Skip to main content

Functional Aspect of Phosphate-Solubilizing Bacteria: Importance in Crop Production

  • Chapter
  • First Online:
Bacteria in Agrobiology: Crop Productivity

Abstract

Phosphorus (P) is one of the major plant nutrients whose deficiency results in severe losses to crop yields. To achieve optimum crop production, P is, therefore, consistently required. The use of chemical fertilizers in contrast is discouraged for two basic reasons: one, the repeated and injudicious application may alter soil fertility by adversely affecting microbial composition and functions and, second, it is expensive. To address these problems, scientists have identified soil-borne microorganisms belonging to a specific functional group generally referred to as phosphate-solubilizing microorganisms (PSM) which play many ecophysiological roles, especially in providing plants with P. They can be found in any environment from conventional to contaminated ones and are able to express their activity both in vitro and under field conditions. The solubilization of P by bacteria including even some of the strict nitrogen fixers, for example, rhizobia (symbiotic) or Azotobacter (asymbiotic), is a multifactor process. The ability to release bound P from both organic (enzymatic) and inorganic (acidification) sources by this functionally diverse group of organisms and to provide growth regulators (phytohormones) to plants or protecting plants from various diseases through other mechanisms (such as synthesizing antibiotics, siderophores, cyanogenic compounds, etc.) is indeed some of the most fascinating biological traits that have resulted in increased crop yields. Here, we highlight the functional aspects of PS bacteria especially their role in crop improvement particularly legumes and cereals grown in varied agro-ecological regions. The discussion attempted here is likely to serve as a low-cost prospective option for sustainable agriculture and also to solve economic constraint to considerable extent faced by the farming communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbasi MK, Sharif S, Kazmi M, Sultan T, Aslam M (2011) Isolation of plant growth promoting rhizobacteria from wheat rhizosphere and their effect on improving growth, yield and nutrient uptake of plants. Plant Biosyst 145:159–168

    Article  Google Scholar 

  • Abd-Alla MH (1994) Phosphatases and the utilization of organic phosphorus by Rhizobium leguminosarum biovar viceae. Lett Appl Microbiol 18:294–296

    Article  CAS  Google Scholar 

  • Abril A, Zurdo-Pineiro JL, Peix A, Rivas R, Velazquez E (2007) Solubilization of phosphate by a strain of Rhizobium leguminosarum bv trifolii isolated from Phaseolus vulgaris in El Chaco Arido soil (Argentina). In: Velazquez E, Rodrıguez-Barrueco C (eds) First international meeting on microbial phosphate solubilization. Springer, Berlin, pp 135–138

    Google Scholar 

  • Adesemoye AO, Kloepper JW (2009) Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12

    Article  CAS  PubMed  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929

    Article  CAS  PubMed  Google Scholar 

  • Afzal A, Bano A, Fatima M (2010) Higher soybean yield by inoculation with N-fixing and P-solubilizing bacteria. Agron Sustain Dev 30:487–495

    Article  CAS  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Khan MS (2010) Phosphate-solubilizing and plant-growth-promoting Pseudomonas aeruginosa PS1 improves green gram performance in quizalafop-p-ethyl and clodinafop amended soil. Arch Environ Contam Toxicol 58:361–372

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Khan MS (2011a) Pseudomonas aeruginosa strain PS1 enhances growth parameters of green gram [Vigna radiata (L.) Wilczek] in insecticide-stressed soils. J Pestic Sci 84:123–131

    Article  Google Scholar 

  • Ahemad M, Khan MS (2011b) Toxicological effects of selective herbicides on plant growth promoting activities of phosphate solubilizing Klebsiella sp. strain PS19. Curr Microbiol 62:532–538

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Khan MS (2012) Evaluation of plant-growth-promoting activities of rhizobacterium Pseudomonas putida under herbicide stress. Ann Microbiol. doi:10.1007/s13213-011-0407-2

    Google Scholar 

  • Ahemad M, Zaidi A, Khan MS, Oves M (2009) Biological importance of phosphorus and phosphate solubilizing microbes. In: Khan MS, Zaidi A (eds) Phosphate solubilizing microbes for crop improvement. Nova Science, New York, pp 1–14

    Google Scholar 

  • Alikhani HA, Saleh-Rastin N, Antoun H (2006) Phosphate solubilization activity of rhizobia native to Iranian soils. Plant Soil 287:35–41

    Article  CAS  Google Scholar 

  • Altomare C, Norvell AW, Bjorkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295–22. Appl Environ Microbiol 65:2926–2933

    CAS  PubMed  Google Scholar 

  • Asea PEA, Kucey RMN, Stewart JWB (1988) Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biol Biochem 20:459–464

    Article  CAS  Google Scholar 

  • Azcon C, Barea JM (1996) Interactions of arbuscular mycorrhizal with rhizosphere microorganisms. In: Guerrero E (ed) Mycorrhiza. Biological soil resource. FEN, Bogota, pp 47–68

    Google Scholar 

  • Badawi FSF, Biomy AMM, Desoky AH (2011) Peanut plant growth and yield as influenced by co-inoculation with Bradyrhizobium and some rhizo-microorganisms under sandy loam soil conditions. Ann Agric Sci 56:17–25

    Google Scholar 

  • Baig KS, Arshad M, Shaharoona B, Khalid A, Ahmed I (2011) Comparative effectiveness of Bacillus spp. possessing either dual or single growth-promoting traits for improving phosphorus uptake, growth and yield of wheat (Triticum aestivum L.). Ann Microbiol. doi:10.1007/s13213-011-0352-0

  • Banerjee S, Palit R, Sengupta C, Standing D (2010) Stress induced phosphate solubilization by Arthrobacter sp. and Bacillus sp. isolated from tomato rhizosphere. AJCS 4:378–383

    CAS  Google Scholar 

  • Bansal RK (2009) Synergistic effect of Rhizobium, PSB and PGPR on nodulation and grain yield of mung bean. J Food Legumes 22:37–39

    Google Scholar 

  • Barea JM, Toro M, Orozco M, Campos E, Azcon R (2002) The application of isotopic (32P and 15N ) dilution technique to evaluate the interactive effect of phosphate solubilizing rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic efficiency of rock phosphate for legume crops. Nutr Cycling Agroecosyst 63:35–42

    Google Scholar 

  • Behbahani M (2010) Investigation of biological behavior and colonization ability of Iranian indigenous phosphate solubilizing bacteria. Sci Hortic 124:93–399

    Article  CAS  Google Scholar 

  • Bhatia S, Maheshwari DK, Dubey RC, Arora DS, Bajpai VK, Kang SC (2008) Beneficial effect of fluorescent Pseudomonads on seed germination, growth promotion and suppression of charcoal rot in ground nut (Arachis hypogea L.). J Microbiol Biotechnol 18:1578–1583

    Google Scholar 

  • Bishop ML, Chang AC, Lee RWK (1994) Enzymatic mineralization of organic phosphorus in a volcanic soil in Chile. Soil Sci 157:238–243

    Article  CAS  Google Scholar 

  • Bojinova D, Velkova R, Ivanova R (2008) Solubilization of Morocco phosphorite by Aspergillus niger. Bioresour Technol 99:7348–7353

    Article  CAS  PubMed  Google Scholar 

  • Buch A, Archana G, Kumar GN (2008) Metabolic channelling of glucose towards gluconate in phosphate-solubilizing Pseudomonas aeruginosa P4 under phosphorus deficiency. Res Microbiol 159:635–642

    Article  CAS  PubMed  Google Scholar 

  • Chandra S, Choure K, Dubey RC, Maheshwari DK (2007) Rhizosphere competent Mesorhizobium loti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris). Braz J Microbiol 38:124–130

    Article  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Chen Z, Ma S, Liu L (2008) Studies on phosphorus solubilizing activity of a strain of phosphobacteria isolated from chestnut type soil in China. Bioresour Technol 99:6702–6707

    Article  CAS  PubMed  Google Scholar 

  • Chesti MH, Ali T (2007) Effect of integrated phosphorus management on yield, nutrient availability and phosphorus transformation in green gram. J Res 6:243–248

    Google Scholar 

  • Collavino MM, Sansberro PA, Mroginski LA, Aguilar OM (2010) Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biol Fertil Soils 46:727–738

    Article  Google Scholar 

  • Cooper R (1959) Bacterial fertilizers in Soviet Union. Soil Fertil 22:327–333

    Google Scholar 

  • Cunningham J, Kuiack C (1992) Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii. Appl Environ Microbiol 58:1451–1458

    CAS  PubMed  Google Scholar 

  • Dastager SG, Deepa CK, Pandey A (2011a) Potential plant growth-promoting activity of Serratia nematodiphila NII-0928 on black pepper (Piper nigrum L.). World J Microbiol Biotechnol 27:259–265

    Article  Google Scholar 

  • Dastager SG, Deepa CK, Pandey A (2011b) Plant growth promoting potential of Pontibacter niistensis in cowpea (Vigna unguiculata (L.) Walp.). Appl Soil Ecol 49:250–255

    Article  Google Scholar 

  • Deepa CK, Dastager SG, Pandey A (2010) Isolation and characterization of plant growth promoting bacteria from non-rhizospheric soil and their effect on cowpea (Vigna unguiculata (L.) Walp.) seedling growth. World J Microbiol Biotechnol 26:1233–1240

    Article  CAS  Google Scholar 

  • Del Campillo SE, Van der Zee SE, Torrent J (1999) Modelling long-term phosphorus leaching and changes in phosphorus fertility in excessively fertilized acid sandy soils. Eur J Soil Sci 50:391–399

    Article  Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth promoting rhizobacteria. Microbiol Res 159:371–394

    Article  CAS  PubMed  Google Scholar 

  • Dugan PR, Lundgren DG (1965) Energy supply for chemoautotroph Ferrobacillus ferrooxidans. Can J Biochem 45:1547–1556

    Google Scholar 

  • Dutta D, Bandyopadhyay P (2009) Performance of chickpea (Cicer arietinum L.) to application of phosphorus and bio-fertilizer in laterite soil. Arch Agron Soil Sci 55:147–155

    Article  CAS  Google Scholar 

  • Ehteshami SM, Aghaalikhani M, Khavazi K, Chaichi MR (2007) Effect of phosphate solubilizing microorganisms on quantitative and qualitative characteristics of maize (Zea mays L.) under water deficit stress. Pak J Biol Sci 10:3585–3591

    Article  CAS  PubMed  Google Scholar 

  • El-Azouni IM (2008) Effect of phosphate solubilizing fungi on growth and nutrient uptake of soybean (Glycine max L.) plants. J Appl Sci Res 4:592–598

    CAS  Google Scholar 

  • El-Nagdy GA, Nassar DMA, El-Kady EA, El-Yamanee GSA (2010) Response of flax plant (Linum usitatissimum L.) to treatments with mineral and bio-fertilizers from nitrogen and phosphorus. J Am Sci 6:207–217

    Google Scholar 

  • Elbadry M, Gamal-Eldin H, Elbana K (1999) Effects of Rhodobacter capsulatus inoculation in combination with graded levels of nitrogen fertilizer on growth and yield of rice in pots and lysimeter experiments. World J Microbiol Biotechnol 15:393–395

    Article  Google Scholar 

  • Elkoca E, Kantar F, Sahin F (2008) Influence of nitrogen fixing and phosphate solubilizing bacteria on nodulation, plant growth and yield of chickpea. J Plant Nutr 33:157–171

    Google Scholar 

  • Esitken A, Yildiz HE, Ercisli S, Donmez MF, Turan M, Gunes A (2010) Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Sci Hortic 124:62–66

    Article  CAS  Google Scholar 

  • Fernandez LA, Zalba P, Gómez MA, Sagardoy MA (2007) Phosphate-solubilization activity of bacterial strains in soil and their effect on soybean growth under greenhouse conditions. Biol Fertil Soils 43:805–809

    Article  CAS  Google Scholar 

  • Ganesan V (2008) Rhizoremediation of cadmium soil using a cadmium-resistant plant growth promoting rhizopseudomonad. Curr Microbiol 56:403–407

    Article  CAS  PubMed  Google Scholar 

  • Goldstein AH (1986) Bacterial solubilization of mineral phosphates: historical perspective and future prospects. Am J Altern Agric 1:51–57

    Google Scholar 

  • Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous mineral phosphates by Gram negative bacteria. In: Torriani-Gorni A, Yagil E, Silver S (eds) Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, DC, pp 197–203

    Google Scholar 

  • Guiñazú LB, Andrés JA, Florencia MDP, Pistorio M, Rosas SB (2010) Response of alfalfa (Medicago sativa L.) to single and mixed inoculation with phosphate-solubilizing bacteria and Sinorhizobium meliloti. Biol Fertil Soils 46:185–190

    Article  Google Scholar 

  • Gulati A, Vyas P, Rahi P, Kasana RC (2009) Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Curr Microbiol 58:371–377

    Article  CAS  PubMed  Google Scholar 

  • Gull FY, Hafeez I, Saleem M, Malik KA (2004) Phosphorus uptake and growth promotion of chickpea by co-inoculation of mineral phosphate solubilizing bacteria and a mixed rhizobial culture. Aust J Exp Agric 44:623–628

    Article  CAS  Google Scholar 

  • Hamadali H, Hafidi M, Virolle MJ, Ouhdouch Y (2008) Rock phosphate solubilizing actinomycetes: screening for plant growth promoting activities. World J Microbiol Biotechnol 24:2565–2575

    Article  CAS  Google Scholar 

  • Hameeda B, Harini G, Rupela OP, Wani SP, Reddy G (2008) Growth promotion of maize by phosphate solubilizing bacteria isolated from composts and macrofauna. Microbiol Res 163:234–242

    Article  CAS  PubMed  Google Scholar 

  • Hassen AI, Labuschagne N (2010) Root colonization and growth enhancement in wheat and tomato by rhizobacteria isolated from the rhizoplane of grasses. World J Microbiol Biotechnol 26:1837–1846

    Article  Google Scholar 

  • Hui L, Xiao-Qin W, Jia-Hong R, Jian-Ren Y (2011) Isolation and identification of phosphobacteria in poplar rhizosphere from different regions of china. Pedosphere 21:90–97

    Article  Google Scholar 

  • Hwangbo H, Park RD, Kim YW, Rim YS, Park KH, Kim TH, Suh JS, Kim KY (2003) 2-Ketogluconic acid production and phosphate solubilization by Enterobacter intermedium. Curr Microbiol 47:87–92

    Article  CAS  PubMed  Google Scholar 

  • Illmer P, Schineer F (1992) Solubilization of insoluble phosphates by microorganisms isolated from forest soils. Soil Biol Biochem 24:389–395

    Article  Google Scholar 

  • Illmer P, Schinner F (1995) Solubilization of inorganic calcium phosphates-solubilization mechanisms soil. Soil Biol Biochem 27:257–263

    Article  CAS  Google Scholar 

  • Indiragandhi P, Anandham R, Madhaiyan M, Sa TM (2008) Characterization of plant growth promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr Microbiol 56:327–333

    Article  CAS  PubMed  Google Scholar 

  • Ivanova R, Bojinova D, Nedialkova K (2006) Rock phosphate solubilization by soil bacteria. J Univ Chem Technol Metallurgy 41:297–302

    CAS  Google Scholar 

  • Jha PN, Kumar A (2007) Endophytic colonization of Typha australis by a plant growth-promoting bacterium Klebsiella oxytoca strain GR-3. J Appl Microbiol 103:1311–1320

    Article  CAS  PubMed  Google Scholar 

  • Jha A, Sharma D, Saxena J (2012) Effect of single and dual phosphate-solubilizing bacterial strain inoculations on overall growth of mung bean plants. Arch Agro Soil Sci 58:967–981

    Article  Google Scholar 

  • Jiang C, Sheng X, Qian M, Wang Q (2008) Isolation and characterization of a heavy metal resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72:157–164

    Article  CAS  PubMed  Google Scholar 

  • Kang S, Joo G, Hamayun M, Na C, Shin D, Kim HY, Hong J, Lee I (2009) Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol Lett 31:277–281

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Zaidi A (2007) Synergistic effects of the inoculation with plant growth-promoting rhizobacteria and an arbuscular mycorrhizal fungus on the performance of wheat. Turk J Agric For 31:355–362

    CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate solubilizing microorganisms in sustainable agriculture-a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Ahemad M, Oves M (2009a) Functional diversity among plant growth-promoting rhizobacteria. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Berlin, pp 105–132

    Chapter  Google Scholar 

  • Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M (2009b) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1:48–58

    Google Scholar 

  • Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi–current perspective. Arch Agron Soil Sci 56:73–98

    Article  CAS  Google Scholar 

  • Kim KY, Jordan D, Krishnan HB (1997) Rahnella aquatilis, bacterium isolated from soybean rhizosphere, can solubilize hydroxyapatite. FEMS Microbiol Lett 153:273–277

    Article  CAS  Google Scholar 

  • Kumar KV, Singh N, Behl HM, Srivastava S (2008) Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72:678–683

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Pandey P, Maheshwari DK (2009) Reduction in dose of chemical fertilizers and growth enhancement of Sesame (Sesamum indicum L.) with application of rhizospheric competent Pseudomonas aeruginosa LES4. Eur J Soil Biol 45:334–340

    Article  CAS  Google Scholar 

  • Kumari M, Vasu D, Ul-Hasan Z, Dhurwe UK (2009) Effects of PSB (Phosphate Solubilizing Bacteria) on morphological characters of Lens culinaris Medic. Biol Forum 1:5–7

    Google Scholar 

  • Linderman RG (1988) Mycorrhizal interaction with the rhizosphere microflora: the mycorhizosphere effect. Phytopathology 78:366–371

    Google Scholar 

  • Lindsay WL, Vlek PLG, Chien SH (1989) Phosphate minerals. In: Dixon JB, Weed SB (eds) Minerals in soil environment, 2nd edn. Soil Science Society of America, Madison, WI, pp 1089–1130

    Google Scholar 

  • Lipping Y, Jiatao X, Daohong J, Yanping F, Guoqing L, Fangcan L (2008) Antifungal substances produced by Penicillium oxalicum strain PY-1 potential antibiotics against plant pathogenic fungi. World J Microbiol Biotechnol 24:909–915

    Article  CAS  Google Scholar 

  • Maheshwari DK, Kumar S, Kumar B, Pandey P (2011) Co-inoculation of urea and DAP tolerant Sinorhizobium meliloti and Pseudomonas aeruginosa as integrated approach for growth enhancement of Brassica Juncea. Indian J Microbiol 50:425–431

    Article  CAS  Google Scholar 

  • Maliha R, Samina K, Najma A, Sadia A, Farooq L (2004) Organic acid production and phosphate solubilization by phosphate solubilizing microorganisms under in vitro conditions. Pak J Biol Sci 7:187–196

    Article  Google Scholar 

  • Mamta RP, Pathania V, Gulati A, Singh B, Bhanwra RK, Tewari R (2010) Stimulatory effect of phosphate-solubilizing bacteria on plant growth, stevioside and rebaudioside-A contents of Stevia rebaudiana Bertoni. Appl Soil Ecol 46:222–229

    Article  Google Scholar 

  • Marra LM, de Oliveira SM, Soares CRFS, deSouza Moreira FM (2011) Solubilisation of inorganic phosphates by inoculants strains from tropical legumes. Sci Agric 68:603–609

    CAS  Google Scholar 

  • Matthijs S, Tehrani KA, Laus G, Jackson RW, Cooper RM, Cornelis P (2007) Thioquinolobactin, a Pseudomonas siderophore with antifungal and anti-Pythium activity. Environ Microbiol 9:425–434

    Article  CAS  PubMed  Google Scholar 

  • Mehnaz S, Mirza MS, Hassan U, Malik KA (1998) Detection of inoculated plant growth promoting rhizobacteria in rhizosphere of rice. In: Malik KA, Mirza MS, Ladha JK (eds) Nitrogen fixation with non-legumes. Kluwer Academic, London, pp 75–83

    Chapter  Google Scholar 

  • Menkina RA (1963) Bacterial fertilizers and their importance for agricultural plants. Microbiology 33:352–358

    Google Scholar 

  • Mishra A, Chauhan PS, Chaudhry V, Tripathi M, Nautiyal CS (2011) Rhizosphere competent Pantoea agglomerans enhances maize (Zea mays) and chickpea (Cicer arietinum L.) growth, without altering the rhizosphere functional diversity. Antonie van Leeuwenhoek 100:405–413

    Article  PubMed  Google Scholar 

  • Mishra PK, Mishra S, Selvakumar G, Bisht SC, Bisht JK, Kundu S, Gupta HS (2008) Characterisation of a psychrotolerant plant growth promoting Pseudomonas sp. strain PGERs17 (MTCC 9000) isolated from North Western Indian Himalayas. Ann Microbiol 58:561–568

    Article  Google Scholar 

  • Mittal V, Singh O, Nayyar H, Kaur J, Tewari R (2008) Stimulatory effect of phosphate-solubilizing fungal strains (Aspergillus awamori and Penicillium citrinum) on the yield of chickpea (Cicer arietinum L. cv. GPF2). Soil Biol Biochem 40:718–727

    Article  CAS  Google Scholar 

  • Molla M, Chaudhury AA (1984) Microbial mineralization of organic phosphate in soil. Plant Soil 78:393–399

    Article  CAS  Google Scholar 

  • Naz I, Bano A (2010) Biochemical, molecular characterization and growth promoting effects of phosphate solubilizing Pseudomonas sp. isolated from weeds grown in salt range of Pakistan. Plant Soil 334:199–207

    Article  CAS  Google Scholar 

  • Oliveira CA, Alves VMC, Marriel IE, Gomes EA, Scotti MR, Carneiro NP, Guimara CT, Schaffert RE, Sá NMH (2009) Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biol Biochem 41:1782–1787

    Article  CAS  Google Scholar 

  • Osorio NW (2008) Effectiveness of microbial solubilization of plant phosphate in enhancing plant phosphate uptake in tropical soils and assessment of the mechanism of solubilization. Ph.D. dissertation, University of Hawai, Honululu

    Google Scholar 

  • Osorio NW (2011) Effectiveness of phosphate solubilizing microorganism in increasing plant phosphate uptake and growth in tropical soils. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer, Berlin, pp 65–80

    Chapter  Google Scholar 

  • Oves M, Zaidi A, Khan MS, Ahemad M (2009) Variation in plant growth promoting activities of phosphate-solubilizing microbes and factors affecting their colonization and solubilizing efficiency in different agro-ecosystems. In: Khan MS, Zaidi A (eds) Phosphate solubilizing microbes for crop improvement. Nova Science, New York, pp 247–263

    Google Scholar 

  • Pandey P, Maheshwari DK (2007) Two-species microbial consortium for growth promotion of Cajanus cajan. Curr Sci 92:1137–1142

    CAS  Google Scholar 

  • Panhwar QA, Radziah O, Rahman AZ, Sariah M, Razi MI, Naher UA (2011) Contribution of phosphate-solubilizing bacteria in phosphorus bioavailability and growth enhancement of aerobic rice. Span J Agric Res 9:810–820

    Google Scholar 

  • Patel KJ, Singh AK, Nareshkumar G, Archana G (2010) Organic-acid-producing, phytate-mineralizing rhizobacteria and their effect on growth of pigeon pea (Cajanus cajan). Appl Soil Ecol 44:252–261

    Article  Google Scholar 

  • Peix A, Mateos PF, Rodriguez-Barrueco C, Martínez-Molina E, Velazquez E (2001) Growth promotion of common bean [Phaseolus vulgaris L.] by a strain of Burkholderia cepacia under growth chamber. Soil Biol Biochem 33:1927–1935

    Article  CAS  Google Scholar 

  • Pérez E, Sulbarán M, Ball MM, Yarzábal LA (2007) Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biol Biochem 39:2905–2914

    Article  CAS  Google Scholar 

  • Perveen S, Khan MS, Zaidi A (2002) Effect of rhizospheric microorganisms on growth and yield of green gram (Phaseolus radiatus L.). Indian J Agric Sci 72:421–423

    Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil connection with the vital activity of some microbial species. Microbiologiya 17:362–370

    CAS  Google Scholar 

  • Ponmurugan P, Gopi C (2006) In vitro production of growth regulators and phosphatase activity by phosphate solubilizing bacteria. Afr J Biotechnol 5:348–350

    CAS  Google Scholar 

  • Poonguzhali S, Madhaiyan M, Sa T (2008) Isolation and identification of phosphate solubilizing bacteria from chinese cabbage and their effect on growth and phosphorus utilization of plants. J Microbiol Biotechnol 18:773–777

    CAS  PubMed  Google Scholar 

  • Pradhan N, Shukla LB (2005) Solubilization of inorganic phosphates by fungi isolated from agriculture soil. Afr J Biotechnol 5:850–854

    Google Scholar 

  • Rajapaksha RMCP, Herath D, Senanayake AP, Senevirathne MGTL (2011) Mobilization of rock phosphate phosphorus through bacterial inoculants to enhance growth and yield of wetland rice. Commun Soil Sci Plant Anal 42:301–314

    Article  CAS  Google Scholar 

  • Rajkumar M, Freitas H (2008) Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71:834–842

    Article  CAS  PubMed  Google Scholar 

  • Rambelli A (1973) The rhizosphere of mycorrrhizae. In: Marks GC, Kozlovasky TT (eds) Ectomycorrrhizae, their ecology and philosophy. Academic, London, pp 299–343

    Google Scholar 

  • Reyes I, Bernier L, Simard R, Antoun H (1999) Effect of nitrogen source on solubilization of different inorganic phosphates by bacterial strain of Penicillium rugulosum and two UV induced mutants. FEMS Microbiol Ecol 28:281–290

    Article  CAS  Google Scholar 

  • Reyes I, Baziramakenga R, Bernier L, Antoun H (2001) Solubilization of phosphate rocks and minerals by a wild-type strain and two UV induced mutants of Penicillium rugulosum. Soil Biol Biochem 33:1741–1747

    Article  CAS  Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Rodríguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21

    Article  CAS  Google Scholar 

  • Rosas SB, Andre’s JA, Rovera M, Correa NS (2006) Phosphate-solubilizing Pseudomonas putida can influence the rhizobia–legume symbiosis. Soil Biol Biochem 38:3502–3505

    Article  CAS  Google Scholar 

  • Rudrappa T, Splaine RE, Biedrzycki ML, Bais HP (2008) Cyanogenic pseudomonads influence multitrophic interactions in the rhizosphere. Publ Libr Sci 3:e2073

    Google Scholar 

  • Sanjotha P, Mahantesh P, Patil CS (2011) Isolation and screening of efficiency of phosphate solubilizing microbes. Int J Microbiol Res 3:56–58

    Google Scholar 

  • Sattar MA, Gaur AC (1987) Production of auxins and gibberellins by phosphate dissolving microorganisms. Zentral Microbiol 142:393–395

    CAS  Google Scholar 

  • Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Nazim S, Gupta HS (2008) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46:171–175

    Article  CAS  PubMed  Google Scholar 

  • Shaharoona B, Naveed M, Arshad M, Zahir ZA (2008) Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Appl Microbiol Biotechnol 79:147–155

    Article  CAS  PubMed  Google Scholar 

  • Sherchand K (2000) Responses of effective microorganisms and other nutrients to rice and wheat under field conditions at Khumaltar. Nepal EM World J 1:40–44

    Google Scholar 

  • Shweta B, Maheshwari DK, Dubey RC, Arora DS, Bajpai VK, Kang SC (2008) Beneficial effects of fluorescent pseudomonads on seed germination, growth promotion, and suppression of charcoal rot in groundnut (Arachis hypogea L.). J Microbiol Biotechnol 18:1578–1583

    CAS  PubMed  Google Scholar 

  • Siddiqui IA, Shaukat SS, Sheikh IH, Khan A (2006) Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World J Microbiol Biotechnol 22:641–650

    Article  CAS  Google Scholar 

  • Singh N, Kumar S, Bajpai VK, Dubey RC, Maheshwari DK, Kang SC (2010) Biological control of Macrophomina phaseolina by chemotactic fluorescent Pseudomonas aeruginosa PN1 and its plant growth promotory activity in chir-pine. Crop Prot 29:1142–1147

    Article  Google Scholar 

  • Smith JH, Allison FE, Soulides DA (1961) Evaluation of phosphobacterin as a soil inoculants. Soil Sci Soc Am Proc 25:109–111

    Article  CAS  Google Scholar 

  • Song OR, Lee SJ, Lee YS, Lee SC, Kim KK, Choi YL (2008) Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Braz J Microbiol 39:151–156

    Article  Google Scholar 

  • Souchie EL, Azcon R, Barea JM, Saggin-Júnior OJ, da Silva EMR (2007) Indoleacetic acid production by P-solubilizing microorganisms and interaction with arbuscular mycorrhizal fungi. Acta Sci Biol Sci 29:315–320

    Article  CAS  Google Scholar 

  • Tao GC, Tian SJ, Cai MY, Xie GH (2008) Phosphate-solubilizing and mineralizing abilities of bacteria isolated from soils. Pedosphere 18:515–523

    Article  CAS  Google Scholar 

  • Taurian T, Anzuay MS, Angelini JG, Tonelli ML, Ludueña L, Pena D, Ibáñez F, Fabra A (2010) Phosphate-solubilizing peanut associated bacteria: screening for plant growth-promoting activities. Plant Soil 329:421–431

    Article  CAS  Google Scholar 

  • Toro M (2007) Phosphate solubilizing microorganisms in the rhizosphere of native plants from tropical savannas: an adaptive strategy to acid soils? In: Velazquez C, Rodriguez-Barrueco E (eds) Developments in plant and soil sciences. Springer, Amsterdam, pp 249–252

    Google Scholar 

  • Toro M, Azcon R, Barea JM (2008) The use of isotopic dilution techniques to evaluate the interactive effects of Rhizobium genotype, mycorrhizal fungi, phosphate-solubilizing rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition by Medicago sativa. New Phytol 138:265–273

    Article  Google Scholar 

  • Trivedi P, Kumar B, Pandey A, Palni LMS (2007) Growth promotion of rice by phosphate solubilizing bioinoculants in a Himalayan location. In: First international meeting on microbial phosphate solubilization, pp 291–299

    Google Scholar 

  • Vassilev N, Vassileva M (2003) Biotechnological solubilization of rock phosphate on media containing agroindustrial wastes. Appl Microbiol Biotechnol 61:435–440

    CAS  PubMed  Google Scholar 

  • Vassilev N, Vassileva M, Nikolaeva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71:137–144

    Article  CAS  PubMed  Google Scholar 

  • Vassileva M, Serrano M, Bravo V, Jurado E, Nikolaeva I, Martos V, Vassilev N (2010) Multifunctional properties of phosphate-solubilizing microorganisms grown on agro-industrial wastes in fermentation and soil conditions. Appl Microbiol Biotechnol 85:1287–1299

    Article  CAS  PubMed  Google Scholar 

  • Vazquez P, Holguin G, Puente ME, Lopez-Cortes A, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils 30:460–468

    Article  CAS  Google Scholar 

  • Vikram A, Hamzehzarghani H (2008) Effect of phosphate solubilizing bacteria on nodulation and growth parameters of green gram (Vigna radiata L. Wilczek). Res J Microbiol 3:62–72

    Article  Google Scholar 

  • Vikram A, Hamzehzargani H, Al-Mighrabi KI, Krishnaraj PU, Jagadesh KS (2007a) Interaction between Pseudomonas fluorescens FPD-15 and Bradyrhizobium spp. in peanut. Biotechnology 6:292–298

    Article  Google Scholar 

  • Vikram A, Hamzehzarghani H, Alagawadi AR, Krishnaraj PU, Chandrashekar BS (2007b) Production of plant growth promoting substances by phosphate solubilizing bacteria isolated from vertisols. J Plant Sci 2:326–333

    CAS  Google Scholar 

  • Viruel E, Lucca ME, Siñeriz F (2011) Plant growth promotion traits of phosphobacteria isolated from Puna, Argentina. Arch Microbiol 193:489–496

    Article  CAS  PubMed  Google Scholar 

  • Vyas P, Gulati A (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol 9:1–15

    Article  CAS  Google Scholar 

  • Wang X, Pan Q, Chen F, Yan X, Liao H (2011) Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 21:173–181

    Article  PubMed  CAS  Google Scholar 

  • Wani PA, Khan MS (2010) Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food Chem Toxicol 48:3262–3267

    Article  CAS  PubMed  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007a) Synergistic effects of the inoculation with nitrogen fixing and phosphate solubilizing rhizobacteria on the performance of field grown chickpea. J Plant Nutr Soil Sci 170:283–287

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007b) Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by green gram plants. Chemosphere 70:36–45

    Article  CAS  PubMed  Google Scholar 

  • Xiang WL, Liang HZ, Liu S, Luo F, Tang J, Li MY, Che ZM (2011) Isolation and performance evaluation of halotolerant phosphate solubilizing bacteria from the rhizospheric soils of historic Dagong Brine Well in China. World J Microbiol Biotechnol 27:629–2637

    Article  CAS  Google Scholar 

  • Yadav S, Kaushik R, Saxena AK, Arora DK (2011) Diversity and phylogeny of plant growth-promoting bacilli from moderately acidic soil. J Basic Microbiol 51:98–106

    Article  CAS  PubMed  Google Scholar 

  • Yarzábal LA (2010) Agricultural development in tropical acidic soils: potential and limits of phosphate-solubilizing bacteria. Soil Biol Agric Trop 21:209–233

    Article  Google Scholar 

  • Yazdani M, Bagheri H, Ghanbari-Malidarreh A (2011) Investigation on the effect of biofertilizers, phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on improvement of quality and quantity in corn (Zea mays L.). Adv Environ Biol 5:2182–2185

    Google Scholar 

  • Yi Y, Huang W, Ge Y (2008) Exo-polysaccharide: a novel important factor in the microbial dissolution of tricalcium phosphate. World J Microbiol Biotechnol 24:1059–1065

    Article  CAS  Google Scholar 

  • Yu X, Liu X, Hui TZ, Liu GH, Mao C (2011) Isolation and characterization of phosphate-solubilizing bacteria from walnut and their effect on growth and phosphorus mobilization. Biol Fertil Soils 47:437–446

    Article  CAS  Google Scholar 

  • Zabihi HR, Savaghebi GR, Khavazi K, Ganjali A, Miransari M (2011) Pseudomonas bacteria and phosphorous fertilization, affecting wheat (Triticum aestivum L.) yield and P uptake under greenhouse and field conditions. Acta Physiol Plant 33:145–152

    Article  Google Scholar 

  • Zaidi A (1999) Synergistic interactions of nitrogen fixing microorganisms with phosphate mobilizing microorganisms. Ph.D. Thesis, Aligarh Muslim University, Aligarh

    Google Scholar 

  • Zaidi A, Khan MS (2005) Interactive effect of rhizotrophic microorganisms on growth, yield, and nutrient uptake of wheat. J Plant Nutr 28:2079–2092

    Article  CAS  Google Scholar 

  • Zaidi A, Khan MS (2006) Co-inoculation effects of phosphate solubilizing microorganisms and Glomus fasciculatum on green gram-Bradyrhizobium symbiosis. Turk J Agric 30:223–230

    CAS  Google Scholar 

  • Zaidi A, Khan MS, Amil M (2003) Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). Eur J Agron 19:15–21

    Article  Google Scholar 

  • Zaidi A, Khan MS, Aamil M (2004) Bioassociative effect of rhizospheric microorganisms on growth, yield, and nutrient uptake of green gram. J Plant Nutr 27:599–610

    Article  CAS  Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M (2009a) Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung 56:263–284

    Article  CAS  PubMed  Google Scholar 

  • Zaidi A, Khan MS, Oves M, Ahemad M (2009b) Strategies for development of microphos and mechanisms of phosphate-solubilization. In: Khan MS, Zaidi A (eds) Phosphate solubilizing microbes for crop improvement. Nova Science, New York

    Google Scholar 

  • Zaidi A, Ahemad M, Oves M, Ahmad E, Khan MS (2010) Role of phosphate-solubilizing bacteria in legume improvement. In: Khan MS, Zaidi A, Musarrat J (eds) Microbes for legume improvement. Springer, Wien, pp 273–292

    Chapter  Google Scholar 

  • Zhu F, Qu L, Hong X, Sun X (2011) Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the coast of yellow sea of China. Evid Based Complement Alternat Med. doi:10.1155/2011/615032

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Saghir Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Khan, M.S., Ahmad, E., Zaidi, A., Oves, M. (2013). Functional Aspect of Phosphate-Solubilizing Bacteria: Importance in Crop Production. In: Maheshwari, D., Saraf, M., Aeron, A. (eds) Bacteria in Agrobiology: Crop Productivity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37241-4_10

Download citation

Publish with us

Policies and ethics