phenotypic and phylogenetic analyses show Microcoleus chthonoplastes to be a cosmopolitan cyanobacterium. Appl Environ Microbiol 62:3284–3291

    PubMed  CAS  Google Scholar 

  • Garlick S, Oren A, Padan E (1977) Occurence of facultative anoxygenic photosynthesis among filamentous and unicellular cyanobacteria. J Bacteriol 129:623–629

    PubMed  CAS  Google Scholar 

  • Gebelein CD (1976) Open marine subtidal and intertidal stromatolites (Florida, The Bahamas and Bermuda). In: Walter MR (ed) Stromatolites. Elsevier, Amsterdam, pp 381–388, 790 pp

    Chapter  Google Scholar 

  • Gerbaud A, Andre M (1987) An evaluation of the recycling in measurements of photorespiration. Plant Physiol 83:933–937

    Article  PubMed  CAS  Google Scholar 

  • Gingras M, Hagadorn JW, Seilacher A, Lalonde SV, Pecoits E, Petrash D, Konhauser KO (2011) Possible evolution of mobile animals in association with microbial mats. Nat Geosci. doi:10.1038/NGO1142

  • Golubić S (1973) The relationship between blue-green algae and carbonate deposits. In: Carr NG, Whitton BA (eds) The biology of blue-green algae. Blackwell Scientific Publications/Univeristy of California Press, Oxford/Berkeley, pp 434–473, 676 pp

    Google Scholar 

  • Griffin BM, Schott J, Schink B (2007) Nitrite, an electron donor for anoxygenic photosynthesis. Science 316:1870

    Article  PubMed  CAS  Google Scholar 

  • Griffiths MSH, Gallon JR, Chaplin AE (1987) The diurnal pattern of dinitrogen fixation by cyanobacteria in situ. New Phytol 107:649–657

    Article  Google Scholar 

  • Guerrero R, Mas J (1989) Multilayered microbial communities in aquatic ecosystems: growth and loss factors. In: Cohen Y, Rosenberg E (eds) Microbial mats. Physiological ecology of benthic microbial communities. ASM, Washington, DC, pp 37–51, 511 pp

    Google Scholar 

  • Häder D-P (1987a) Photomovement. In: Fay P, Van Baalen C (eds) The cyanobacteria. Elsevier, Amsterdam, pp 325–345, 534 pp

    Google Scholar 

  • Häder D-P (1987b) Photosensory behavior in procaryotes. Microbiol Rev 51:1–21

    PubMed  Google Scholar 

  • Häder D-P (1988) Signal perception and amplification in photoresponses of cyanobacteria. Biophys Chem 29:155–159

    Article  PubMed  Google Scholar 

  • Häder DP, Kumar HD, Smith RC, Worrest RC (1998) Effects on aquatic ecosystems. J Photochem Photobiol B 46:53–68

    Article  Google Scholar 

  • Halfen LN, Castenholz RW (1971) Gliding motility in the blue-green alga Oscillatoria princeps. J Phycol 7:133–145

    Google Scholar 

  • Hallbeck L, Pedersen K (1991) Autotrophic and mixotrophic growth of Gallionella ferruginea. J Gen Microbiol 137:2657–2661

    Article  CAS  Google Scholar 

  • Hedges SB, Chen H, Kumar S, Wang DY-C, Thompsom AS, Watanabe H (2001) A genomic timescale for the origin of eukaryotes. BMC Evol Biol 1:4

    Article  PubMed  CAS  Google Scholar 

  • Heijthuijsen JHFG, Hansen TA (1989) Betaine fermentation and oxidation by marine Desulfuromonas strains. Appl Environ Microbiol 55:965–969

    PubMed  CAS  Google Scholar 

  • Heyer H, Stal LJ, Krumbein WE (1989) Simultaneous heterolactic and acetate fermentation in the marine cyanobacterium Oscillatoria limosa incubated anaerobically in the dark. Arch Microbiol 151:558–564

    Article  CAS  Google Scholar 

  • Hoehler TM, Albert DB, Alperin MJ, Martens CS (1999) Acetogenesis from CO2 in an anoxic marine sediment. Limnol Oceanogr 44:662–667

    Article  CAS  Google Scholar 

  • Hoehler TM, Bebout BM, Des Marais DJ (2001) The role of microbial mats in the production of reduced gases on the early Earth. Nature 412:324–327

    Article  PubMed  CAS  Google Scholar 

  • Hoehler TM, Albert DB, Alperin MJ, Bebout BM, Martens CS, Des Marais DJ (2002) Comparative ecology of H2 cycling in sedimentary and phototrophic ecosystems. Antonie Van Leeuwenhoek 81:575–585

    Article  PubMed  CAS  Google Scholar 

  • Hoiczyk E (2000) Gliding motility in cyanobacteria: observations and possible explanations. Arch Microbiol 174:11–17

    Article  PubMed  CAS  Google Scholar 

  • Howard JB, Rees DC (1994) Nitrogenase: a nucleotide-dependent molecular switch. Annu Rev Biochem 63:235–264

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Su Z, Xu Y (2005) The evolution of microbial phosphonate degradative pathways. J Mol Evol 61:682–690

    Article  PubMed  CAS  Google Scholar 

  • Husic DW, Husic HD, Tolbert NE (1987) The oxidative photosynthetic carbon cycle or C2 cycle. CRC Crit Rev Plant Sci 5:45–100

    Article  CAS  Google Scholar 

  • IIikchyan IN, Mckay RML, Zehr JP, Dyhrman ST, Bullerjahn GS (2009) Detection and expression of the phosphonate transporter gene phnD in marine and freshwater picocyanobacteria. Environ Microbiol 11:1314–1324

    Article  CAS  Google Scholar 

  • Jaeschke A, Op den Camp HJM, Harhangi H, Klimiuk A, Hopmans EC, Jetten MSM, Schouten S, Sinninghe Damsté JS (2009) 16S rRNA gene and lipid biomarker evidence for anaerobic ammonium-oxidizing bacteria (anammox) in California and Nevada hot springs. FEMS Microbiol Ecol 67:343–350

    Article  PubMed  CAS  Google Scholar 

  • James HL, Trendall AF (1982) Banded iron-formation: distribution in time and paleoenvironmental significance. In: Holland HD, Schidlowski M (eds) Mineral deposits and the evolution of the biosphere. Springer, Heidelberg, pp 199–217, 333 pp

    Chapter  Google Scholar 

  • Janson S, Matveyev A, Bergman B (1998) The presence and expression of hetR in the non-heterocystous cyanobacterium Symploca PCC 8002. FEMS Microbiol Lett 168:173–179

    Article  PubMed  CAS  Google Scholar 

  • Jones K, Stewart WDP (1969) Nitrogen turnover in marine and brackish habitats. III. The production of extracellular nitrogen by Calothrix scopulorum. J Mar Biol Assoc UK 49:475–488

    Article  CAS  Google Scholar 

  • Jonkers HM, Ludwig R, de Wit R, Pringault O, Muyzer G, Niemann H, Finke N, de Beer D (2003) Structural and functional analysis of a microbial mat ecosystem from a unique permanent hypersaline inland lake: ‘La Salada de Chiprana’ (NE Spain). FEMS Microbiol Ecol 44:175–189

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen BB, Cohen Y (1977) Solar Lake (Sinai) .5. The sulfur cycle of the benthic cyanobacterial mats. Limnol Oceanogr 22:657–666

    Article  Google Scholar 

  • Jørgensen BB, Des Marais DJ (1988) Optical properties of benthic photosynthetic communities: fiber-optic studies of cyanobacterial mats. Limnol Oceanogr 33:99–113

    Article  PubMed  Google Scholar 

  • Jørgensen BB, Nelson DC (1988) Bacterial zonation, photosynthesis, and spectral light distribution in hot spring microbial mats of Iceland. Microb Ecol 16:133–147

    Article  Google Scholar 

  • Jørgensen BB, Revsbech NP, Blackburn TH, Cohen Y (1979) Diurnal cycle of oxygen and sulfide microgradients and microbial photosynthesis in a cyanobacterial mat sediment. Appl Environ Microbiol 38:46–58

    PubMed  Google Scholar 

  • Jørgensen BB, Revsbech NP, Cohen Y (1983) Photosynthesis and structure of benthic microbial mats: micro-electrode and SEM studies of four cyanobacterial communities. Limnol Oceanogr 28:1075–1093

    Article  Google Scholar 

  • Jørgensen BB, Cohen Y, Revsbech NP (1986) Transition from anoxygenic to oxygenic photosynthesis in a Microcoleus chthonoplastes cyanobacterial mat. Appl Environ Microbiol 51:408–417

    PubMed  Google Scholar 

  • Jørgensen BB, Cohen Y, Des Marais DJ (1987) Photosynthetic action spectra and adaptation to spectral light distribution in a benthic cyanobacterial mat. Appl Environ Microbiol 53:879–886

    PubMed  Google Scholar 

  • Joye SB, Paerl HW (1994) Nitrogen cycling in microbial mats: rates and patterns of denitrification and nitrogen fixation. Mar Biol 119:285–295

    Article  CAS  Google Scholar 

  • Kalkowsky E (1908) Oolith und Stromatolith im Norddeutschen Buntsandstein. Z Dtsch Geol Ges 60:68–125

    Google Scholar 

  • Kaplan A, Schwarz R, Lieman-Hurwitz J, Ronen-Tarazi M, Reinhold L (1994) Physiological and molecular studies on the response of cyanobacteria to changes in the ambient inorganic carbon concentration. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 469–485, 881 pp

    Chapter  Google Scholar 

  • Karsten U (1996) Growth and organic osmolytes of geographically different isolates of Microcoleus chthonoplastes (cyanobacteria) from benthic microbial mats: response to salinity change. J Phycol 32:501–506

    Article  CAS  Google Scholar 

  • Kazmierczak J, Coleman ML, Gruszczynski M, Kempe S (1996) Cyanobacterial key to the genesis of micritic and peloidal limestones in ancient seas. Acta Palaeontol Pol 41:319–338

    Google Scholar 

  • Kempe S, Kazmierczak J (1990a) Chemistry and stromatolites of the sea-linked Satonda Crater Lake, Indonesia: a recent model for the Precambrian sea? Chem Geol 81:299–310

    Article  CAS  Google Scholar 

  • Kempe S, Kazmierczak J (1990b) Calcium carbonate supersaturation and the formation of in situ calcified stromatolites. In: Ittekkot V, Kempe S, Michaelis W, Spitzy A (eds) Facets of modern biogeochemistry. Springer, Heidelberg, pp 255–278, 433 pp

    Chapter  Google Scholar 

  • Kempe S, Kazmierczak J (1993) Satonda crater lake, Indonesia. Hydrogeochemistry and biocarbonates. Facies 28:1–32

    Article  Google Scholar 

  • Kempe S, Kazmierczak J, Landmann G, Konuk T, Reimer A, Lipp A (1991) Largest known microbialites discovered in Lake Van, Turkey. Nature 349:605–608

    Article  Google Scholar 

  • Kennard JM, James NP (1986) Thrombolites and stromatolites: two distinct types of microbial structures. Palaios 1:492–503

    Article  Google Scholar 

  • Kenyon CN, Rippka R, Stanier RY (1972) Fatty acid composition and physiological properties of some filamentous blue-green algae. Arch Microbiol 83:216–236

    CAS  Google Scholar 

  • Kidron GJ, Yaalon DH, Vonshak A (1999) Two causes for runoff initiation on microbiotic crusts: hydrophobicity and pore clogging. Soil Sci 164:18–27

    Article  CAS  Google Scholar 

  • Kiene RP, Visscher PT (1987) Production and fate of methylated sulfur compounds from methionine and dimethylsulfoniopropionate in anoxic salt marsh sediments. Appl Environ Microbiol 53:2426–2434

    PubMed  CAS  Google Scholar 

  • Kremer B, Kazmierczak J, Stal LJ (2008) Calcium carbonate precipitation in cyanobacterial mats from sandy tidal flats of the North Sea. Geobiology 6:46–56

    PubMed  CAS  Google Scholar 

  • Krumbein WE (1974) On the precipitation of aragonite on the surface of marine bacteria. Naturwissenschaften 61:167

    Article  PubMed  CAS  Google Scholar 

  • Krumbein WE (1979) Photolithotropic and chemoorganotrophic activity of bacteria and algae as related to beachrock formation and degradation (Gulf of Aqaba, Sinai). Geomicrobiol J 1:139–203

    Article  CAS  Google Scholar 

  • Krumbein WE (1983) Stromatolites.The challenge of a term in space and time. Precambrian Res 20:493–531

    Article  Google Scholar 

  • Krumbein WE, Cohen Y (1977) Primary production, mat formation and lithification: contribution of oxygenic and facultative anoxygenic cyanobacteria. In: Flügel E (ed) Fossil algae. Springer, Berlin, pp 38–56, 375 pp

    Google Scholar 

  • Krumbein WE, Giele C (1979) Calcification in a coccoid cyanobacterium accociated with the formation of desert stromatolites. Sedimentology 26:593–604

    Article  Google Scholar 

  • Krumbein WE, Jens K (1981) Biogenic rock varnishes of the Negev Desert (Israel) an ecological study of iron and manganese transformation by cyanobacteria and fungi. Oecologia 50:25–38

    Article  Google Scholar 

  • Krumbein WE, Cohen Y, Shilo M (1977) Solar Lake (Sinai).4. Stromatolitic cyanobacterial mats. Limnol Oceanogr 22:635–656

    Article  CAS  Google Scholar 

  • Kühl M, Jørgensen BB (1992) Spectral light measurements in microbenthic phototrophic communities with a fiber-optic microprobe coupled to a sensitive diode array detector. Limnol Oceanogr 37:1813–1823

    Article  Google Scholar 

  • Kulp TR, Hoeft SE, Asao M, Madigan MT, Hollibaugh JT, Fisher JC, Stolz JF, Culbertson CW, Miller LG, Oremland RS (2008) Arsenic(III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California. Science 321:967–970

    Article  PubMed  CAS  Google Scholar 

  • Lange W (1976) Speculations on a possible essential function of the gelatinous sheath of blue-green algae. Can J Microbiol 22:1181–1185

    Article  PubMed  CAS  Google Scholar 

  • Lassen C, Ploug H, Jørgensen BB (1992a) Microalgal photosynthesis and spectral scalar irradiance in coastal marine sediments of Limfjorden, Denmark. Limnol Oceanogr 37:760–772

    Article  CAS  Google Scholar 

  • Lassen C, Ploug H, Jorgensen BB (1992b) A fibre-optic scalar irradiance microsensor – application for spectral light measurements in sediments. FEMS Microbiol Ecol 86:247–254

    Article  Google Scholar 

  • Leduc LG, Ferroni GD (1994) The chemolithotrophic bacterium Thiobacillus ferrooxidans. FEMS Microbiol Rev 14:103–119

    Article  CAS  Google Scholar 

  • Lee RY, Joye SB (2006) Seasonal patterns of nitrogen fixation and denitrification in oceanic mangrove habitats. Mar Ecol Prog Ser 307:127–141

    Article  Google Scholar 

  • Lehmann M, Wöber G (1976) Accumulation, mobilization and turn-over of glycogen in the blue-green bacterium Anacystis nidulans. Arch Microbiol 111:93–97

    Article  PubMed  CAS  Google Scholar 

  • Ley RE, Harris JK, Wilcox J, Spear JR, Miller SR, Bebout BM, Maresca JA, Bryant DA, Sogin ML, Pace NR (2006) Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol 72:3685–3695

    Article  PubMed  CAS  Google Scholar 

  • Li P, Liu Z, Xu R (2001) Chemical characterization of the released polysaccharide from the cyanobacterium Aphanothece halophytica GR02. J Appl Phycol 13:71–77

    Article  Google Scholar 

  • Logan BW (1961) Cryptozoon and associate stromatolites from the recent of Shark Bay, Western Australia. J Geol 69:517–533

    Article  Google Scholar 

  • Lorenz MG, Wackernagel W (1990) Natural genetic transformation of Pseudomonas stutzeri by sand-adsorbed DNA. Arch Microbiol 154:380–385

    Article  PubMed  CAS  Google Scholar 

  • Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58:563–602

    PubMed  CAS  Google Scholar 

  • Lorimer GH (1981) The carboxylation and oxygenation of ribulose 1,5-biphosphate: the primary events in photosynthesis and photorespiration. Annu Rev Plant Physiol 32:349–383

    Article  CAS  Google Scholar 

  • Lorimer GH, Andrews TJ, Tolbert NE (1973) Ribulose diphosphate oxygenase.II. Further proof of reaction products and mechanisms of action. Biochemistry 12:18–23

    Article  PubMed  CAS  Google Scholar 

  • Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55:259–287

    PubMed  CAS  Google Scholar 

  • Lowe DR (1980) Stromatolites 3,400-Myr old from the Archean of Western Australia. Nature 284:441–443

    Article  Google Scholar 

  • Lu W-D, Chi Z-M, Su C-D (2006) Identification of glycine betaine as compatible solute in Synechococcus sp. WH8102 and characterization of its N-methyltransferase genes involved in betaine synthesis. Arch Microbiol 186:495–506

    Article  PubMed  CAS  Google Scholar 

  • Ludwig R, Al-Horani FA, de Beer D, Jonkers HM (2005) Photosynthesis-controlled calcification in a hypersaline microbial mat. Limnol Oceanogr 50:1836–1843

    Article  CAS  Google Scholar 

  • Ludwig R, Pringault O, de Wit R, de Beer D, Jonkers HM (2006) Limitation of oxygenic photosynthesis and oxygen consumption by phosphate and organic nitrogen in a hypersaline microbial mat: a microsensor study. FEMS Microbiol Ecol 57:9–17

    Article  PubMed  CAS  Google Scholar 

  • Mackay MA, Norton RS, Borowitzka LJ (1984) Organic osmoregulatory solutes in cyanobacteria. J Gen Microbiol 130:2177–2191

    CAS  Google Scholar 

  • Mackerras AH, Youens BN, Weir RC, Smith GD (1990a) Is cyanophycin involved in the integration of nitrogen and carbon metabolism in the cyanobacteria Anabaena cylindrica and Gloeothece grown on light/dark cycles? J Gen Microbiol 136:2049–2056

    Article  CAS  Google Scholar 

  • Mackerras AH, De Chazal NM, Smith GD (1990b) Transient accumulations of cyanophycin in Anabaena cylindrica and Synechocystis 6308. J Gen Microbiol 136:2057–2065

    Article  CAS  Google Scholar 

  • Malin G, Pearson HW (1988) Aerobic nitrogen fixation in aggregate-forming cultures of the nonheterocystous cyanobacterium Microcoleus chthonoplastes. J Gen Microbiol 134:1755–1763

    Google Scholar 

  • Malin G, Walsby AE (1985) Chemotaxis of a cyanobacterium on concentration gradients of carbondioxide, bicarbonate and oxygen. J Gen Microbiol 131:2643–2652

    CAS  Google Scholar 

  • Margheri MC, Allotta G (1993) Homoacetic fermentation in the cyanobacterium Nostoc sp. strain Cc from Cycas circinalis. FEMS Microbiol Lett 111:213–217

    Article  CAS  Google Scholar 

  • Marschall C, Frenzel P, Cypionka H (1993) Influence of oxygen on sulfate reduction and growth of sulfate-reducing bacteria. Arch Microbiol 159:168–173

    Article  CAS  Google Scholar 

  • Martin JP (1971) Decomposition and binding action of polysaccharides in soil. Soil Biol Biochem 3:33–34

    Article  CAS  Google Scholar 

  • Martínez-Alonso M, Mir J, Caumette P, Gaju N, Guerrero R, Esteve I (2004) Distribution of phototrophic populations and primary production in a microbial mat from the Ebro Delta, Spain. Int Microbiol 7:19–25

    PubMed  Google Scholar 

  • Maryan PS, Eady RR, Chaplin AE, Gallon JR (1986) Nitrogen fixation by Gloeothece sp. PCC 6909: respiration and not photosynthesis supports nitrogenase activity in the light. J Gen Microbiol 132:789–796

    CAS  Google Scholar 

  • Mason TR, Von Brunn V (1977) 3-Gyr-old stromatolites from South Africa. Nature 266:47–49

    Article  Google Scholar 

  • Mazor G, Kidron GJ, Vonshak A, Abeliovich A (1996) The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiol Ecol 21:121–130

    Article  CAS  Google Scholar 

  • McCarren J, Heuser J, Roth R, Yamada N, Martone M, Brahamsha B (2005) Inactivation of swmA results in the loss of an outer cell layer in a swimming Synechococcus strain. J Bacteriol 187:224–230

    Article  PubMed  CAS  Google Scholar 

  • McKay RML, Gibbs SP, Espie GS (1992) Effect of dissolved inorganic carbon on the expression of carboxysomes, localization of RubisCO and the mode of inorganic carbon transport in cells of the cyanobacterium Synechocystis UTEX 625. Arch Microbiol 159:21–29

    Article  Google Scholar 

  • Milliman JD (1993) Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Glob Biogeochem Cycle 7:927–957

    Article  CAS  Google Scholar 

  • Minz D, Fishbain S, Green SJ, Muyzer G, Cohen Y, Rittman BE, Stahl DA (1999) Unexpected population distribution in a microbial mat community: sulfate-reducing bacteria localized to the highly oxic chemocline in contrast to a eukaryotic preference for anoxia. Appl Environ Microbiol 65:4659–4665

    PubMed  CAS  Google Scholar 

  • Miziorko HM, Lorimer GH (1983) Ribulose-1,5-biphosphate carboxylase-oxygenase. Annu Rev Biochem 52:507–535

    Article  PubMed  CAS  Google Scholar 

  • Moezelaar R, Bijvank SM, Stal LJ (1996) Fermentation and sulfur reduction in the mat-building cyanobacterium Microcoleus chthonoplastes. Appl Environ Microbiol 62:1752–1758

    PubMed  CAS  Google Scholar 

  • Monty CLV (1976) The origin and development of cryptalgal fabrics. In: Walter MR (ed) Stromatolites. Elsevier, Amsterdam, pp 139–249, 790 pp

    Google Scholar 

  • Moore LR, Post AF, Rocap G, Chisholm SW (2002) Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol Oceanogr 47:989–996

    Article  CAS  Google Scholar 

  • Mullineaux PM, Gallon JR, Chaplin AE (1981) Acetylene reduction (nitrogen fixation) by cyanobacteria grown under alternating light-dark cycles. FEMS Microbiol Lett 10:245–247

    Article  Google Scholar 

  • Needoba JA, Foster RA, Sakamoto C, Zehr JP, Johnson KS (2007) Nitrogen fixation by unicellular diazotrophic cyanobacteria in the temperate oligotrophic North Pacific Ocean. Limnol Oceanogr 52:1317–1327

    Article  CAS  Google Scholar 

  • Neu TR (1992) Microbial “footprints” and the general ability of microorganisms to label interfaces. Can J Microbiol 38:1005–1008

    Article  Google Scholar 

  • Ng W-O, Grossman AR, Bhaya D (2003) Multiple light inputs control phototaxis in Synechocystis sp. starin PCC6803. J Bacteriol 185:1599–1607

    Article  PubMed  CAS  Google Scholar 

  • Nicholson JAM, Stolz JF, Pierson BK (1987) Structure of a microbial mat at Great Sippewissett Marsh, Cape Cod, Massachusetts. FEMS Microbiol Ecol 45:343–364

    Article  Google Scholar 

  • Nilsson M, Rasmussen U, Bergman B (2006) Cyanobacterial chemotaxis to extracts of host and nonhost plants. FEMS Microbiol Ecol 55:382–390

    Article  PubMed  CAS  Google Scholar 

  • Noffke N (2009) The criteria for the biogeneicity of microbially induced sedimentary structures (MISS) in Archean and younger, sandy deposits. Earth Sci Rev 96:173–180

    Article  CAS  Google Scholar 

  • Noffke N, Beukes N, Gutzmer J, Hazen R (2006) Spatial and temporal distribution of microbially induced sedimentary structures: a case study from siliciclastic storm deposits of the 2.9 Ga Witwatersrand Supergroup, South Africa. Precambrian Res 146:35–44

    Article  CAS  Google Scholar 

  • Nold SC, Ward DM (1996) Photosynthate partitioning and fermentation in hot spring microbial mat communities. Appl Environ Microbiol 62:4598–4607

    PubMed  CAS  Google Scholar 

  • Olson JM (2006) Photosynthesis in the Archean Era. Photosynth Res 88:109–117

    Article  PubMed  CAS  Google Scholar 

  • Olson JB, Litaker RW, Paerl HW (1999) Ubiquity of heterotrophic diazotrophs in marine microbial mats. Aquat Microb Ecol 19:29–36

    Article  Google Scholar 

  • Omoregie EO, Crumbliss LL, Bebout BM, Zehr JP (2004) Determination of nitrogen-fixing phylotypes in Lyngbya sp. and Microcoleus chthonoplastes cyanobacterial mats from Guerrero Negro, Baja California, Mexico. Appl Environ Microbiol 70:2119–2128

    Article  PubMed  CAS  Google Scholar 

  • Oren A (1988) The microbial ecology of the Dead Sea. Adv Microb Ecol 10:193–229

    Article  CAS  Google Scholar 

  • Oren A, Shilo M (1979) Anaerobic heterotrophic dark metabolism in the cyanobacterium Oscillatoria limnetica: sulfur respiration and lactate fermentation. Arch Microbiol 122:77–84

    Article  CAS  Google Scholar 

  • Oren A, Padan E, Avron M (1977) Quantum yields for oxygenic and anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Proc Natl Acad Sci USA 74:2152–2156

    Article  PubMed  CAS  Google Scholar 

  • Orpen JL, Wilson JF (1981) Stromatolites at ca. 3,500 Myr and a greenstone graniteunconformity in the Zimbabwean Archaean. Nature 291:218–220

    Article  Google Scholar 

  • Ortega-Calvo JJ, Stal LJ (1991) Diazotrophic growth of the unicellular cyanobacterium Gloeothece sp PCC 6909 in continuous culture. J Gen Microbiol 137:1789–1797

    Article  CAS  Google Scholar 

  • Ortega-Calvo JJ, Stal LJ (1994) Sulphate-limited growth in the N2-fixing unicellular cyanobacterium Gloeothece (Nageli) sp PCC 6909. New Phytol 128:273–281

    Article  CAS  Google Scholar 

  • Ortega-Morales BO, Santiago-Garcia JL, Chan-Bacab MJ, Moppert X, Miranda-Tello E, Fardeau ML, Carrero JC, Bartolo-Perez P, Valadez-Gonzalez A, Guezennec J (2006) Characterization of extracellular polymers synthesized by tropical intertidal biofilm bacteria. J Appl Microbiol 102:254–264

    Article  CAS  Google Scholar 

  • Padan E, Cohen Y (1982) Anoxygenic photosynthesis. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. Blackwell Scientific Publications, Oxford, pp 215–235, 688 pp

    Google Scholar 

  • Paerl HW, Prufert LE (1987) Oxygen-poor microzones as potential sites of microbial N2 fixation in nitrogen-depleted aerobic marine waters. Appl Environ Microbiol 53:1078–1087

    PubMed  CAS  Google Scholar 

  • Paerl HW, Bebout BM, Prufert LE (1989) Naturally occurring patterns of oxygenic photosynthesis and N2 fixation in a marine microbial mat: physiological and ecological ramifications. In: Cohen Y, Rosenberg E (eds) Microbial mats. Physiological ecology of benthic microbial communities. ASM, Washington, DC, pp 326–341, 511 pp

    Google Scholar 

  • Paerl HW, Prufert LE, Ambrose WW (1991) Contemporaneous N2 fixation and oxygenic photosynthesis in the nonheterocystous mat-forming cyanobacterium Lyngbya aestuarii. Appl Environ Microbiol 57:3086–3092

    PubMed  CAS  Google Scholar 

  • Paerl HW, Pinckney JL, Kucera SA (1995) Clarification of the structural and functional roles of heterocysts and anoxic microzones in the control of pelagic nitrogen fixation. Limnol Oceanogr 40:634–638

    Article  CAS  Google Scholar 

  • Paerl HW, Fitzpatrick M, Bebout BM (1996) Seasonal nitrogen fixation dynamics in a marine microbial mat: potential roles of cyanobacteria and microheterotrophs. Limnol Oceanogr 41:419–427

    Article  CAS  Google Scholar 

  • Palinska KA, Liesack W, Rhiel E, Krumbein WE (1996) Phenotype variability of identical genotypes: the need for a combined approach in cyanobacterial taxonomy demonstrated on Merismopedia-like isolates. Arch Microbiol 166:224–233

    Article  PubMed  CAS  Google Scholar 

  • Papineau D, Walker JJ, Mojzsis SJ, Pace NR (2005) Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia. Appl Environ Microbiol 71:4822–4832

    Article  PubMed  CAS  Google Scholar 

  • Paterson DM (1989) Short-term changes in the erodibility of intertidal cohesive sediments related to the migratory behaviour of epipelic diatoms. Limnol Oceanogr 34:223–234

    Article  Google Scholar 

  • Pearson HW, Howsley R, Kjeldsen CK, Walsby AE (1979) Aerobic nitrogenase activity associated with a non-heterocystous filamentous cyanobacterium. FEMS Microbiol Lett 5:163–169

    Article  CAS  Google Scholar 

  • Pentecost A (1984) Effects of sedimentation and light intensity on mat-forming Oscillatoriaceae with particular reference to Microcoleus lyngbyaceus Gomont. J Gen Microbiol 130:983–990

    Google Scholar 

  • Pentecost A (1988) Growth and calcification of the cyanobacterium Homoeothrix crustacea. J Gen Microbiol 134:2665–2671

    CAS  Google Scholar 

  • Pentecost A, Bauld J (1988) Nucleation of calcite on the sheaths of cyano­bacteria using a simple diffusion cell. Geomicrobiol J 6:129–135

    Article  CAS  Google Scholar 

  • Pereira S, Zille A, Micheletti E, Moradas-Ferreira P, De Philippis R, Tamagnini P (2009) Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33:917–941

    Article  PubMed  CAS  Google Scholar 

  • Peschek GA (1978) Reduced sulfur and nitrogen compounds and molecular hydrogen as electron donors for anaerobic CO2 photoreduction in Anacystis nidulans. Arch Microbiol 119:313–322

    Article  CAS  Google Scholar 

  • Pierce J (1988) Prospects for manipulating the substrate specificity of ribulose bisphosphate carboxylase/oxygenase. Physiol Plant 72:690–698

    Article  CAS  Google Scholar 

  • Pierson BK (1992) Introduction. In: Schopf JW, Klein C (eds) The proterozoic biosphere. A multidisciplinary study. Cambridge University Press, New York, pp 247–251, 1348 pp

    Google Scholar 

  • Pierson BK, Olson JM (1989) Evolution of photosynthesis in anoxygenic photosynthetic procaryotes. In: Cohen Y, Rosenberg E (eds) Microbial mats. Physiological ecology of benthic microbial communities. ASM, Washington, DC, pp 402–427, 511 pp

    Google Scholar 

  • Pierson BK, Parenteau MN (2000) Phototrophs in high iron microbial mats: microstructure of mats in iron-depositing hot springs. FEMS Microbiol Ecol 32:181–196

    Article  PubMed  CAS  Google Scholar 

  • Pierson B, Oesterle A, Murphy GL (1987) Pigments, light penetration, and photosynthetic activity in the multi-layered microbial mats of Great Sippewisset salt marsh, Massachusetts. FEMS Microbiol Ecol 45:365–376

    Article  CAS  Google Scholar 

  • Pierson BK, Sands VM, Frederick JL (1990) Spectral irradiance and distribution of pigments in a highly layered marine microbial mat. Appl Environ Microbiol 56:2327–2340

    PubMed  CAS  Google Scholar 

  • Pierson BK, Parenteau MN, Griffin BM (1999) Phototrophs in high-iron-concentration microbial mats: physiological ecology of phototrophs in an iron-depositing hot spring. Appl Environ Microbiol 65:5474–5483

    PubMed  CAS  Google Scholar 

  • Pinckney J, Paerl HW, Reid RP, Bebout B (1995) Ecophysiology of stromatolitic microbial mats, Stocking Island, Exuma Cays, Bahamas. Microb Ecol 29:19–37

    Article  Google Scholar 

  • Piper DZ, Codespoti LA (1975) Marine phosphorite deposits and the nitrogen cycle. Science 179:564–565

    Google Scholar 

  • Ploug H, Lassen C, Jørgensen BB (1993) Action spectra of microalgal photosynthesis and depth distribution of spectral scalar irradiance in a coastal marine sediment of Limfjorden, Denmark. FEMS Microbiol Ecol 102:261–270

    Article  Google Scholar 

  • Porubsky WP, Weston NB, Joye SB (2009) Benthic metabolism and the fate of dissolved inorganic nitrogen in intertidal sediments. Estuar Coast Shelf Sci 83:392–402

    Article  CAS  Google Scholar 

  • Potts M (1979) Nitrogen fixation (acetylene reduction) associated with communities of heterocystous and non-heterocystous blue-green algae in mangrove forests of Sinai. Oecologia 39:359–373

    Article  Google Scholar 

  • Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58:755–805

    PubMed  CAS  Google Scholar 

  • Potts M, Friedman EI (1981) Effects of water stress on crypto-endolithic cyanobacteria from hot dessert rocks. Arch Microbiol 130:267–271

    Article  CAS  Google Scholar 

  • Potts M, Ocampo-Friedmann R, Bowman MA, Tozun B (1983) Chroococcus S24 and Chroococcus N41 (cyanobacteria): morphological, biochemical and genetic characterization and effects of water stress on ultra structure. Arch Microbiol 135:81–90

    Article  CAS  Google Scholar 

  • Pringault O, Garcia-Pichel F (2004) Hydrotaxis of cyanobacteria in desert crusts. Microb Ecol 47:366–373

    Article  PubMed  CAS  Google Scholar 

  • Rabenstein A, Rethmeier J, Fischer U (1995) Sulphite as intermediate sulphur compound in anaerobic sulphide oxidation to thiosulphate by marine cyanobacteria. Z Naturforsch C 50:769–774

    CAS  Google Scholar 

  • Ramsing NB, Prufert-Bebout L (1994) Motility of Microcoleus chthonoplastes subjected to different light intensities quantified by digital image analysis. In: Stal LJ, Caumette P (eds) Microbial mats. Structure, development and environmental significance. Springer, Heidelberg, pp 183–191

    Google Scholar 

  • Raven JA, Cockell CS, De La Rocha CL (2008) The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Philos Trans R Soc Lond B 363:2641–2650

    Article  CAS  Google Scholar 

  • Reed RH, Stewart WDP (1983) Physiological responses of Rivularia atra to salinity: osmotic adjustment in hyposaline media. New Phytol 95:595–603

    Article  CAS  Google Scholar 

  • Reed RH, Stewart WDP (1988) The responses of cyanobacteria to salt stress. In: Rogers LJ, Gallon JR (eds) Biochemistry of algae and cyanobacteria. Clarendon, Oxford, pp 217–231, 374 pp

    Google Scholar 

  • Reed RH, Borowitzka LJ, Mackay MA, Chudek JA, Foster R, Warr SCR, Moore DJ, Stewart WDP (1986a) Organic solute accumulation in osmotically stressed cyanobacteria. FEMS Microbiol Rev 39:51–56

    Article  CAS  Google Scholar 

  • Reed RH, Warr SRC, Kerby NW, Stewart WDP (1986b) Osmotic shock-induced release of low molecular weight metabolites from free-living and immobilized cyanobacteria. Enzyme Microbiol Technol 8:101–104

    Article  CAS  Google Scholar 

  • Rees DA (1969) Structure, conformation and mechanism in the formation of polysaccharide gels and network. Adv Carbohydr Chem Biochem 24:267–332

    Article  PubMed  CAS  Google Scholar 

  • Reid RP, Browne KM (1991) Intertidal stromatolites in a fringing Holocene reef complex, Bahamas. Geology 19:15–18

    Article  Google Scholar 

  • Reid RP, Visscher PT, Decho AW, Stolz JF, Bebout BM, Dupraz C, Macintyre IG, Paerl HW, Pinckney JL, Prufert-Bebout L, Steppe TF, DesMarais DJ (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406:989–992

    Article  PubMed  CAS  Google Scholar 

  • Reinhold L, Kosloff R, Kaplan A (1991) A model for inorganic carbon fluxes and photosynthesis in cyanobacterial carboxysomes. Can J Bot 69:984–988

    Article  CAS  Google Scholar 

  • Renstrom-Kellner E, Bergman B (1989) Glycolate metabolism in cyanobacteria. III. Nitrogen controls excretion and metabolism of glycolate in Anabaena cylindrica. Physiol Plant 77:46–51

    Article  Google Scholar 

  • Renstrom-Kellner E, Bergman B (1990) Glycolate metabolism in cyanobacteria. IV. Uptake, growth and metabolic pathways. Physiol Plant 78:285–292

    Article  Google Scholar 

  • Rentz JA, Kraiya C, Luther GW III, Emerson D (2007) Control of ferrous iron oxidation within circumneutral microbial iron mats by cellular activity and autocatalysis. Environ Sci Technol 41:6084–6089

    Article  PubMed  CAS  Google Scholar 

  • Revsbech NP, Jørgensen BB, Blackburn TH, Cohen Y (1983) Microelectrode studies of the photosynthesis and O2, H2S and pH profiles of a microbial mat. Limnol Oceanogr 28:1062–1074

    Article  Google Scholar 

  • Richardson LL, Castenholz RW (1987a) Diel vertical movements of the cyanobacterium Oscillatoria terebriformis in a sulfide-rich hot spring microbial mat. Appl Environ Microbiol 53:2142–2150

    PubMed  CAS  Google Scholar 

  • Richardson LL, Castenholz RW (1987b) Enhanced survival of the cyanobacterium Oscillatoria terebriformis in darkness under anaerobic conditions. Appl Environ Microbiol 53:2151–2158

    PubMed  CAS  Google Scholar 

  • Richardson LL, Castenholz RW (1989) Chemokinetic motility responses of the cyanobacterium Oscillatoria terebriformis. Appl Environ Microbiol 55:261–263

    PubMed  CAS  Google Scholar 

  • Rippka R, Waterbury JB (1977) The synthesis of nitrogenase by non-heterocystous cyanobacteria. FEMS Microbiol Lett 2:83–86

    Article  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Article  Google Scholar 

  • Risatti JB, Capman WC, Stahl DA (1994) Community structure of a microbial mat: the phylogenetic dimension. Proc Natl Acad Sci USA 91:10173–10177

    Article  PubMed  CAS  Google Scholar 

  • Robbins LL, Blackwelder PL (1992) Biochemical and ultrastructural evidence for the origin of whitings: a biologically induced calcium carbonate precipitation mechanism. Geology 20:464–468

    Article  CAS  Google Scholar 

  • Robins RJ, Hall DO, Shi DJ, Turner RJ, Rhodes MJC (1986) Mucilage acts to adhere cyanobacteria and cultured plant cells to biological and inert surfaces. FEMS Microbiol Lett 34:155–160

    Article  CAS  Google Scholar 

  • Roeske CA, O’Leary M (1984) Carbon isotope effects on the enzyme-catalyzed carboxylation of ribulose bisphosphate. Biochemistry 23:6275–6284

    Article  CAS  Google Scholar 

  • Romanowski G, Lorenz MG, Wackernagel W (1991) Adsorption of plasmid DNA to mineral surfaces and protection against DNAse-I. Appl Environ Microbiol 57:1057–1061

    PubMed  CAS  Google Scholar 

  • Rougerie F, Jehl C, Trichet J (1997) Phosphorus pathways in atolls: interstitial nutrient pool, cyanobacterial accumulation and Carbonate-Fluoro-Apatite (CFA) precipitation. Mar Geol 139:201–217

    Article  CAS  Google Scholar 

  • Ruff-Roberts AL, Kuenen JG, Ward DM (1994) Distribution of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria in hot spring microbial mats. Appl Environ Microbiol 60:697–704

    PubMed  CAS  Google Scholar 

  • Schau L, Benson AA, Bassham JA, Calvin M (1950) The path of carbon in photosynthesis. XI. The role of glycolic acid. Physiol Plant 3:487–495

    Article  Google Scholar 

  • Schaub BEM, Van Gemerden H (1996) Sulfur bacteria in sediments of two coastal ecosystems: the Bassin d’Arcachon and the Étang du Prevost, France. Hydrobiologia 329:199–210

    Article  CAS  Google Scholar 

  • Schmetterer G (1994) Cyanobacterial respiration. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 409–435, 881 pp

    Chapter  Google Scholar 

  • Schopf JW, Walter MR (1982) Origin and early evolution of cyanobacteria: the geological evidence. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. Blackwell Scientific Publications, Oxford, pp 543–564, 688 pp

    Google Scholar 

  • Serôdio J, Marques da Silva J, Catarino F (1997) Nondestructive tracing of migratory rhythms of intertidal benthic microalgae using in vivo chlorophyll a fluorescence. J Phycol 33:542–553

    Article  Google Scholar 

  • Severin I, Stal LJ (2008) Light dependency of nitrogen fixation in a coastal cyanobacterial mat. ISME J 2:1077–1088

    Article  PubMed  CAS  Google Scholar 

  • Severin I, Acinas SG, Stal LJ (2010) Diversity of nitrogen-fixing bacteria in cyanobacterial mats. FEMS Microbiol Ecol 73:514–525

    PubMed  CAS  Google Scholar 

  • Siegesmund M, Johansen JR, Karsten U, Friedl T (2008) Coleofasciculus gen. nov. (Cyanobacteria): morphological and molecular criteria for revision of the genus Microcoleus Gomont. J Phycol 44:1572–1585

    Article  Google Scholar 

  • Smith AJ (1982) Modes of cyanobacterial carbon metabolism. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. Blackwell, Oxford, pp 47–85, 688 pp

    Google Scholar 

  • Smith RC, Prezelin BB, Baker KS, Bidigare RR, Boucher NP, Coley T, Karentz D, Macintyre S, Matlick HA, Menzies D, Ondrusek M, Wan Z, Waters KJ (1992) Ozone depletion – ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255:952–959

    Article  PubMed  CAS  Google Scholar 

  • Srivastava P (2005) Vindhyan akinetes: an indicator of mesoproterozoic biosphere evolution. Orig Life Evol Biosph 35:175–185

    Article  PubMed  CAS  Google Scholar 

  • Sroga GE (1997) Regulation of nitrogen fixation by different nitrogen sources in the filamentous non-heterocystous cyanobacterium Microcoleus sp. FEMS Microbiol Lett 153:11–15

    Article  PubMed  CAS  Google Scholar 

  • Stal LJ (1993) Mikrobielle Matten. In: Meyer-Reil L-A, Köster M (eds) Mikrobiologie des Meeresbodens. Gustav Fischer, Jena, pp 196–220, 290 pp

    Google Scholar 

  • Stal LJ (1994) Microbial mats in coastal environments. In: Stal LJ, Caumette P (eds) Microbial mats. Structure, development and environmental significance. Springer, Heidelberg, pp 21–32

    Google Scholar 

  • Stal LJ (1995) Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytol 131:1–32

    Article  CAS  Google Scholar 

  • Stal LJ (2000) Cyanobacterial mats and stromatolites. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 61–120, 669 pp

    Google Scholar 

  • Stal LJ (2001) Coastal microbial mats: the physiology of a small-scale ecosystem. S Afr J Bot 67:399–410

    CAS  Google Scholar 

  • Stal LJ (2010) Microphytobenthos as a biogeo-morphological force in intertidal sediment stabilization. Ecol Eng 36:236–245

    Article  Google Scholar 

  • Stal LJ, Heyer H (1987) Dark anaerobic nitrogen fixation (acetylene reduction) in the cyanobacterium Oscillatoria sp. FEMS Microbiol Ecol 45:227–232

    Article  CAS  Google Scholar 

  • Stal LJ, Krumbein WE (1981) Aerobic nitrogen fixation in pure cultures of a benthic marine Oscillatoria (cyanobacteria). FEMS Microbiol Lett 11:295–298

    Article  CAS  Google Scholar 

  • Stal LJ, Krumbein WE (1985) Isolation and characterization of cyanobacteria from a marine microbial mat. Bot Mar 28:351–365

    Article  Google Scholar 

  • Stal LJ, Krumbein WE (1987) Temporal separation of nitrogen fixation and photosynthesis in the filamentous, non-heterocystous cyanobacterium Oscillatoria sp. Arch Microbiol 149:76–80

    Article  CAS  Google Scholar 

  • Stal LJ, Moezelaar R (1997) Fermentation in cyanobacteria. FEMS Microbiol Rev 21:179–211

    Article  CAS  Google Scholar 

  • Stal LJ, Reed RH (1987) Low-molecular mass carbohydrate accumulation in cyanobacteria from a marine microbial mat in response to salt. FEMS Microbiol Ecol 45:305–312

    Article  CAS  Google Scholar 

  • Stal LJ, Grossberger S, Krumbein WE (1984) Nitrogen fixation associated with the cyanobacterial mat of a marine laminated microbial ecosystem. Mar Biol 82:217–224

    Article  CAS  Google Scholar 

  • Stal LJ, Van Gemerden H, Krumbein WE (1985) Structure and development of a benthic marine microbial mat. FEMS Microbiol Ecol 31:111–125

    Article  CAS  Google Scholar 

  • Stal LJ, Paerl HW, Bebout B, Villbrandt M (1994) Heterocystous versus non-heterocystous cyanobacteria in microbial mats. In: Stal LJ, Caumette P (eds) Microbial mats. Structure, development and environmental significance. Springer, Heidelberg, pp 403–414

    Google Scholar 

  • Stal LJ, Behrens SB, Villbrandt M, Van Bergeijk S, Kruyning F (1996) The biogeochemistry of two eutrophic marine lagoons and its effect on microphytobenthic communities. Hydrobiologia 329:185–198

    Article  CAS  Google Scholar 

  • Steppe TF, Paerl HW (2002) Potential N2 fixation by sulfate-reducing bacteria in a marine intertidal microbial mat. Aquat Microb Ecol 28:1–12

    Article  Google Scholar 

  • Steppe TF, Olson JB, Paerl HW, Litaker RW, Belnap J (1996) Consortial N2 fixation: a strategy for meting nitrogen requirements of marine and terrestrial cyanobacterial mats. FEMS Microbiol Ecol 21:149–156

    Article  CAS  Google Scholar 

  • Steudel R, Holdt G, Visscher PT, Van Gemerden H (1990) Search for polythionates in cultures of Chromatium vinosum after sulfide incubation. Arch Microbiol 153:432–437

    Article  CAS  Google Scholar 

  • Steunou A-S, Bhaya D, Bateson M, Melendrez M, Ward D, Brecht E, Peters JW, Kühl M, Grossman A (2006) In situ analysis of nitrogen fixation and metabolic switching in unicellular thermophilic cyanobacteria inhabiting hot spring microbial mats. Proc Natl Acad Sci USA 103:2398–2403

    Article  PubMed  CAS  Google Scholar 

  • Steunou A-S, Jensen SI, Brecht E, Becraft ED, Bateson MM, Kilian O, Bhaya D, Ward DM, Peters JW, Grossman AR, Kühl M (2008) Regulation of nif gene expression and the energetics of N2 fixation over the diel cycle in a hot spring microbial mat. ISME J 2:364–378

    Article  PubMed  CAS  Google Scholar 

  • Stolz JF (1993) Magnetosomes. J Gen Microbiol 139:1663–1670

    Article  Google Scholar 

  • Storch TA, Saunders GW, Ostrofsky ML (1990) Diel nitrogen fixation by cyanobacterial surface blooms in Sanctuary Lake, Pennsylvania. Appl Environ Microbiol 56:466–471

    PubMed  CAS  Google Scholar 

  • Straub KL, Benz M, Schink B, Widdel F (1996) Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl Environ Microbiol 62:1458–1460

    PubMed  CAS  Google Scholar 

  • Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9

    PubMed  CAS  Google Scholar 

  • Tabita FR (1988) Molecular and cellular regulation of autotrophic carbon dioxide fixation in microorganisms. Microbiol Rev 52:155–189

    PubMed  CAS  Google Scholar 

  • Tago Y, Aida K (1977) Exocellular mucopolysaccharide closely related to bacterial floc formation. Appl Environ Microbiol 34:308–314

    PubMed  CAS  Google Scholar 

  • Taiz L (1984) Plant cell expansion: regulation of cell wall mechanical properties. Annu Rev Plant Physiol 35:585–657

    Article  CAS  Google Scholar 

  • Talbot MMB, Bate GC, Campbell EE (1990) A review of the ecology of surf-zone diatoms, with special reference to Anulus australis. Oceanogr Mar Biol Annu Rev 28:155–175

    Google Scholar 

  • Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wünschiers R, Lindblad P (2002) Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66:1–20

    Article  PubMed  CAS  Google Scholar 

  • Tamagnini P, Leitão E, Oliveira P, Ferreira D, Pinto F, Harris DJ, Heidorn T, Lindblad P (2007) Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol Rev 31:692–720

    Article  PubMed  CAS  Google Scholar 

  • Tease B, Jürgens UJ, Golecki JR, Heinrich UR, Rippka R, Weckesser J (1991) Fine-structural and chemical analyses on inner and outer sheath of the cyanobacterium Gloeothece sp. PCC-6909. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 59:27–34

    Article  CAS  Google Scholar 

  • Teske A, Ramsing NB, Habicht K, Fukui M, Küver J, Jørgensen BB, Cohen Y (1998) Sulfate-reducing bacteria and their activities in cyanobacterial mats of Solar Lake (Sinai, Egypt). Appl Environ Microbiol 64:2943–2951

    PubMed  CAS  Google Scholar 

  • Trouwborst RE, Johnston A, Koch G, Luther GW III, Pierson BK (2007) Biogeochemistry of Fe(II) oxidation in a photosynthetic microbial mat: implications for Precambrian Fe(II) oxidation. Geochim Cosmochim Acta 71:4629–4643

    Article  CAS  Google Scholar 

  • Trüper HG, Galinski EA (1989) Compatible solutes in halophilic phototrophic procaryotes. In: Cohen Y, Rosenberg E (eds) Microbial mats. Physiological ecology of benthic microbial communities. ASM, Washington, DC, pp 342–348, 511 pp

    Google Scholar 

  • Turner SM, Malin G, Liss PS, Harbour DS, Holligan PM (1988) The seasonal variation of dimethyl sulfide and dimethylsulfonio-propionate concentrations in nearshore waters. Limnol Oceanogr 33:364–375

    Article  CAS  Google Scholar 

  • Turpin DH, Miller AG, Canvin DT (1984) Carboxysome content of Synechococcus leopoliensis (Cyanophyta) in response to inorganic carbon. J Phycol 20:249–253

    Article  CAS  Google Scholar 

  • Utkilen HC (1976) Thiosulphate as electron donor in the blue-green alga Anacystis nidulans. J Gen Microbiol 95:177–180

    Article  PubMed  CAS  Google Scholar 

  • Valladares A, Montesinos ML, Herrero A, Flores E (2002) An ABC-type, high-affinity urea permease identified in cyanobacteria. Mol Microbiol 43:703–715

    Article  PubMed  CAS  Google Scholar 

  • Van Bergeijk SA, Stal LJ (1996) The role of oxygenic phototrophic microorganisms in production and conversion of dimethylsulfonio-propionate and dimethylsulfide in microbial mats. In: Kiene RP, Visscher PT, Keller MD, Kirst GO (eds) Biological and environmental chemistry of DMSP and related sulfonium compounds. Plenum Press, New York, pp 369–379, 430 pp

    Chapter  Google Scholar 

  • Van Gemerden H (1987) Competition between purple sulfur bacteria and green sulfur bacteria: role of sulfide, sulfur and polysulfides. Acta Acad Abo 47:13–27

    Google Scholar 

  • Van Gemerden H (1993) Microbial mats: a joint venture. Mar Geol 113:3–25

    Article  Google Scholar 

  • Van Gemerden H, Tughan CS, De Wit R, Herbert RA (1989) Laminated microbial ecosystems on sheltered beaches in Scapa Flow, Orkney Islands. FEMS Microbiol Ecol 62:87–102

    Article  Google Scholar 

  • Van Liere L, Mur LR (1979) Growth kinetics of Oscillatoria agardhii Gomont in continuous culture, limited in its growth by the light energy supply. J Gen Microbiol 115:153–160

    Article  Google Scholar 

  • Verrecchia EP, Dumant J-L, Collins KE (1990) Do fungi building limestone exist in semi-arid regions? Naturwissenschaften 77:584–586

    Article  CAS  Google Scholar 

  • Vila-Costa M, Simó R, Harada H, Gasol JM, Slezak D, Kiene RP (2006) Dimethylsulfoniopropionate uptake by marine phytoplankton. Science 314:652–654

    Article  PubMed  CAS  Google Scholar 

  • Villbrandt M (1992) Interactions of nitrogen fixation and photosynthesis in marine cyanobacterial mats (Mellum, Southern North Sea). PhD thesis, University of Oldenburg, Oldenburg, Germany, 163 pp

    Google Scholar 

  • Villbrandt M, Stal LJ (1996) The effect of sulfide on nitrogen fixation in heterocystous and non-heterocystous cyanobacterial mat communities. Algol Stud 83:549–563

    Google Scholar 

  • Villbrandt M, Stal LJ, Krumbein WE (1990) Interactions between nitrogen fixation and oxygenic photosynthesis in a marine cyanobacterial mat. FEMS Microbiol Ecol 74:59–72

    Article  CAS  Google Scholar 

  • Vincent WF, Castenholz RW, Downes MT, Howard-Williams C (1993a) Antarctic cyanobacteria – light, nutrients, and photosynthesis in the microbial mat environment. J Phycol 29:745–755

    Article  Google Scholar 

  • Vincent WF, Downes MT, Castenholz RW, Howard-Williams C (1993b) Community structure and pigment organisation of cyanobacteria-dominated microbial mats in Antarctica. Eur J Phycol 28:213–221

    Article  Google Scholar 

  • Visscher PT (1992) Microbial sulfur cycling in laminated marine ecosystems. PhD thesis, University of Groningen, Groningen, 113 pp

    Google Scholar 

  • Visscher PT, Van Gemerden H (1991) Production and consumption of dimethylsulfoniopropionate in marine microbial mats. Appl Environ Microbiol 57:3237–3242

    PubMed  CAS  Google Scholar 

  • Visscher PT, Van Gemerden H (1993) Sulfur cycling in laminated marine microbial ecosystems. In: Oremland RS (ed) Biogeochemistry of global change: radiatively active trace gases. Chapman and Hall, New York, pp 672–690, 879 pp

    Chapter  Google Scholar 

  • Visscher PT, Nijburg JW, Van Gemerden H (1990) Polysulfide utilization by Thiocapsa roseopersicina. Arch Microbiol 155:75–81

    Article  CAS  Google Scholar 

  • Visscher PT, Prins RA, Van Gemerden H (1992) Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat. FEMS Microbiol Ecol 86:283–293

    Article  CAS  Google Scholar 

  • Visscher PT, Reid RP, Bebout BM, Hoeft SE, Macintyre IG, Thompson JA (1998) Formation of lithified micritic lamninae in modern marine stromatolites (Bahamas): the role of sulfur cycling. Am Mineral 83:1482–1493

    CAS  Google Scholar 

  • Visscher PT, Reid RP, Bebout BM (2000) Microscale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology 28:919–922

    Article  CAS  Google Scholar 

  • Vogt C, Rabenstein A, Rethmeier J, Fischer U (1998) Alkali-labile precursors of dimethyl sulfide in marine benthic cyanobacteria. Arch Microbiol 169:263–266

    Article  PubMed  CAS  Google Scholar 

  • Walsby AE (1985) The permeability of heterocysts to the gases nitrogen and oxygen. Proc R Soc Lond B 226:345–366

    Article  CAS  Google Scholar 

  • Walter MR (ed) (1976) Stromatolites. Elsevier, Amsterdam, 790 pp

    Google Scholar 

  • Walter MR, Heys GR (1985) Links between the rise of metazoa and the decline of stromatolites. Precambrian Res 29:149–174

    Article  Google Scholar 

  • Walter MR, Buick R, Dunlop JSR (1980) Stromatolites 3,400-3,500 Myr. old from the North Pole area, Western Australia. Nature 284:443–445

    Article  Google Scholar 

  • Walter MR, Grotzinger JP, Schopf JW (1992) Proterozoic stromatolites. In: Schopf JW, Klein C (eds) The proterozoic biosphere. A multidisciplinary study. Cambridge University Press, New York, pp 253–260, 1348 pp

    Google Scholar 

  • Warburg O (1920) Über die Geschwindigkeit der photochemis­chen Kohlensäurezersetzung in lebenden Zellen.II. Biochem Z 103:188–217

    CAS  Google Scholar 

  • Warburg O, Krippahl G (1960) Glykolsäurebildung in Chlorella. Z Naturforsch B15:197–199

    Google Scholar 

  • Ward DM, Weller R, Shiea J, Castenholz RW, Cohen Y (1989) Hot spring microbial mats: anoxygenic and oxygenic mats of possible evolutionary significance. In: Cohen Y, Rosenberg E (eds) Microbial mats. Physiological ecology of benthic microbial communities. ASM, Washington, DC, pp 3–15, 511 pp

    Google Scholar 

  • Ward DM, Ferris MJ, Nold SC, Bateson MM, Kopcynski ED, Ruff-Roberts AL (1994) Species diversity in hot spring microbial mats as revealed by both molecular and enrichment culture approaches – relationship between biodiversity and community structure. In: Stal LJ, Caumette P (eds) Microbial mats. Structure, development and environmental significance. Springer, Heidelberg, pp 33–44, 463 pp

    Google Scholar 

  • Warr SCR, Reed RH, Stewart WDP (1984) Osmotic adjustment of cyanobacteria: the effects of NaCl, KCl, Sucrose and glycine betaine on glutamine synthetase activity in a marine and a halotolerant strain. J Gen Microbiol 130:2169–2175

    CAS  Google Scholar 

  • Warr SRC, Reed RH, Stewart WDP (1988) The compatibility of osmotica in cyanobacteria. Plant Cell Environ 11:137–142

    Google Scholar 

  • Waterbury JB, Rippka R (1989) Subsection I. Order Chroococcales. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 3. Williams and Wilkins, Baltimore, pp 1728–1746, 744 pp

    Google Scholar 

  • Waterbury JB, Willey JM, Franks DG, Valois FW, Watson SW (1985) A cyanobacterium capable of swimming motility. Science 230:74–76

    Article  PubMed  CAS  Google Scholar 

  • Westbroek P, Buddemeier B, Coleman M, Kok DJ, Fautin D, Stal LJ (1994) Strategies for the study of climate forcing by calcification. In: Doumenge F (ed) Past and presence biomineralization processes. Musée Oceanographique, Monaco, pp 37–60

    Google Scholar 

  • Whale GF, Walsby AE (1984) Motility of the cyanobacterium Microcoleus chthonoplastes in mud. Br Phycol J 19:117–123

    Article  Google Scholar 

  • White AK, Metcalf WW (2007) Microbial metabolism of reduced phosphorus compounds. Annu Rev Microbiol 61:379–400

    Article  PubMed  CAS  Google Scholar 

  • Whitton BA (1987) The biology of Rivulariaceae. In: Fay P, Van Baalen C (eds) The cyanobacteria. Elsevier, Amsterdam, pp 513–534, 534 pp

    Google Scholar 

  • Whitton BA, Potts M (1982) Marine littoral. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. Blackwell Scientific Publications, Oxford, pp 515–542, 688 pp

    Google Scholar 

  • Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B, Schink B (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362:834–836

    Article  CAS  Google Scholar 

  • Wieland A, Zopfi J, Benthien M, Kühl M (2005) Biogeochemistry of an iron-rich hypersaline microbial mat (Camargue, France). Microb Ecol 49:34–49

    Article  PubMed  CAS  Google Scholar 

  • Wuichet K, Zhulin IB (2003) Molecular evolution of sensory domains in cyanobacterial chemoreceptors. Trends Microbiol 11:200–203

    Article  PubMed  CAS  Google Scholar 

  • Yallop ML, De Winder B, Paterson DM, Stal LJ (1994) Comparative structure, primary production and biogenic stabilization of cohesive and non-cohesive marine sediments inhabited by microphytobenthos. Estuar Coast Shelf Sci 39:565–582

    Article  Google Scholar 

  • Yechieli Y, Wood WW (2002) Hydrogeologic processes in saline systems: playas, sabkhas, and saline lakes. Earth Sci Rev 58:343–365

    Article  CAS  Google Scholar 

  • Zavarzin GA, Gerasimenko LM, Zhilina TN (1993) Cyanobacterial communities in hypersaline lagoons of Lake Sivash. Microbiology 62:645–652

    Google Scholar 

  • Zeebe RE, Wolf-Gladrow D (2001) CO2 in seawater: equilibrium, kinetics and isotopes. Elsevier, New York, 346 pp

    Google Scholar 

  • Zehr JP, Mellon M, Braun S, Litaker W, Steppe T, Paerl HW (1995) Diversity of heterotrophic nitrogen fixation genes in a marine cyanobacterial mat. Appl Environ Microbiol 61:2527–2532

    PubMed  CAS  Google Scholar 

  • Zehr JP, Bench SR, Carter BJ, Hewson I, Niazi F, Shi T, Tripp HJ, Affourtit JP (2008) Globally distributed uncultivated oceanic N2-fixing cyanobacteria lack oxygenic photosystem II. Science 322:1110–1112

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank L. Pozzato (CEME, Yerseke) and H.W. Paerl (IMS, Morehead City, NC) for valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas J. Stal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Stal, L.J. (2012). Cyanobacterial Mats and Stromatolites. In: Whitton, B. (eds) Ecology of Cyanobacteria II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3855-3_4

Download citation

Publish with us

Policies and ethics