Skip to main content
Log in

Polysulfide utilization by Thiocapsa roseopersicina

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The purple sulfur bacterium Thiocapsa roseopersicina, being the dominant anoxygenic phototroph in microbial mats, was tested for growth on polysulfide as the electron donor for carbon dioxide fixation. Data collected in continuous cultures revealed μmax to be 0.065 h-1 and the saturation affinity constant K s to be 6.7 μM. The value of the inhibition constant K i was estimated in batch cultures and was found to be approximately 1100 μM. When grown on monosulfide, the organism was capable of trisulfide utilization without lag. Monosulfide-limited growth was established to have a μmax of 0.091 h-1 and K s of 8.0 μM. Field observations revealed polysulfide, present at supra-optimal concentrations, as a major pool of reduced sulfur in a laminated marine sediment ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DLP:

Direct Linear Plot

TS:

Total Sugar

SS:

Structural Sugar

P :

Protein

R R :

concentration of growth limiting nutrient in reservoir vessel

S nutrient :

residual concentration of growth-limiting nutrient in the culture vessel

S sulfur compound :

concentration of sulfur in the corresponding compound

D :

dilution rate

μmax :

maximum specific growth rate

K s :

saturation constant

K i :

inhibition constant

References

  • Aizenshtat Z, Stoler A, Cohen Y, Nielsen H (1983) The geochemical sulphur enrichment of recent organic matter by polysulfides in the Solar-Lake. In: Bjoroy M, Albrecht P, Cornford C, De Groot K, Eglinton G, Galimov E, Leythaeuser D, Pelet R, Rullkotter J, Speers G (eds) Advances in organic geochemistry 1981 Wiley, Chicester, pp 279–288

    Google Scholar 

  • Andrews JF (1968) A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol Bioeng 10: 707–723

    Google Scholar 

  • Beeftink HH, Van Gemerden H (1979) Actual and potential rates of substrate oxidation and product formation in continuous cultures of Chromatium vinosum. Arch Microbiol 121: 161–167

    Google Scholar 

  • Belkin S, Jannasch HW (1985) Biological and abiological sulfur reduction at high temperatures. Appl Environ Microbiol 49: 1057–1061

    Google Scholar 

  • Bertolacini RJ, BarneyII JE (1957) Colorimetric determination of sulfate with barium chloranilate. Anal Chem 29:281–283

    Google Scholar 

  • De Wit R, Van Gemerden H (1987) Chemolithotrophic growth of the phototrophic sulfur bacterium Thiocapsa roseopersicina. FEMS Microbiol Ecol 45:117–126

    Google Scholar 

  • De Wit R, Jonkers HM, Van den Ende FP, Van Gemerden H (1989) In situ fluctuations of oxygen and sulphide in marine microbial sediment ecosystems. Neth J Sea Res 23:271–281

    Google Scholar 

  • De Wit R, Van Gemerden H (1990) Growth of the phototrophic sulfur bacterium Thiocapsa roseopersicina under oxic/anoxic regimens in the light. FEMS Microbiol Ecol 73:69–76

    Google Scholar 

  • Eisenthal R, Cornish-Bowden A (1974) The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J 139:715–720

    Google Scholar 

  • Fairbairn NJ (1953) A modified anthrone reagent. Chem Ind 1953:86

    Google Scholar 

  • Feher F, Laue W (1956) Beiträge zur Chemie des Schwefels. XXIX. Über die Darstellung von Rohsulfanen. Z Anorg Allg Chem 288:103–112

    Google Scholar 

  • Kondratieva EN, Zhukov VG, Ivankovsky RN, Petushkova YuP, Monosov EZ (1976) The capacity of the phototrophic sulfur bacterium Thiocapsa roseopersicina for chemosynthesis. Arch Microbiol 146:362–369

    Google Scholar 

  • Law JH, Slepecky RW (1961) Assay of poly-β-hydroxybutyric acid. J Bacteriol 82:33–36

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurements with the Folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • LutherIII GW, Church TM (1988) Seasonal cycling of sulfur and iron in porewaters of a Delaware salt marsh. Mar Chem 23:295–309

    Google Scholar 

  • Mas J, Van Gemerden H (1987) Influence of sulfur accumulation and composition of sulfur globule on cell volume and buoyant density of Chromatium vinosum. Arch Microbiol 146:362–369

    Google Scholar 

  • Monod J (1942) Recherches sur la croissance des cultures bactériennes. Hermann, Paris

    Google Scholar 

  • Orion Inc (1979) Sulfide ion electrode, silver ion electrode model 96-16 Instruction Manual, Cambridge, Mass

  • Schedel M (1978) Untersuchungen zur anaeroben Oxidation reduzierter Schwefelverbindungen durch Thiobacillus denitrificans, Chromatium vinosum und Chlorobium limicola. PhD thesis, Universität Bonn, FRG

  • Stal LJ, Van Gemerden H, Krumbein WE (1984) The simultaneous assay of chlorophyll and bacteriochlorophyll in natural microbial communities. J Microbiol Methods 2:295–306

    Google Scholar 

  • Stal LJ, Van Gemerden H, Krumbein WE (1985) Structure and development of a benthic marine microbial mat. FEMS Microbiol Ecol 31:111–125

    Google Scholar 

  • Steudel R, Holdt G, Visscher PT, Van Gemerden H (1990) Search for polythionates in cultures of Chromatium vinosum after sulfide incubation. Arch Microbiol 153:432–437

    Google Scholar 

  • Then J (1984) Beiträge zur Sulfidoxidation durch Ectothiorhodospira abdelmalekii und Ectothiorhodospira halochloris. PhD thesis Universität Bonn, FRG

  • Then J, Trüper HG (1983) Sulfide oxidation in Ectothiorhodospira abdelmalekii. Evidence for the catalytic role of cytochrome c-551. Arch Microbiol 135:254–258

    Google Scholar 

  • Trüper HG, Schlegel HG (1964) Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek; J Microbiol Serol 30:225–238

    Google Scholar 

  • Van Gemerden H (1984) The sulfide affinity of phototrophic bacteria in relation to the location of elemental sulfur. Arch Microbiol 139:289–294

    Google Scholar 

  • Van Gemerden H, Beeftink HH (1978) Specific rates of substrate oxidation and product formation in autotrophically growing Chromatium vinosum cultures. Arch Microbiol 119:135–143

    Google Scholar 

  • Van Gemerden H, Tughan CS, De Wit R, Herbert RA (1989) Laminated microbial ecosystems on sheltered beaches in Scapa Flow, Orkney Islands. FEMS Microbiol Ecol 62:87–102

    Google Scholar 

  • Visscher PT, Van Gemerden H (1988) Growth of Chlorobium limicola f. thiosulfatophilum on polysulfides. In: Olsen JM, Ormerod JG, Amesz J, Stackebrandt E, Trüper HG (eds) Green photosynthetic bacteria. Plenum Press, New York, pp 287–294

    Google Scholar 

  • Widdel F, Pfennig N (1981) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Arch Microbiol 129:395–400

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. Norbert Pfennig on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Visscher, P.T., Nijburg, J.W. & van Gemerden, H. Polysulfide utilization by Thiocapsa roseopersicina . Arch. Microbiol. 155, 75–81 (1990). https://doi.org/10.1007/BF00291278

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00291278

Key words

Navigation