Skip to main content

Sulfur Cycling in Laminated Marine Microbial Ecosystems

  • Chapter
Biogeochemistry of Global Change

Abstract

Depth profiles of organic and inorganic sulfur compounds were measured in the top 50 mm of a mature marine microbial mat during three growth seasons. Similarly, the vertical distribution of sulfate-reducing bacteria, colorless sulfur bacteria, and anoxygenic phototrophic bacteria was also measured. In combination with profiles of important physico-chemical parameters, which define the mat environment, and laboratory studies, sources and sinks of volatile sulfur compounds were evaluated. Calculations show that consumption of dimethyl sulfide potentially can balance its production, minimizing the flux from the sediment to the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atlas, R.M., and R. Bartha. 1987. Microbial Ecology. The Benjamin/Cummings Publ. Co. Menlo Park, CA, pp. 203–213.

    Google Scholar 

  2. Aizenshtat, Z., Y. Cohen, and H. Nielsen. 1983. The geochemical sulphur enrichment of recent organic matter by polysulfides in the Solar-Lake. In M. Bjoroy, P. Albrecht, C. Cornford, K. de Groot, K. Eglington, E. Galimov, D. Leythaeuser, R. Pelet, J. Rullkotter, and G. Speers (eds.), Advances in Organic Geochemistry, J. Wiley and Sons, Chichester, pp. 279–288.

    Google Scholar 

  3. Aizenshtat, Z., G. Lipiner, and Y. Cohen. 1984. Biogeochemistry of carbon and sulfur cycle in microbial mats of Solar Lake (Sinai). In Y. Cohen, R.W. Castenholz, and H.O. Halvorson (eds.), Microbial Mats: Stromatolites, Alan R. Liss, Inc., New York, pp. 281–312.

    Google Scholar 

  4. Baas Becking, L.G.M. 1925. Studies on the sulphur bacteria. Ann. Bot. 39:613–615.

    Google Scholar 

  5. Baas Becking, L.G.M. 1934. Geobiologie, W.P. van Stockum & Zoon N.V., Den Haag.

    Google Scholar 

  6. Bak, F., and N. Pfennig, 1991. Sulfate-reducing bacteria in littoral sediment of Lake Constance. FEMS Microbiol. Ecol. 85:43–52.

    Google Scholar 

  7. Bateson, M.M., and D.M. Ward. 1988. Photoexcretion and fate of glycolate in a hot spring cyanobacterial mat. Appl. Environ. Microbiol. 54:1738–1743.

    CAS  Google Scholar 

  8. Bergström, I., A. Heinaanen, and K. Salonen. 1986. Comparison of acridine orange, acriflavine, and bisbenzimide stains for enumeration of bacteria. Appl. Environ. Microbiol. 51:664–667.

    Google Scholar 

  9. Bertolacini, R.J., and J.E. Barney II, 1957. Colorimetric determination of sulfate with barium chloranilate. Anal. Chem. 29:281–283.

    CAS  Google Scholar 

  10. Boulegue, J., C.J. Lord III, and T.M. Church. 1982. Sulfur speciation and associated trace metals (Fe, Cu) in the pore waters of Great Marsh, Delaware. Geochim. Cosmochim Acta 46:453–464.

    Article  CAS  Google Scholar 

  11. Canfield, D.E., and D.J. Des Marais. 1991. Aerobic sulfate reduction in microbial mats. Science 251:1471–1473.

    Article  CAS  Google Scholar 

  12. Cohen, Y., 1984. Oxygenic photosynthesis, anoxygenic photosynthesis, and sulfate reduction in cyanobacterial mats. In M.J. Klug and C.A. Reddy (ed.), Current Perspectives in Microbial Ecology, American Society for Microbiology, Washington DC, pp. 435–441.

    Google Scholar 

  13. De Man, J. 1975. The probability of most probable numbers. Eur. J. Appl. Microbiol. 1:67–78.

    Article  Google Scholar 

  14. De Wit, R., H.M. Jonkers, F.P. van den Ende, and H. van Gemerden. 1989. In sitù fluctuations of oxygen and sulphide in marine microbial sediment ecosystems. Neth. J. Sea Res. 23:271–281.

    Article  Google Scholar 

  15. Giblin, A.E. 1988. Pyrite formation in marshes during early diagenesis. Geomicrobiol. J. 6:77–97.

    Article  CAS  Google Scholar 

  16. Hobbie, J.E., R.J. Daley, and S. Jasper. 1977. Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33:1225–1228.

    CAS  Google Scholar 

  17. Hordijk, K.A., C.P.M.M. Hagenaars, and T.E. Cappenberg. 1985. Kinetic studies of bacterial sulfate reduction in fresh water sediments by high-pressure liquid chromatography and microdistillation. Appl. Environ. Microbiol. 49:434–440.

    CAS  Google Scholar 

  18. Jorgensen, B.B., and Y. Cohen. 1977. Solar Lake (Sinai). The sulfur cycle of benthic cyanobacterial mats. Limnol. Oceanogr. 22:657–666.

    Google Scholar 

  19. Jorgensen, B.B., N.P. Revsbech, T.H. Blackburn, and Y. Cohen. 1979. Diurnal cycle of oxygen and sulfide microgradients and microbial photosynthesis in a cyanobacterial mat. Appl. Environ. Microbiol. 38:46–58.

    CAS  Google Scholar 

  20. Jorgensen, B.B., and F. Bak. 1991. Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark). Appl. Environ. Microbiol. 57:847–856.

    CAS  Google Scholar 

  21. Kelly, D.P., L.A. Chambers, and P.A. Trudinger. 1969. Cyanolysis and spectrometric estimation of trithionate in a mixture with thiosulfate and tetrathionate. Anal. Chem. 41:898–901.

    Article  CAS  Google Scholar 

  22. Kiene, R.P. 1988. Dimethyl sulfide metabolism in salt marsh sediments. FEMS Microbiol. Ecol. 53:71–78.

    Article  CAS  Google Scholar 

  23. Kiene, R.P. 1991. Microbial cycling of organosulfur gases in marine and freshwater environments. In D. Adams, P. Crill, and S. Seitzinger (eds.), Cycling of Reduced Gases in the Hydrosphere, E. Schweitzerbartchen Verlagsbuchhandlungen, Stuttgart.

    Google Scholar 

  24. Kiene, R.P., R.S. Oremland, A. Catena, L.G. Miller, and D.G. Capone. 1986. Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of a methanogen. Appl. Environ. Microbiol. 52:1037–1045.

    CAS  Google Scholar 

  25. Kiene, R.P., and P.T. Visscher. 1987. Production and fate of methylated sulfur compounds from methionine and dimethylsulfoniopropionate in anoxic salt marsh sediments. Appl. Environ. Microbiol. 53:2426–2434.

    CAS  Google Scholar 

  26. Kiene, R.P., and D.G. Capone. 1988. Microbial transformations of methylated sulfur compounds in anoxic salt marsh sediments. Microbial Ecol. 15:275–291.

    Article  CAS  Google Scholar 

  27. Kiene, R.P., and B.F. Taylor. 1988. Demethylation of dimethylsulfoniopropionate and production of thiols in anoxic marine sediments. Appl. Environ. Microbiol. 54:2208–2212.

    CAS  Google Scholar 

  28. Lord, III, C.J., and T.M. Church. 1983. The geochemistry of salt marshes: sedimentary ion diffusion, sulfate reduction, and pyritization. Geochim Cosmochim. Acta 47:1381–1391.

    Article  CAS  Google Scholar 

  29. Luther, III, G.W., T.M. Church, J.R. Scudlark, and M. Cosman. 1986. Inorganic and organic sulfur cycling in salt marsh pore waters. Science 232:746–749.

    Article  CAS  Google Scholar 

  30. Luther, III, G.W., and T.M. Church. 1988. Seasonal cycling of sulfur and iron in porewaters of a Delaware salt marsh. Marine Chem. 23:295–309.

    Article  CAS  Google Scholar 

  31. Oremland, R.S., R.P. Kiene, I. Mathrani, M.J. Whiticar, and D.R. Boone. 1989. Description of an estuarine methylotrophic methanogen which grows on dimethyl sulfide. Appl. Environ. Microbiol. 55:994–1002.

    CAS  Google Scholar 

  32. Postgate, J.R. 1984. The sulphate reducing bacteria. Cambridge University Press, Cambridge.

    Google Scholar 

  33. Revsbech, N.P., B.B. Jiórgensen, T.H. Blackburn, and Y. Cohen. 1983. Micro-electrode studies of the photosynthesis and 02, H2S, and pH profiles in a microbial mat. Limnol Oceanogr. 28:1062–1074.

    Article  Google Scholar 

  34. Schedel, M., 1978. PhD thesis, University of Bonn, Germany.

    Google Scholar 

  35. Skyring, G.W., 1984. Sulfate reduction in marine sediments associated with cyanobacterial mats in Australia. In Y. Cohen, R.W. Castenholz, and H.O. Halvorson (eds.), Microbial Mats: Stromatolites, Alan R. Liss, Inc., New York, pp. 265–275.

    Google Scholar 

  36. Skyring, G.W., R.M. Lynch, and G.D. Smith. 1989. Quantitative relationships between carbon, hydrogen, and sulfur metabolism in cyanobacterial mats. In Y. Cohen and E. Rosenberg (eds.), Microbial Mats, American Society for Microbiology, Washington DC, pp 170–179.

    Google Scholar 

  37. Stal, L.J., H. van Gemerden, and W.E. Krumbein. 1984. The simultaneous assay of chlorophyll and bacteriochlorophyll in natural microbial communities. J. Microbiol. Meth. 2:295–306.

    Article  CAS  Google Scholar 

  38. Stal, L.J., H. van Gemerden, and W.E. Krumbein. 1985. Structure and development of a benthic marine microbial mat. FEMS Microbiol. Ecol. 31:111–1125.

    CAS  Google Scholar 

  39. Steudel, R., G. Holdt, P.T. Visscher, and H. van Gemerden. 1990. Search for polythionates in cultures of Chromatium vinosum after sulfide incubation. Arch. Microbiol. 153:453–437.

    Google Scholar 

  40. Taylor, B.F., and R.P. Kiene. 1989. Microbial metabolism of dimethyl sulfide. In E.S. Saltzman and W.J. Cooper (eds.), Biogenic Sulfur in the Environment. American Chemical Society, Washington DC, pp. 202–221.

    Chapter  Google Scholar 

  41. Trüper, H.G., and H.G. Schlegel. 1964. Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek J. Microbiol. Ser. 30:225–238.

    Article  Google Scholar 

  42. Tuttle, J.H., and H.W. Jannasch. 1977. Thiosulfate stimulation of microbial dark assimilation of carbon dioxide in shallow marine waters. Microb. Ecol. 4:9–25.

    CAS  Google Scholar 

  43. Van Gemerden, H. (1990). Immobile anoxygenic phototrophic bacteria in tidal areas. In J.A.M. de Bont, J. Visser, B. Mattiasson, and J. Tramper (eds.), Phys-iology of Immobilized Cells, Elsevier Science Publishers, Amsterdam, pp. 37–48.

    Google Scholar 

  44. Van Gemerden, H., C.S. Tughan, R. de Wit, and R.A. Herbert. 1989. Laminated microbial ecosystems on sheltered beaches in Scapa Flow, Orkney Islands. FEMS Microbiol. Ecol. 62:87–102.

    Article  Google Scholar 

  45. Van Gemerden, H., R. de Wit, C.S. Tughan, and R.A. Herbert. 1989. Development of mass blooms of Thiocapsa roseopersicina on the sheltered beaches on the Orkney Islands. FEMS Microbiol. Ecol. 62:111–118.

    Google Scholar 

  46. Visscher, P.T., and H. van Gemerden. 1988. Growth of Chlorobium limicola f. thiosulfatophilum on polysulfides. In J.M. Olsen, J.G. Ormerod, J. Amesz, E. Stackebrandt, and H.G. Trüper (eds.), Green Sulfur Bacteria, Plenum Press, New York, pp. 287–294.

    Chapter  Google Scholar 

  47. Visscher, P.T., J.W. Nijburg, and H. van Gemerden. 1990. Polysulfide utilization by Thiocapsa roseopersicina. Arch Microbiol. 155:75–81.

    Article  CAS  Google Scholar 

  48. Visscher, P.T., P. Quist, and H. van Gemerden. 1991. Methylated sulfur compounds in microbial mats: in situ concentrations and metabolism by a colorless sulfur bacterium. Appl. Environ. Microbiol. 57:1758–1763.

    CAS  Google Scholar 

  49. Visscher, P.T., and H. van Gemerden. 1991. Photoautotrophic growth of Thiocapsa roseopersicina on dimethyl sulfide. FEMS Microbiol. Lett. 81:247–250.

    CAS  Google Scholar 

  50. Visscher, P.T., and H. van Gemerden. 1991. Production and consumption of dimethylsulfoniopropionate in marine microbial mats. Appl. Environ. Microbiol. 57: 3237–3242.

    CAS  Google Scholar 

  51. Visscher, P.T., R.A. Prins, and H. van Gemerden. 1992. Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat. FEMS Microbiol. Ecol. 86:283–294.

    CAS  Google Scholar 

  52. Zhabinda, N.N., and I.I. Volkov. 1978. A method of determination of various sulfur compounds in sea sediments and rocks. In W.E. Krumbein (ed.), Environmental Biogeochemistry and Geomicrobiology: Methods, Metals and Assessment. Ann Arbor Science Publishers, Ann Arbor, MI, pp. 735–745.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Visscher, P.T., van Gemerden, H. (1993). Sulfur Cycling in Laminated Marine Microbial Ecosystems. In: Oremland, R.S. (eds) Biogeochemistry of Global Change. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2812-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2812-8_37

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6215-9

  • Online ISBN: 978-1-4615-2812-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics