Skip to main content

The Microbial Ecology of the Dead Sea

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 10))

Abstract

The last decade has shown a great revival in the study of halophilic microorganisms. In part this interest has been caused by the discovery of properties interesting from a theoretical point of view, such as mechanisms of osmotic adjustment, the functioning of enzymes in the presence of high salt concentrations, and the possession of retinal pigments, such as bacteriorhodopsin and halorhodopsin in a number of Halobacterium strains, representing simple mechanisms of converting light energy into biologically available energy (Stoeckenius and Bogomolni, 1982). Moreover, accumulation of valuable products, such as glycerol and (in certain strains) β-carotene, in the halotolerant unicellular green alga Dunaliella has industrial potential (Ben-Amotz and Avron, 1983).

… a barren land, bare waste. Vulcanic lake, the dead sea: no fish, weedless, sunk deep in the earth. No wind would lift those waves. Brimstone they called it raining down: Sodom, Gomorrah, Edom. All dead names. A dead sea in a dead land, grey and old.

—James Joyce, Ulysses (1922)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arad, V., Beyth, M., and Bartov, Y., 1984, The Dead Sea and Its Surroundings. Bibliography of Geological Research, Geological Survey of Israel, Special Publication No. 3.

    Google Scholar 

  • Assaf, G., 1976, The Dead Sea: A scheme for a solar lake, Solar Energy 18:293–299.

    Article  Google Scholar 

  • Begin, Z. B., Ehrlich, A., and Nathan, Y., 1974, Lake Lisan. The Pleistocene Precursor of the Dead Sea, Bulletin No. 63, State of Israel, Ministry of Commerce and Industry, Geological Survey.

    Google Scholar 

  • Ben-Amotz, A., and Avron, M., 1983, Accumulation of metabolites by halotolerant algae and its industrial potential, Annu. Rev. Microbiol 37:95–119.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Amotz, A. and Ginzburg, B. Z., 1969, Light-induced proton uptake in whole cells of Dunaliella parva, Biochim. Biophys. Acta 183:144–154.

    Article  CAS  Google Scholar 

  • Ben-Amotz, A., Katz, A., and Avron, M., 1982, Accumulation of jS-carotene in halotolerant algae: Purification and characterization of jS-carotene-rich globules fromDunaliella bar- dawil (Chlorophyceae), J. PhycoL 18:529–537.

    Article  CAS  Google Scholar 

  • Ben-Yaakov, S., and Sass, E., 1977, Independent estimate of the pH of Dead Sea brines, Limnol Oceanogr. 22:374–376.

    Article  CAS  Google Scholar 

  • Bernard, F., 1957, Presence de flagelles marins Coccolithus et Exuviella dans le plancton de la Mer Morte, C R. Acad. Sei. (Paris) 245:1754–1756.

    Google Scholar 

  • Beyth, M., 1980, Recent evolution and present stage of Dead Sea brines, inHypersaline Brines and Evaporitic Environments (A. Nissenbaum, ed.), pp. 155–165, Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Brock, T. D., 1975, Salinity and the ecologyof Dunaliella from Great Salt Lake, J.Gen. Microbiol. 89:285–292.

    Google Scholar 

  • Brock, T. D., and Petersen, S., 1976, Some effects of light on the viability of rhodopsin- containing halobacteria, Arch. Microbiol. 109:199–200.

    Article  PubMed  CAS  Google Scholar 

  • Buchanan, B. B., 1969, Role of ferredoxin in the synthesis of a-ketobutyrate from propionyl coenzyme A and carbon dioxide by enzymes from photosynthetic and nonphotosyn- thetic bacteria, J. Biol. Chem. 244:4218–4223.

    PubMed  CAS  Google Scholar 

  • Butcher, R. W., 1959, An Introductory Account of the Smaller Algae of British Coastal Waters. Part 1: Introduction and Chlorophyceae, HMSO, London.

    Google Scholar 

  • Carmi, I., Gat, J. R., and Stiller, M., 1984, Tritium in the Dead Sea, Earth Planet. Sei. Lett. 71:377–389.

    Article  CAS  Google Scholar 

  • Cohen, S., Oren, A., and Shilo, M., 1983, The divalent cation requirement of Dead Sea halobacteria, Arch. Microbiol. 136:184–190.

    Article  CAS  Google Scholar 

  • Danon, A., and Caplan, S. R., 1977, CO2 fixation by Halobacterium halobium, FEBS Lett. 74:255–258.

    Article  PubMed  CAS  Google Scholar 

  • Danon, A., and Stoeckenius, W., 1975, Photophosphorylation in Halobacterium halobium, Proc. Natl. Acad Sei. USA 71:1234–1238.

    Article  Google Scholar 

  • Edgerton, M. E., and Brimblecombe, P., 1981, Thermodynamics of halobacterial environments, Can. J. Microbiol. 27:899–909.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich, H. L., and Zapkin, M. A., 1981, Mn" oxidizing bacteria from the Dead Sea region in Israel, Abstract N-60, Annual Meeting of the American Society for Microbiology.

    Google Scholar 

  • Elazari-Volcani, B., 1940, Studies on the microflora of the Dead Sea, Ph. D. Thesis, Hebrew University of Jerusalem (in Hebrew).

    Google Scholar 

  • Elazari-Volcani, B., 1943a, Bacteria in the bottom sediments of the Dead Sea,Nature 152:274–275.

    Article  Google Scholar 

  • Elazari-Volcani, B., 1943b, A dimastigamoeba in the bed of the Dead Sea,Nature 152:301–302.

    Article  Google Scholar 

  • Elazari-Volcani, B., 1944, A ciliate from the Dead Sea, Nature 154:335.

    Article  Google Scholar 

  • Evans, R. W., Kushwaha, S. C., and Kates, M., 1980, The lipids of Halobacterium maris- mortui, an extremely halophilic bacterium in the Dead Sea, Biochim. Biophys. Acta 619:533–544.

    PubMed  CAS  Google Scholar 

  • Garber, R. A., Nishry, A., Nissenbaum, A., and Friedman, G. M., 1981, Modem deposition of manganese along the Dead Sea shore, Sed. Geol. 30:267–274.

    Article  CAS  Google Scholar 

  • Ginzburg, M., Sachs, L., and Ginzburg, B. Z., 1970, Ion metabolism in a Halobacterium. I. Influence of age of culture on intracellular concentrations, J. Gen. Physiol. 55:187–207.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, C., Gutierrez, C., and Ramirez, C., 1978, Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium, Can. J. Microbiol. 24:710–715.

    Article  PubMed  CAS  Google Scholar 

  • Imhof, J. F., and Rodriguez-Valera, F., 1984, Betaine is the main compatible solute of hal- ophilic eubacteria, J. Bacteriol 160:478–479.

    Google Scholar 

  • Javor, B. J., 1984, Growth potential of halophilic bacteria isolated from solar salt environments: Carbon sources and salt requirements, Appl. Environ. Microbiol. 48:352–360.

    PubMed  CAS  Google Scholar 

  • Javor, B. J., Requadt, C., and Stoeckenius, W., 1982, Box-shaped halophilic bacteria, J. Bacteriol. 151:1532–1542.

    PubMed  CAS  Google Scholar 

  • Kaplan, I. R., and Baedecker, M. J., 1970, Biological productivity in the Dead Sea. Part IL Evidence for phosphatidyl glycerophosphate lipid in sediment, Isr. J. Chem. 8:529–533.

    CAS  Google Scholar 

  • Kaplan, I. R., and Friedmann, A., 1970, Biological productivity in the Dead Sea. Part I. Microorganisms in the water column, Isr. J. Chem. 8:513–528.

    CAS  Google Scholar 

  • Katz, A., Starinsky, A., Taitel-Goldman, N., and Beyth, M., 1981, Solubilities of gypsum and halite in the Dead Sea and in its mixtures with sea water, Limnol. Oceangr. 26:709–716.

    Article  CAS  Google Scholar 

  • Kirk, R. G., and Ginzburg, M., 1972, Ultrastructure of two species of Halobacterium, J. Ultrastructure Res. 41:80–94.

    Article  CAS  Google Scholar 

  • Klein, C., 1961, On the Fluctuations of the Level of the Dead Sea Since the Beginning of the 19th Century, Hydrological Paper No. 7, Ministry of Agriculture, Hydrological Service of Israel.

    Google Scholar 

  • Klein, C., 1982, Morphological evidence of lake level changes, western shore of the Dead Sea, Isr. J. Earth Sei. 31:67–94.

    Google Scholar 

  • Krasil’nikov, N. A., Duda, V. L, and Pivovarov, G. E., 1971, Characteristics of the cell structure of soil anaerobic bacteria forming vesicular caps on their spores, Microbiology 40:592–597.

    Google Scholar 

  • Kritzman, G., 1973, Observations on the microorganisms in the Dead Sea, M. Sc. Thesis, Hebrew University of Jerusalem (in Hebrew).

    Google Scholar 

  • Kritzman, G., Keller, P., and Henis, Y., 1973, Ecological studies on the heterotrophic extreme halophilic bacteria of the Dead Sea, in: Abstracts of the 1st International Congress Bacteriology, Vol. II, p. 242, Jerusalem.

    Google Scholar 

  • Kushner, D. J., 1978, Life in high salt and solute concentrations: Halophilic bacteria, in: Microbial Life in Extreme Environments (D. J. Kushner, ed.), pp. 317–368, Academic Press, London.

    Google Scholar 

  • Larsen, H., 1980, Ecology of hypersaline environments, in: Hypersaline Brines and Evapor- itic Environments (A. Nissenbaum, ed.), pp. 23–39, Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Lerche, W., 1937, Untersuchungen über Entwicklung und Fortpflanzung in der Gattung Dunaliella, Arch. Protistenkd. 88:236–268.

    CAS  Google Scholar 

  • Lerman, A., 1967, Model of chemical evolution of a chloride lake—The Dead Sea, Geo- chim. Cosmochim. Acta 31:2309–2330.

    Article  CAS  Google Scholar 

  • Levy, Y., 1980, Seasonal and Long Range Changes in Oxygen and Hydrogen Sulfide Concentration in the Dead Sea, Report MG/9/80, Ministry of Energy and Infrastructure, Geological Survey of Israel.

    Google Scholar 

  • Lortet, M. L., 1892, Researches on the pathogenic microbes of the mud of the Dead Sea, Palestine Exploration Fund 1892:48–50.

    Google Scholar 

  • Mackay, M. A., Norton, R. S., and Borowitzka, L. J., 1984, Organic osmoregulatory solutes in cyanobacteria, J. Gen. Microbiol 130:2177–2191.

    CAS  Google Scholar 

  • Mullakhanbhai, M. F., and Francis, G. W., 1972, Bacterial lipids. 1. Lipid constituents of a moderately halophilic bacterium.Acta Chem. Scand. 26:1399–1410.

    Article  PubMed  CAS  Google Scholar 

  • Mullakhanbhai, M. F., and Larsen, H., 1975, Halobacterium volcanii spec, nov., a Dead Sea halobacterium with a moderate salt requirement. Arch. Microbiol. 104:207–214.

    Article  PubMed  CAS  Google Scholar 

  • Neev, D., and Emery, K. O., 1966, The Dead Sea, Science J. 2:50–55.

    Google Scholar 

  • Neev, D., and Emery, K. O., 1967, The Dead Sea. Depositional Processes and Environments of Evaporites, Bulletin No. 41, State of Israel, Ministry of Development, Geological Survey.

    Google Scholar 

  • Nicholson, D. E., and Fox, G. E., 1983, Molecular evidence for a close phylogenetic relationship among box-shaped halophilic bacteria, Halobacterium vallismortis, and Hal- obacterium marismortu. U Can. J. Microbiol 29:52–59.

    Article  CAS  Google Scholar 

  • Nishry, A., 1984, The geochemistry of manganese in the Dead Sea, Earth Planet. Sei. Lett. 71:415–426.

    Article  Google Scholar 

  • Nishry, A., and Stiller, M., 1984, Iron in the Dead Sea, Earth Planet Sei. Lett. 71:405–414.

    Article  Google Scholar 

  • Nissenbaum, A., 1975, The microbiology and biogeochemistry of the Dead Sea, Mierob. Eeol. 2:139–161.

    CAS  Google Scholar 

  • Nissenbaum, A., 1977, Minor and trace elements in Dead Sea water, Chem. Geol. 19:99–111.

    Article  CAS  Google Scholar 

  • Nissenbaum, A., 1979, Life in a Dead Sea—Fables, allegories and scientific search. Bioscience 29:153–151.

    Article  Google Scholar 

  • Nissenbaum, A., and Kaplan, I. R., 1976, Sulfur and carbon isotopic evidence for biogeo- chemical processes in the Dead Sea ecosystem, in: Environmental Biochemistry (J. O. Nriagu, ed.). Vol. 1, pp. 309–325, Ann Arbor Scientific, Ann Arbor, Michigan.

    Google Scholar 

  • Nissenbaum, A., Baedecker, M. J., and Kaplan, I. R., 1977, Organic geochemistry of Dead Sea sediments, Geochim. Cosmochim. Acta 36:709–727.

    Article  Google Scholar 

  • Oesterhelt, D., and Stoeckenius, W., 1971, Rhodopsin-like protein from the purple membrane of Halobacterium halobium, Nature 233:149–152.

    CAS  Google Scholar 

  • Oren, A., 1981, Approaches to the microbial ecology of the Dead Sea, Kieler Meeresforsch. Sonderh. 5:416–424.

    Google Scholar 

  • Oren, A., 1983a, Bacteriorhodopsin-mediated CO2 photoassimilation in the Dead Sea, Lim- nol. Oceanogr. 28:33–41.

    Article  CAS  Google Scholar 

  • Oren, A., 1983b, Population dynamics of halobacteria in the Dead Sea water column, Lim- nol. Oceanogr. 28:1094–1103.

    Article  Google Scholar 

  • Oren, A., 1983c,Halobacterium sodomense sp. nov., a Dead Sea halobacterium with an extremely high magnesium requirement. Int. J. Syst. Bacteriol. 33:381–386.

    Article  Google Scholar 

  • Oren, A., 1983d, A thermophilic amyloglucosidase from Halobacterium sodomense, a halophilic bacterium from the Dead Sea, Curr. Microbiol. 8:225–230.

    Article  CAS  Google Scholar 

  • Oren, A., 1983e,Clostridium lortetii sp. nov., a halophilic obligatory anaerobic bacterium producing endospores with attached gas vacuoles. Arch. Microbiol. 136:42–48.

    Article  Google Scholar 

  • Oren, A., 1985, The rise and decline of a bloom of halobacteria in the Dead Sea, Limnol. Oceanogr. 30:911–915.

    Article  Google Scholar 

  • Oren, A., 1986a, Intracellular salt concentrations of the anaerobic halophilic eubacteria Hal- oanaerobium praevalens and Halobacteroides halobius, Can. J. Microbiol, 32: 4–9.

    Article  CAS  Google Scholar 

  • Oren, A., 1986b, The ecology and taxonomy of anaerobic halophilic eubacteria,FEMS Microbiol Rev. 39: 23–29.

    Article  Google Scholar 

  • Oren, A., and Shilo, M., 1981, Bacteriorhodopsin in a bloom of halobacteria in the Dead Sea,Arch. Microbiol 130:185–187.

    Article  CAS  Google Scholar 

  • Oren, A., and Shilo, M., 1982, Population dynamics ofDunaliella parva in the Dead Sea, Limnol Oceangr. 27:201–211.

    Article  Google Scholar 

  • Oren, A., and Shilo, M., 1985, Factors determining the development of algal and bacterial blooms in the Dead Sea: A study of simulation experiments in outdoor ponds,FEMS Microbiol Ecol 31:229–237.

    Article  CAS  Google Scholar 

  • Oren, A., and Vlodavsky, L., 1985, Survival of Escherichia coli andVibrio harveyi in Dead Sea water, FEMS Microbiol Ecol 31:365–371.

    Article  Google Scholar 

  • Oren, A., Paster, B. J., and Woese, C. R., 1984a, Haloanaerobiaceae: A new family of moderately halophilic, obligatory anaerobic bacteria, Syst. Appl Microbiol 5:71–80.

    Article  CAS  Google Scholar 

  • Oren, A., Weisburg, W. G., Kessel, M., and Woese, C. R., 1984b,Halobacteroides halobius gen. nov., sp. nov., a moderately halophilic anaerobic bacterium from the bottom sediments of the Dead Sea, Syst. Appl Microbiol 5:58–70.

    Article  CAS  Google Scholar 

  • Post, F. J., 1977, The microbial ecology of the Great Salt Lake, Microb. Ecol 3:143–165.

    Article  CAS  Google Scholar 

  • Pundak, S., and Eisenberg, H., 1981, Structure and activity of malate dehydrogenase from the extreme halophilic bacteria of the Dead Sea. 1. Conformation and interaction with water and salt between 5 M and 1 M NaCl concentration, Eur. J. Biochem. 118:463–470.

    Article  PubMed  CAS  Google Scholar 

  • Rafaeli-Eshkol, D., 1968, Studies on halotolerance in a moderately halophilic bacterium. Effect of growth conditions on salt resistance of the respiratory system, Biochem. J. 109:679–685.

    PubMed  CAS  Google Scholar 

  • Rodriguez-Valera, F., Ruiz-Berraquero, F, and Ramos-Cormenzana, A., 1980, Isolation of extremely halophilic bacteria able to grow in defined inorganic media with single carbon sources, J. Gen. Microbiol. 119:535–538.

    Google Scholar 

  • Sass, E., and Ben-Yaakov, S., 1977, The carbonate system in hypersaline solutions: Dead Sea brines. Mar. Chem. 5:183–199.

    Article  CAS  Google Scholar 

  • Shindler, D. B., Wydro, R. M., and Kushner, D. J., 1977, Cell-bound cations of the moderately halophilic bacterium Vibrio costicola, J. Bacteriol. 130:698–703.

    CAS  Google Scholar 

  • Soliman, G. S. H., and Trüper, H. G., 1982, Halobacterium pharaonis sp. nov., a new, extremely haloalkaliphilic archaebacterium with low magnesium requirement, Zen- tralbl Bakteriol. Hyg. I Abt. Orig. C 3:318–329.

    Google Scholar 

  • Steinhom, L, 1983, In situ salt precipitation at the Dead Sea, Limnol. Oceanogr. 28:580–583.

    Article  Google Scholar 

  • Steinhorn, L, and Gat, J. R., 1983, The Dead Sea, Sei. Am. 249(4): 102–109.

    CAS  Google Scholar 

  • Steinhom, I., Assaf, G., Gat, J. R., Nishry, A., Nissenbaum, A., Stiller, M., Beyth, M., Neev, D., Garber, R., Friedman, G. M., and Weiss, W., 1979, The Dead Sea: Deepening of the mixolimnion signifies the overture to overturn of the water column, Science 206:55–57.

    Article  Google Scholar 

  • Stephens, D. W., and Gillespie, D. M., 1976, Phytoplankton production in the Great Salt Lake, Utah, and a laboratory study of algal response to enrichment, Limnol. Oceanogr. 21:74–87.

    Article  CAS  Google Scholar 

  • Stiller, M., and Chung, Y. C., 1984, Radium in the Dead Sea: A possible tracer for the duration of meromixis, Limnol. Oceanogr. 29:574–586.

    Article  CAS  Google Scholar 

  • Stiller, M., and Kaufman, A., 1984, 210pb and 210po during the destruction of stratification in the Dead Sea, Earth Planet. Sei. Lett. 71:390–404.

    Article  Google Scholar 

  • Stiller, M., Gat, J. R., Bauman, N., and Shasha, S., 1984a, A short meromictic episode in the Dead Sea: 1979–1982 Verh. Int. Verein. Limnol. 22:132–135.

    Google Scholar 

  • Stiller, M., Mantel, M., and Rapaport, M. S., 1984b, The determination of trace elements (Co, Cu, and Hg) in the Dead Sea by neutron activation followed by X-ray spectrometry and magnetic deflection of beta ray interference, J. Radioanalyt. Nucl. Chem. 83:345–352.

    Article  CAS  Google Scholar 

  • Stoeckenius, W., and Bogomolni, R. A., 1982, Bacteriorhodopsin and related pigments of halobacteria, Annu. Rev. Biochem. 52:587–616.

    Article  Google Scholar 

  • Tabor, H. Z., 1966, Solar ponds. Sei. J. 1966(June):66–71.

    Google Scholar 

  • Tindall, B. J., Mills, A. A., and Grant, W. D., 1980, An alkalophilic red halophilic bacterium with a low magnesium requirement from a Kenyan soda lake, J. Gen. Microbiol. 116:257–260.

    Google Scholar 

  • Tindall, B. J., Ross, H. N. M., and Grant, W. D., 1984, Natronobacterium gen. nov. and Natronococcus gen. nov., two new genera of haloalkaliphilic archaebacteria, Syst. Appl. Microbiol. 5:41–57.

    Article  Google Scholar 

  • Torsvik, T., and Dundas, I. D., 1974, Bacteriophage of Halobacterium salinarium, Nature 248:680–681.

    Article  PubMed  CAS  Google Scholar 

  • Volcani, B. E., 1944, The microorganisms of the Dead Sea, in: Papers Collected to Commemorate the 70th Anniversary of Dr. Chaim Weizmann, pp. 71–85, Collective Volume, Daniel Sieff Research Institute, Rehovoth.

    Google Scholar 

  • Walsby, A. E., 1980, A square bacterium, Nature 283:69–71.

    Article  Google Scholar 

  • Wegmann, K., Ben-Amotz, A., and Avron, M., 1980, Effect of temperature on glycerol retention in the halotolerant algae Dunaliella and Asteromonas, Plant Physiol 66:1196–1197.

    Article  PubMed  CAS  Google Scholar 

  • Weiner, D., 1985, The Dead Sea. Past, present, future, Interdisc. Sei. Rev. 10:151–158.

    Article  Google Scholar 

  • Werber, M. M., and Mevarech, M., 1978, Induction of dissimilatory reduction pathway of nitrate in Halobacterium of the Dead Sea. A possible role for the 2 Fe-ferredoxin isolated from this organism. Arch. Biochem. Biophys. 186:60–65.

    Article  PubMed  CAS  Google Scholar 

  • Widdel, F., and Pfennig, N., 1981, Sporulation and further nutritional characteristics of Desulfotomaculum acetoxidans. Arch. Microbiol. 129:401–402.

    Article  PubMed  CAS  Google Scholar 

  • Wilkansky, B., 1936, Life in the Dead Sea, Nature 138:467.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Oren, A. (1988). The Microbial Ecology of the Dead Sea. In: Marshall, K.C. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5409-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5409-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5411-6

  • Online ISBN: 978-1-4684-5409-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics