Skip to main content

Microbial Diversity, Life Strategies, and Adaptation to Life in Extreme Soils

  • Chapter
Microbiology of Extreme Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 13))

There is no general consensus on how to define an extreme environment. From an anthropocentric point of view, physicochemical conditions supporting mammalian life appear as normal, and conditions deviating from these are considered as extreme. However, what is extreme and what is normal for microbes remains debatable, and the concept “extreme” as we use it may not necessarily be appropriate for micro-organisms (Gorbushina and Krumbein 1999). Micro-organisms dwell in virtually all types of soil habitats. These range from extremely dry and cold deserts in the Antarctic and deep into permafrost soils to geothermal and humid soils in volcanic areas, from extremely acid mines with sulfuric acid to high alkaline areas. Microbial life can also exist in salt crystals, under extremely low water activity, and low nutrient concentrations. As a group, micro-organisms have the highest ability of all life forms to adapt to extreme and stressful environments. This includes new types of habitats created by anthropogenic activities, such as those polluted with heavy metals, radionuclides, and high concentrations of toxic xenobiotic compounds (e.g., polychlorinated biphenyls, hydrocarbons, and pesticides).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aislabie J, Saul DJ, Foght JM (2006) Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles 10:171–179

    Article  PubMed  CAS  Google Scholar 

  • Aislabie JM, Balks MR, Foght JM, Waterhouse EJ (2004) Hydrocarbon spills on Antarctic soils: Effects and management. Environ Sci Technol 38:1265–1274

    Article  PubMed  CAS  Google Scholar 

  • Allison SD (2006) Soil minerals and humic acids alter enzyme stability: Implications for ecosystem processes. Biogeochem 81:361–373

    Article  CAS  Google Scholar 

  • Atlas RM (1986) Fate of petroleum pollutants in Arctic ecosystems. Water Sci Tech 18:59–67

    CAS  Google Scholar 

  • Baker-Austin C, Dopson M, Wexler M, Sawers RG, Bond PL (2005) Molecular insight into extreme copper resistance in the extremophilic archaeon ‘Ferroplasma acidarmanus’ Fer1. Microbiol 151:2637–2646

    Article  CAS  Google Scholar 

  • Bakermans C, Tsapin AI, Souza-Egipsy V, Gilichinsky DA, Nealson KH (2003) Reproduction and metabolism at −10 degrees C of bacteria isolated from Siberian permafrost. Environ Microbiol 5:321–326

    Article  PubMed  Google Scholar 

  • Barak I, Ricca E, Cutting SM (2005) From fundamental studies of sporulation to applied spore research. Mol Microbiol 55:330–338

    Article  PubMed  CAS  Google Scholar 

  • Battista JR (1997) Against all odds: The survival strategies of Deinococcus radiodurans. Ann Rev Microbiol 51:203–224

    Article  CAS  Google Scholar 

  • Becker JM, Parkin T, Nakatsu CH, Wilbur JD, Konopka A (2006) Bacterial activity, community structure, and centimeter-scale spatial heterogeneity in contaminated soil. Microb Ecol 51:220–231

    Article  PubMed  Google Scholar 

  • Bernard L, Mougel C, Maron P-A, Nowak V, Leveque J, Henault C, Haichar FeZ, Berge O, Marol C, Balesdent J, Gibiat F, Lemanceau P, Ranjard L (2007) Dynamics and identification of soil microbial populations actively assimilating carbon from 13C-labelled wheat residue as estimated by DNA- and RNA-SIP techniques. Environ Microbiol 9:752–764

    Article  PubMed  CAS  Google Scholar 

  • Botero LM, Brown KB, Brumefield S, Burr M, Castenholz RW, Young M, McDermott TR (2004) Thermobaculum terrenum gen. nov., sp. nov.: A non-phototrophic gram-positive thermophile representing an environmental clone group related to the Chloroflexi (green non-sulfur bacteria) and Thermomicrobia. Arch Microbiol 181:269–277

    Article  PubMed  CAS  Google Scholar 

  • Bowker MA, Reed SC, Belnap J, Phillips SL (2002) Temporal variation in community composition, pigmentation, and fv/fm of desert Cyanobacterial soil crusts. Microb Ecol 43:13–25

    Article  PubMed  CAS  Google Scholar 

  • Britten RJ, Kohne DE (1968) Repeated sequences in DNA. Science 161:529–540

    Article  PubMed  CAS  Google Scholar 

  • Brown AD (1976) Microbial water stress. Bact Rev 40:803–846

    PubMed  CAS  Google Scholar 

  • Bååth E (1989) Effects of heavy metals in soil on microbial processes and populations (a review). Water Air Soil Poll 47:335–379

    Article  Google Scholar 

  • Bååth E, Anderson TH (2003) Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol Biochem 35:955–963

    Article  CAS  Google Scholar 

  • Callaghan TV, Björn LO, Chernov Y, Chapin T, Christensen TR, Huntley B, Ims RA, Johansson M, Jolly D, Jonasson S, Matveyeva N, Panikov N, Oechel W, Shaver G, Elster J, Henttonen H, Laine K, Taulavuori K, Taulavuori E, Zöckler C (2004) Climate change and UV-B impacts on arctic tundra and polar desert ecosystems; Biodiversity, distributions and adaptations of arctic species in the context of environmental change. Ambio 33:404–417

    PubMed  Google Scholar 

  • Cavicchioli R, Thomas T, Curmi PMG (2000) Cold stress response in Archaea. Extremophiles 4:321–331

    Article  PubMed  CAS  Google Scholar 

  • Chanal A, Chapon V, Benzerara K, Barakat M, Christen R, Achouak W, Barras F, Heulin T (2006) The desert of Tataouine: An extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria. Environ Microbiol 8:514–525

    Article  PubMed  CAS  Google Scholar 

  • Cowan D, Russell N, Mamais A, Sheppard D (2002) Antarctic Dry Valley mineral soils contain unexpectedly high levels of microbial biomass. Extremophiles 6:431–436

    Article  PubMed  CAS  Google Scholar 

  • Cowan DA, Tow LA (2004) Endangered Antarctic environments. Ann Rev Microbiol 58:649–690

    Article  CAS  Google Scholar 

  • Doroshenko EA, Zenova GM, Zvyagintsev DG, Sudnitsyn II (2005) Spore germination and mycelial growth of streptomycetes at different humidity levels. Microbiol 74:690–694

    Article  CAS  Google Scholar 

  • Dose K, Bieger-Dose A, Ernst B, Feister U, Gomez-Silva B, Klein A, Risi S, Stridde C (2001) Survival of microorganisms under the extreme conditions of the Atacama desert. Ori Life Evol Biosph 31:287–303

    Article  CAS  Google Scholar 

  • Drønen AK, Torsvik V, Goksøyr J, Top EM (1998) Effect of mercury addition on plasmid incidence and gene mobilizing capacity in bulk soil. FEMS Microbiol Ecol 27:381–394

    Google Scholar 

  • Edwards KJ, Bond PL, Gihring TM, Banfield JF (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287:1796–1799

    Article  PubMed  CAS  Google Scholar 

  • Ehling-Schulz M, Bilger W, Scherer S (1997) UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J Bacteriol 179:1940–1945

    PubMed  CAS  Google Scholar 

  • Eichorst SA, Breznak JA, Schmidt TM (2007) Isolation and characterization of bacteria from soil that define Terriglobus gen. nov., in the phylum Acidobacteria. Appl Environ Microbiol 73:2708–2717

    Article  PubMed  CAS  Google Scholar 

  • Fierer N, Bradford M, Jackson R (2007) Towards an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  PubMed  Google Scholar 

  • Francis AJ (1986) Acid rain effects on soil and aquatic microbial processes. Cell Molec Life Sci (CMLS) 42:455–465

    Article  CAS  Google Scholar 

  • Friedmann EI, Weed R (1987) Microbial trace-fossil formation, biogenous, and abiotic weathering in the Antarctic cold desert. Science 236:703–705

    Article  PubMed  CAS  Google Scholar 

  • Futterer O, Angelov A, Liesegang H, Gottschalk G, Schleper C, Schepers B, Dock C, Antranikian G, Liebl W (2004) Genome sequence of Picrophilus torridus and its implications for life around pH 0. Proc Natl Acad Sci USA 101:9091–9096

    Article  PubMed  CAS  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390

    Article  PubMed  CAS  Google Scholar 

  • Gilichinsky D, Rivkina E, Bakermans C, Shcherbakova V, Petrovskaya L, Ozerskaya S, Ivanushkina N, Kochkina G, Laurinavichuis K, Pecheritsina S (2005) Biodiversity of cryopegs in permafrost. FEMS Microbiol Ecol 53:117–128

    Article  PubMed  CAS  Google Scholar 

  • Gilichinsky D, Rivkina E, Shcherbakova V, Laurinavichuis K, Tiedje J (2003) Supercooled water brines within permafrost - An unknown ecological niche for microorganisms: A model for astrobiology. Astrobiology 3:331–341

    Article  PubMed  CAS  Google Scholar 

  • Giller KE, Beare MH, Lavelle P, Izac AMN, Swift MJ (1997) Agricultural intensification, soil biodiversity and agroecosystem function. Appl Soil Ecol 6:3–16

    Article  Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biol Biochem 30:1389–1414

    Article  CAS  Google Scholar 

  • Golyshina OV, Timmis KN (2005) Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Environ Microbiol 7:1277–1288

    Article  PubMed  CAS  Google Scholar 

  • Gorbushina AA, Krumbein WE (1999) The poikilotrophic micro-organism and its environment. In: Seckbach J (ed) Enigmatic Microorganisms and Life in Extreme Environments. Kluwer Academic, Dordrecht, pp 177–185

    Google Scholar 

  • Griffiths BS, Kuan HL, Ritz K, Glover LA, McCaig AE, Fenwick C (2004) The relationship between microbial community structure and functional stability, tested experimentally in an upland pasture soil. Microb Ecol 47:104–113

    Article  PubMed  CAS  Google Scholar 

  • Hattori T, Mitsui H, Haga H, Wakao N, Shikano S, Gorlach K, Kasahara Y, El BA, Hattori R (1997) Advances in soil microbial ecology and the biodiversity. Ant v Leeuw 72:21–28

    Article  CAS  Google Scholar 

  • Hewson I, Jacobson-Meyers ME, Fuhrman JA (2007) Diversity and biogeography of bacterial assemblages in surface sediments across the San Pedro Basin, Southern California Borderlands. Environ Microbiol 9:923–933

    Article  PubMed  CAS  Google Scholar 

  • Hoj L, Olsen RA, Torsvik VL (2005) Archaeal communities in High Arctic wetlands at Spitsbergen, Norway (78[deg]N) as characterized by 16S rRNA gene fingerprinting. FEMS Microbiol Ecol 53:89–101

    Article  PubMed  CAS  Google Scholar 

  • Hoj L, Rusten M, Haugen LE, Olsen RA, Torsvik VL (2006) Effects of water regime on archaeal community composition in Arctic soils. Environ Microbiol 8:984–996

    Article  PubMed  Google Scholar 

  • Horowitz NH, Cameron RE, Hubbard JS (1972) Microbiology of the Dry Valleys of Antarctica. Science 176:242–245

    Article  PubMed  CAS  Google Scholar 

  • Huang PM (1990) Role of soil minerals in transformation of natural organics and xenobiotics in soil. In: Bollag J-M, Stotzky G (eds) Soil Biochemistry. Marcel Dekker, New York, pp 29–115

    Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    PubMed  CAS  Google Scholar 

  • Hugenholtz P, Tyson GW, Webb RI, Wagner AM, Blackall LL (2001) Investigation of candidate division TM7, a recently recognized major lineage of the domain bacteria with no known pure-culture representatives. Appl Environ Microbiol 67:411–419

    Article  PubMed  CAS  Google Scholar 

  • Jakosky BM, Nealson KH, Bakermans C, Ley RE, Mellon MT (2003) Subfreezing activity of microorganisms and the potential habitability of Mars’ polar regions. Astrobiology 3:343–350

    Article  PubMed  CAS  Google Scholar 

  • Jenny H (1994) Factors of Soil Formation. A System of Quantitative Pedology. Dover Press, New York. (Reprint, with Foreword by R. Amundson, of the 1941 McGraw-Hill publication). Reprint McGraw-Hill, New York

    Google Scholar 

  • Johnsen K, Jacobsen C, Torsvik V, Sørensen J (2001) Pesticide effects on bacterial diversity in agricultural soils – A review. Biol Fertil Soils 33:443–453

    Article  CAS  Google Scholar 

  • Joynt J, Bischoff M, Turco R, Konopka A, Nakatsu CH (2006) Microbial community analysis of soils contaminated with lead, chromium and petroleum hydrocarbons. Microb Ecol 51:209–219

    Article  PubMed  CAS  Google Scholar 

  • Kashefi K, Lovley DR (2003) Extending the upper temperature limit for life. Science 301:934

    Article  PubMed  CAS  Google Scholar 

  • Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330

    Article  PubMed  CAS  Google Scholar 

  • Killham K (1994) Soil Ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Killham K, Firestone MK, JGM (1983) Acid rain and soil microbial activity: Effects and their mechanisms. J Environ Qual 12:133–137

    Article  CAS  Google Scholar 

  • Koch AL (2001) Oligotrophs versus copiotrophs. BioEssays 23:657–661

    Article  PubMed  CAS  Google Scholar 

  • Kozdroj J, van Elsas JD (2001) Structural diversity of microbial communities in arable soils of a heavily industrialised area determined by PCR-DGGE fingerprinting and FAME profiling. Appl Soil Ecol 17:31–42

    Article  Google Scholar 

  • Krulwich TA, Ito M, Hicks DB, Gilmour R, Guffanti AA (1998) pH homeostasis and ATP synthesis: studies of two processes that necessitate inward proton translocation in extremely alkaliphilic Bacillus species. Extremophiles 2:217–222

    Article  PubMed  CAS  Google Scholar 

  • Kuske CR, Ticknor LO, Miller ME, Dunbar JM, Davis JA, Barns SM, Belnap J (2002) Comparison of soil bacterial communities in rhizospheres of three plant species and the interspaces in an arid grassland. Appl Environ Microbiol 68:1854–1863

    Article  PubMed  CAS  Google Scholar 

  • Liao M, Xie XM (2007) Effect of heavy metals on substrate utilization pattern, biomass, and activity of microbial communities in a reclaimed mining wasteland of red soil area. Ecotox Environ Safety 66:217–223

    Article  CAS  Google Scholar 

  • Loisel P, Harmand J, Zemb O, Latrille E, Lobry C, Delgenes JP, Godon JJ (2006) Denaturing gradient electrophoresis (DGE) and single-strand conformation polymorphism (SSCP) molecular fingerprintings revisited by simulation and used as a tool to measure microbial diversity. Environ Microbiol 8:720–731

    Article  PubMed  CAS  Google Scholar 

  • Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Mol Biol Rev 58:563–602

    CAS  Google Scholar 

  • Lynch JM (1979) The terrestrial environment. In: Lynch JM, Poole NJ (eds) Microbial Ecology: A Conceptual Approach. Blackwell Scientific, Oxford, pp 67–91

    Google Scholar 

  • Lynch JM, Benedetti A, Insam H, Nuti MP, Smalla K, Torsvik V, Nannipieri P (2004) Microbial diversity in soil: Ecological theories, the contribution of molecular techniques and the impact of transgenic plants and transgenic microorganisms. Biol Fertil Soils 40:363–385

    Article  CAS  Google Scholar 

  • Macnaughton S, Stephen JR, Chang YJ, Peacock A, Flemming CA, Leung K, White DC (1999a) Characterization of metal-resistant soil eubacteria by polymerase chain reaction - Denaturing gradient gel electrophoresis with isolation of resistant strains. Can J Microbiol 45:116–124

    Article  PubMed  CAS  Google Scholar 

  • Macnaughton SJ, Stephen JR, Venosa AD, Davis GA, Chang YJ, White DC (1999b) Microbial population changes during bioremediation of an experimental oil spill. Appl Environ Microbiol 65:3566–3574

    PubMed  CAS  Google Scholar 

  • Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol V56:650–663

    Article  Google Scholar 

  • Marion GM, Fritsen CH, Eicken H, Payne MC (2003) The search for life on Europa: Limiting environmental factors, potential habitats, and Earth analogues. Astrobiology 3:785–811

    Article  PubMed  CAS  Google Scholar 

  • Martin DD, Ciulla RA, Roberts MF (1999) Osmoadaptation in Archaea. Appl Environ Microbiol 65:1815–1825

    PubMed  CAS  Google Scholar 

  • Minton KW, Daly MJ (1995) A model for repair of radiation-induced DNA double-strand breaks in the extreme radiophile Deinococcus radiodurans. BioEssays 17:457–464

    Article  PubMed  CAS  Google Scholar 

  • Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial-populations by denaturing gradient gel-electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S ribosomal-RNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  • Nakatsu CH, Carmosini N, Baldwin B, Beasley F, Kourtev P, Konopka A (2005) Soil microbial community responses to additions of organic carbon substrates and heavy metals (Pb and Cr). Appl Biochem Microbiol 71:7679–7689

    CAS  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Nannipieri P, Grego S, Ceccanti B (1990) Ecological significance of the biological activity in soil. In: Bollag J-M, Stotzky G (eds) Soil Biochemistry. Marcel Dekker, New York, pp 293–355

    Google Scholar 

  • Nedwell DB (1999) Effect of low temperature on microbial growth: Lowered affinity for substrates limits growth at low temperature. FEMS Microbiol Ecol 30:101–111

    Article  PubMed  CAS  Google Scholar 

  • Neufeld JD, Mohn WW (2005) Unexpectedly high bacterial diversity in Arctic tundra relative to boreal forest soils, revealed by serial analysis of ribosomal sequence tags. Appl Environ Microbiol 71:5710–5718

    Article  PubMed  CAS  Google Scholar 

  • Odum EP (1971) Fundamentals of Ecology, 3rd edn. W.B. Saunders, Philadelphia

    Google Scholar 

  • Øvreås L (2000) Population and community level approaches for analysing microbial diversity in natural environments. Ecol Lett 3:236–251

    Article  Google Scholar 

  • Øvreås L, Daae FL, Yndestad S, Jørgensen SL, Torsvik V, Brandvik PJ (2004) Microbial community analysis in pristine and polluted environments from Arctic. In: 10th International Symposium for Microbial Ecology (ISME10), Cancún, Mexico

    Google Scholar 

  • Pace NR, Stahl DA, Lane DJ, Olsen GJ (1986) The analysis of natural microbial populations by ribosomal-RNA sequences. Adv Microb Ecol 9:1–55

    CAS  Google Scholar 

  • Pakchung AAH, Simpson PJL, Codd R (2006) Life on earth. Extremophiles continue to move the goal posts. Environ Chem 3:77–93

    Article  CAS  Google Scholar 

  • Panikov NS (1999) Understanding and prediction of soil microbial community dynamics under global change. Appl Soil Ecol 11:161–176

    Article  Google Scholar 

  • Panikov NS, Dedysh SN (2000) Cold season CH4 and CO2 emission from boreal peat bogs (West Siberia): Winter fluxes and thaw activation dynamics. Global Biogeochem Cycles 14:1071–1080

    Article  CAS  Google Scholar 

  • Pennanen T, Fritze H, Vanhala P, Kiikkila O, Neuvonen S, Baath E (1998a) Structure of a microbial community in soil after prolonged addition of low levels of simulated acid rain. Appl Environ Microbiol 64:2173–2180

    PubMed  CAS  Google Scholar 

  • Pennanen T, Perkiomaki J, Kiikkila O, Vanhala P, Neuvonen S, Fritze H (1998b) Prolonged, simulated acid rain and heavy metal deposition: Separated and combined effects on forest soil microbial community structure. FEMS Microbiol Ecol 27:291–300

    Article  CAS  Google Scholar 

  • Post RD, Beeby AN (1996) Activity of the microbial decomposer community in metal-contaminated roadside soils. J Appl Ecol 33:703–709

    Article  Google Scholar 

  • Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci USA 101:4631–4636

    Article  PubMed  CAS  Google Scholar 

  • Prosser JI (2002) Molecular and functional diversity in soil micro-organisms. Plant Soil 244:9–17

    Article  CAS  Google Scholar 

  • Rainey FA, Ray K, Ferreira M, Gatz BZ, Nobre MF, Bagaley D, Rash BA, Park MJ, Earl AM, Shank NC, Small AM, Henk MC, Battista JR, Kampfer P, da Costa MS (2005) Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol 71:5225–5235

    Article  PubMed  CAS  Google Scholar 

  • Rajapaksha RMCP, Tobor-Kaplon MA, Bååth E (2004) Metal toxicity affects fungal and bacterial activities in soil differently. Appl Environ Microbiol 70:2966–2973

    Article  PubMed  CAS  Google Scholar 

  • Rike AG, Haugen KB, Borresen M, Engene B, Kolstad P (2003) In situ biodegradation of petroleum hydrocarbons in frozen arctic soils. Cold Reg Sci Tech 37:97–120

    Article  Google Scholar 

  • Rivkina EM, Friedmann EI, McKay CP, Gilichinsky DA (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66:3230–3233

    Article  PubMed  CAS  Google Scholar 

  • Roberts MF (2005) Organic compatible salutes of halotolerant and halophilic microorganisms. Sal Syst 1:5–30

    Article  CAS  Google Scholar 

  • Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, Loiacono KA, Lynch BA, MacNeil IA, Minor C, Tiong CL, Gilman M, Osburne MS, Clardy J, Handelsman J, Goodman RM (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541–2547

    Article  PubMed  CAS  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  PubMed  CAS  Google Scholar 

  • Ruggiero P, Dec J, Bollag J-M (1996) Soil as a catalytic system. In: Bollag J-M, Stotzky G (eds) Soil Biochemistry. Marcel Dekker, New York, pp 79–122

    Google Scholar 

  • Sale JE (2007) Radiation resistance: Resurrection by recombination. Curr Biol 17:R12–R14

    Article  PubMed  CAS  Google Scholar 

  • Sandaa R-A, Torsvik V, Enger O, Daae FL, Castberg T, Hahn D (1999) Analysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution. FEMS Microbiol Ecol 30:237–251

    Article  PubMed  CAS  Google Scholar 

  • Saul DJ, Aislabie JM, Brown CE, Harris L, Foght JM (2005) Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMS Microbiol Ecol 53:141–155

    Article  PubMed  CAS  Google Scholar 

  • Schleper C, Puehler G, Holz I, Gambacorta A, Janekovic D, Santarius U, Klenk HP, Zillig W (1995) Picrophilus gen. nov., fam. nov.: A novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J Bacteriol 177:7050–7059

    PubMed  CAS  Google Scholar 

  • Shi W, Bischoff M, Turco R, Konopka A (2002) Long-term effects of chromium and lead upon the activity of soil microbial communities. Appl Soil Ecol 21:169–177

    Article  Google Scholar 

  • Shukla M, Chaturvedi R, Tamhane D, Vyas P, Archana G, Apte S, Bandekar J, Desai A (2007) Multiple-stress tolerance of ionizing radiation-resistant bacterial isolates obtained from various habitats: correlation between stresses. Curr Microbiol 54:142–148

    Article  PubMed  CAS  Google Scholar 

  • Singleton JR, Amelunxen RE (1973) Proteins from thermophilic microorganisms. Bacteriol Rev 37:320–342

    PubMed  CAS  Google Scholar 

  • Smith JJ, Tow LA, Stafford W, Cary C, Cowan DA (2006) Bacterial diversity in three different Antarctic cold desert mineral soils. Microb Ecol 51:413–421

    Article  PubMed  Google Scholar 

  • Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Ann Rev Microbiol 39:321–346

    Article  CAS  Google Scholar 

  • Standing D, Killham K (2006) The soil environment. In: van Elsas JD, Jansson JK, Trevors JT (eds) Modern Soil Microbiology, 2nd edn. CRC Press, Taylor and Francis, Boca Raton, FL, pp 1–22

    Google Scholar 

  • Steven B, Léveillé R, Pollard WH, Whyte LG (2006) Microbial ecology and biodiversity in permafrost. Extremophiles 10:259–267

    Article  PubMed  Google Scholar 

  • Stevens TO, McKinley JP (1995) Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270:450–454

    Article  CAS  Google Scholar 

  • Stotzky G (1997) Soil as an environment for microbial life. In: van Elsas JD, Trevors JT, Wellington EMH (eds) Modern Soil Microbiology, 1st edn. Marcel Dekker, New York, pp 1–20

    Google Scholar 

  • Sunde IR (2005) Enrichment, isolation and phylogenetic characterisation of hydrocarbon-degrading bacteria from oil-contaminated tundra. In: Department of Biology. University of Bergen, Bergen, p 103

    Google Scholar 

  • Sørheim R, Torsvik VL, Goksoyr J (1989) Phenotypical divergences between populations of soil bacteria isolated on different media. Microb Ecol 17:181–192

    Article  Google Scholar 

  • Torsvik V, Daae FL, Sandaa RA, Øvreas L (1998) Novel techniques for analysing microbial diversity in natural and perturbed environments. J Biotechnol 64:53–62

    Article  PubMed  CAS  Google Scholar 

  • Torsvik V, Goksoyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787

    PubMed  CAS  Google Scholar 

  • Torsvik V, Øvreås L (2006) Microbial phylogeny and diversity in soil. In: van Elsas JD, Jansson JK, Trevors JT (eds) Modern Soil Microbiology, 2nd edn. CRC Press, Taylor and Francis Group, Boca Raton, FL, pp 23–54

    Google Scholar 

  • Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin EM (2005) Comparative metagenomics of microbial communities. Science 308:554–557

    Article  PubMed  CAS  Google Scholar 

  • van Elsas JD, Torsvik V, Hartmann A, Øvreås L, Jansson JK (2006) The bacteria and archaea in soil. In: van Elsas JD, Jansson JK, Trevors JT (eds) Modern Soil Microbiology, 2nd edn. CRC Press, Taylor and Francis, Boca Raton, FL pp 83–105

    Google Scholar 

  • Vetterlein D, Jahn R (2004) Combination of micro suction cups and time-domain reflectometry to measure osmotic potential gradients between bulk soil and rhizosphere at high resolution in time and space. Eur J Soil Sci 55:497–504

    Article  Google Scholar 

  • Virginia RA, Wall DH (1999) How soils structure communities in the Antarctic Dry Valleys BioScience 49:974–983

    Google Scholar 

  • Ward DM, Weller R, Bateson MM (1990) 16S ribosomal-RNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345:63–65

    Article  PubMed  CAS  Google Scholar 

  • Whyte LG, Slagman SJ, Pietrantonio F, Bourbonniere L, Koval SF, Lawrence JR, Inniss WE, Greer CW (1999) Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp strain Q15. Appl Environ Microbiol 65:2961–2968

    PubMed  CAS  Google Scholar 

  • Whyte LG, Goalen B, Hawari J, Labbe D, Greer CW, Nahir M (2001) Bioremediation treatability assessment of hydrocarbon-contaminated soils from Eureka, Nunayut. Cold Reg Sci Tech 32:121–132

    Article  Google Scholar 

  • Wiebe WJ, Sheldon WM, Jr., Pomeroy LR (1992) Bacterial growth in the cold: Evidence for an enhanced substrate requirement. Appl Environ Microbiol 58:359–364

    PubMed  CAS  Google Scholar 

  • Wright DJ, Smith SC, Joardar V, Scherer S, Jervis J, Warren A, Helm RF, Potts M (2005) UV irradiation and desiccation modulate the three-dimensional extracellular matrix of Nostoc commune (Cyanobacteria). J Biol Chem 280:40271–40281

    Article  PubMed  CAS  Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc Natl Acad Sci USA 96:1463–1468

    Article  PubMed  CAS  Google Scholar 

  • Yndestad S (2004) Microbial diversity in oil polluted and pristine tundra on Svalbard (Norwegian). In: Department of Biology. University of Bergen, Norway, Bergen

    Google Scholar 

  • Zhang G, Ma X, Niu F, Dong M, Feng H, An L, Cheng G (2007) Diversity and distribution of alkaliphilic psychrotolerant bacteria in the Qinghai-Tibet Plateau permafrost region. Extremophiles 11:415–424

    Article  PubMed  CAS  Google Scholar 

  • Zvyagintsev DG, Zenova GM, Sudnizin II, Doroshenko EA (2005) The ability of soil Actinomycetes to develop at an extremely low humidity. Doklady Biol Sci 405:461–463

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Torsvik, V., Øvreås, L. (2008). Microbial Diversity, Life Strategies, and Adaptation to Life in Extreme Soils. In: Dion, P., Nautiyal, C.S. (eds) Microbiology of Extreme Soils. Soil Biology, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74231-9_2

Download citation

Publish with us

Policies and ethics