Skip to main content
Log in

Multiple-Stress Tolerance of Ionizing Radiation-Resistant Bacterial Isolates Obtained from Various Habitats: Correlation Between Stresses

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Isolation of five ionizing radiation (IR)-resistant bacteria by screening of isolates from various habitats classified as common and stressed is reported. IR-resistant isolates exhibited varying degrees of resistance to γ-radiation and were classified as highly and moderately radiation resistant. Resistance to ultraviolet (UV) radiation correlated well with γ-radiation resistance, whereas a comparable desiccation resistance for all the highly and moderately radiation-resistant isolates was observed. However, salt tolerance failed to correlate with IR resistance, indicating a divergent evolution of the salt tolerance and radiation resistance. Characterization of isolates by the amplified rDNA restriction analysis profiling attested to the clustering of these isolates with their stress phenotype. 16S rRNA gene-based analysis of the isolates showed that the bacteria with similar-resistance physiologies clustered together and belonged to related genera. Hydrogen peroxide resistance and mitomycin survival patterns of the isolates indicated the roles of oxidative-stress tolerance in desiccation survival and recombination repair in higher radiation resistance, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Literature Cited

  1. Albuquerque L, Simoes C, Nobre MF, et al. (2005) Truepera radiovictrix gen. nov., sp. nov., a new radiation resistant species and the proposal of Trueperaceae fam. nov. FEMS Microbiol Lett 247:161–169

    Article  PubMed  CAS  Google Scholar 

  2. Anderson AM, Weiss N, Raney F, et al. (1999). Dust-borne bacteria in animal sheds, schools and children’s day care centres. J Appl Microbiol 86(4):622–634

    Article  Google Scholar 

  3. Anderson AW, Nordan HC, Cain RF, et al. (1956) Studies on a radio-resistant micrococcus. I. Isolation, morphology, cultural characteristics and resistance to gamma irradiation. Food Technol 10:575–578

    Google Scholar 

  4. Battista J, Park M, McLemore A (2001) Inactivation of two homologues of proteins presumed to be involved in the desiccation tolerance of plants sensitizes Deinococcus radiodurans R1 to desiccation. Cryobiology 43:133–139

    Article  PubMed  CAS  Google Scholar 

  5. Battista JR (1997) Against all odds: The survival strategies of Deinococcus radiodurans. Annu Rev Microbiol 51:203–224

    Article  PubMed  CAS  Google Scholar 

  6. Billi D, Friedmann EI, Hofer KG, et al. (2000) Ionizing-radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis. Appl Environ Microbiol 66:1489–1492

    Article  PubMed  CAS  Google Scholar 

  7. Billi D, Wright DJ, Helm RF, et al. (2000) Engineering desiccation tolerance in Escherichia coli. Appl Environ Microbiol 66:1680–1684

    Article  PubMed  CAS  Google Scholar 

  8. Billi D, Potts M (2002) Life and death of dried prokaryotes. Res Microbiol 153:7–12

    Article  PubMed  CAS  Google Scholar 

  9. Christman MF, Morgan RW, Jacobson FS, et al. (1985) Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 41:753–762

    Article  PubMed  CAS  Google Scholar 

  10. Collins MD, Hutson RA, Grant IR, et al. (2000) Phylogenetic characterization of a novel radiation-resistant bacterium from irradiated pork: Description of Hymenobacter actinosclerus sp. nov. Int J Syst Evol Microbiol 50:731–734

    Google Scholar 

  11. Cox MM, Battista JR (2005) Deinococcus radiodurans: The consummate survivor. Nature Rev Microbiol 3:882–892

    Article  CAS  Google Scholar 

  12. Englander J, Klein E, Brumfeld V, et al. (2004) DNA Toroids: Framework for DNA Repair in Deinococcus radiodurans and in germinating bacterial spores. J Bacteriol 186:5973–5977

    Article  PubMed  CAS  Google Scholar 

  13. Fredrickson JK, Zachara JM, Balkwill DL, et al. (2004) Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the hanford site, Washington state. Appl Environ Microbiol 70:4230–4241

    Article  PubMed  CAS  Google Scholar 

  14. Hirsch P, Gallikowski CA, Siebert J, et al. (2004) Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and draught-tolerating, UV-resistant bacteria from continental Antarctica. Syst Appl Microbiol 27:636–645

    Article  PubMed  CAS  Google Scholar 

  15. Hua Y, Narumi I, Gao G, et al. (2003) PprI: A general switch responsible for extreme radioresistance of Deinococcus radiodurans. Biochem Biophys Res Commun 306:354–360

    Article  PubMed  CAS  Google Scholar 

  16. Jolivet E, L’Haridon S, Corre E, et al. (2003) Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. Int J Syst Evol Microbiol 53:847–851

    Article  PubMed  CAS  Google Scholar 

  17. Khairnar NP, Misra HS, Apte SK (2003) Pyrroloquinoline-quinone synthesized in Escherichia coli by pyrroloquinoline-quinone synthase of Deinococcus radiodurans plays a role beyond mineral phosphate solubilization. Biochem Biophys Res Commun 312:303–308

    Article  PubMed  CAS  Google Scholar 

  18. Kitayama S, Asaka S, Totsuka K (1983) DNA double-strand breakage and removal of cross-links in Deinococcus radiodurans. J Bacteriol 155:1200–1207

    PubMed  CAS  Google Scholar 

  19. Kottemann M, Kish A, Iloanusi C, et al. (2005) Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC1 to desiccation and gamma irradiation. Extremophiles 9:219–227

    Article  PubMed  CAS  Google Scholar 

  20. Liu Y, Zhou J, Omelchenko MV, Beliaev AS, et al. (2003) Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. Proc Natl Acad Sci USA 100:4191–4196

    Article  PubMed  CAS  Google Scholar 

  21. Mattimore V, Battista JR (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178:633–637

    PubMed  CAS  Google Scholar 

  22. Minton KW (1994) DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol Microbiol 13:9–15

    Article  PubMed  CAS  Google Scholar 

  23. Nishimura Y, Ino T, Iizuka H (1988) Acinetobacter radioresistens sp. nov. isolated from cotton and soil. Int J Syst Bacteriol 38:209–211

    Google Scholar 

  24. Nogueira F, Louisa M, Tenreiro R (1998) Radioresistance studies in Methylobacterium spp. Radiat Phys Chem 52:15–19

    Article  Google Scholar 

  25. Ophir T, Gutnick D (1994) A role of exopolysaccharides in the protection of microorganisms from desiccation. Appl Environ Microbiol 59:740–745

    Google Scholar 

  26. Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348

    PubMed  CAS  Google Scholar 

  27. Phillips RW, Wiegel J, Berry CJ, et al. (2002) Kineococcus radiotolerans sp. nov., a radiation-resistant, gram-positive bacterium. Int J Syst Evol Microbiol 52 (Pt 3):933–938

    Article  PubMed  CAS  Google Scholar 

  28. Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Mol Biol Rev 58:755–805

    CAS  Google Scholar 

  29. Rainey FA, Ray K, Ferreira M, et al. (2005) Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol 71:5225–5235

    Article  PubMed  CAS  Google Scholar 

  30. Schumann P, Sproer C, Burghardt J, et al. (1999) Reclassification of the species Kocuria erythromyxa (Brooks and Murray 1981) as Kocuria rosea (Flugge 1886). Int J Syst Bacteriol 49:393–396

    Article  Google Scholar 

  31. Suresh K, Reddy GS, Sengupta S, et al. (2004) Deinococcus indicus sp. nov., an arsenic-resistant bacterium from an aquifer in West Bengal, India. Int J Syst Evol Microbiol 54:457–461

    Article  PubMed  CAS  Google Scholar 

  32. Weekers F, Rodriguez C, Jacques P, et al. (2001) Dissemination of catabolic plasmids among desiccation-tolerant bacteria in soil microcosms. Appl Biochem Biotechnol 91–93:219–232

    Article  PubMed  Google Scholar 

  33. Wise MJ, McArthur VJ, Shimkets LJ (1996) 16S rRNA gene probes for Deinococcus species. Syst Appl Microbiol 19:365–369

    Google Scholar 

  34. Yoshinaka T, Yano K, Yamaguchi H (1973) Isolation of highly radioresistant bacterium, Arthrobacter radiotolerans nov. sp. Agric Biol Chem 37:2269–2275

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Board of Research in Nuclear Sciences Grant No. BRNS-2002/35, Department of Atomic Energy, India,. to A.J.D. The support of Dr. Harish Padh for the use of the Co60 Gamma Irradiator Facility at PERD, Ahmedabad and of the Council of Scientific and Industrial Research, India, Junior Research Fellowship to R.C. is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjana Desai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shukla, M., Chaturvedi, R., Tamhane, D. et al. Multiple-Stress Tolerance of Ionizing Radiation-Resistant Bacterial Isolates Obtained from Various Habitats: Correlation Between Stresses. Curr Microbiol 54, 142–148 (2007). https://doi.org/10.1007/s00284-006-0311-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-006-0311-3

Keywords

Navigation