Skip to main content

Advertisement

Log in

Microbial Community Analysis of Soils Contaminated with Lead, Chromium and Petroleum Hydrocarbons

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The impact on the microbial community of long-term environmental exposure to metal and organic contamination was investigated. Twenty-four soil samples were collected along a transect dug in soils contaminated with road paint and paint solvents, mainly toluene. Chemical analysis along the transect revealed a range from high to low concentrations of metals (lead and chromium) and organic solvent compounds. Principal components analysis of microbial community structure based on denaturing gradient gel electrophoresis of the V3 region of the 16S rRNA gene and fatty acid methyl esters derived from phospholipids (phospholipid fatty acid analysis) showing samples with similar fingerprints also had similar contaminant concentrations. There was also a weak positive correlation between microbial biomass and the organic carbon concentration. Results indicated that microbial populations are present despite some extreme contaminant levels in this mixed-waste contaminated site. Nucleotide sequence determination of the 16S rRNA gene indicated the presence of phylogenetically diverse bacteria belonging to the α-, β-, γ-, and δ-Proteobacteria, the high and low G + C Gram-positive bacteria, green nonsulfur, OP8, and others that did not group within a described division. This indicates that soils contaminated with both heavy metals and hydrocarbons for several decades have undergone changes in community composition, but still contain a phylogenetically diverse group of bacteria (including novel phylotypes) that warrant further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. V Acosta-Martínez Z Reicher M Bischoff RF Turco (1999) ArticleTitleThe role of tree leaf mulch and nitrogen fertilizer on turfgrass soil quality Biol Fertil Soils 29 55–61 Occurrence Handle10.1007/s003740050524

    Article  Google Scholar 

  2. SF Altschul TL Madden AA Schaffer J Zhang Z Zhang W Miller DJ Lipman (1997) ArticleTitleGapped BLAST and PSI-BLAST: A new generation of protein database search programs Nucleic Acids Res 25 3389–3402 Occurrence Handle10.1093/nar/25.17.3389 Occurrence Handle1:CAS:528:DyaK2sXlvFyhu7w%3D Occurrence Handle9254694

    Article  CAS  PubMed  Google Scholar 

  3. R Bardgett DTW Speir DJ Ross GW Yeates HA Kettles (1994) ArticleTitleImpact of pasture contamination by copper, chromium, and arsenic timber preservative on soil microbial properties and nematodes Biol Fertil Soils 18 71–79 Occurrence Handle10.1007/BF00336448 Occurrence Handle1:CAS:528:DyaK2cXlslamt7w%3D

    Article  CAS  Google Scholar 

  4. DM Bates DG Watts (1988) Nonlinear Regression Analysis and its Applications John Wiley & Sons, Inc. New York

    Google Scholar 

  5. J Borneman EW Triplett (1997) ArticleTitleMolecular microbial diversity in soils from eastern Amazonia—evidence for unusual microorganisms and microbial population shifts associated with deforestation Appl Environ Microbiol 63 2647–2653 Occurrence Handle1:CAS:528:DyaK2sXktlektLg%3D Occurrence Handle9212415

    CAS  PubMed  Google Scholar 

  6. Y-J Chang JR Stephen AP Richter AD Venosa J Bruggemann SJ Macnaughton GA Kowalchuk JR Haines E Kline DC White (2000) ArticleTitlePhylogenetic analysis of aerobic freshwater and marine enrichment cultures efficient in hydrocarbon degradation: Effect of profiling method J Microbiol Methods 40 19–31 Occurrence Handle10.1016/S0167-7012(99)00134-7 Occurrence Handle1:CAS:528:DC%2BD3cXhtFansb8%3D Occurrence Handle10739339

    Article  CAS  PubMed  Google Scholar 

  7. M Diaz-Ravina E Baath (1996) ArticleTitleDevelopment of metal tolerance in soil bacterial communities exposed to experimentally increased metal levels Appl Environ Microbiol 62 2970–2977 Occurrence Handle1:CAS:528:DyaK28XkslemtbY%3D

    CAS  Google Scholar 

  8. P Doelman L Haanstra (1979) ArticleTitleEffects of lead [pollution] on the decomposition of soil organic matter Soil Biol Biochem 11 481–485 Occurrence Handle1:CAS:528:DyaL3cXltlOr

    CAS  Google Scholar 

  9. P Doelman L Haanstra (1986) ArticleTitleShort-and long-term effects of heavy metals on urease activity in soils Biol Fertil Soils 2 213–218 Occurrence Handle10.1007/BF00260846

    Article  Google Scholar 

  10. GF Duarte AS Rosado L Seldin W Araujo Particlede JD Elsas Particlevan (2001) ArticleTitleAnalysis of bacterial community structure in sulfurous-oil-containing soils and detection of species carrying Dibenzothiophene Desulfurization (dsz) genes Appl Environ Microbiol 67 1052–1062 Occurrence Handle10.1128/AEM.67.3.1052-1062.2001 Occurrence Handle1:CAS:528:DC%2BD3MXhslSjsro%3D Occurrence Handle11229891

    Article  CAS  PubMed  Google Scholar 

  11. U Edwards T Rogall H Blocker M Emde EC Bottger (1989) ArticleTitleIsolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA Nucleic Acids Res 17 7843–7853 Occurrence Handle1:CAS:528:DyaK3cXjtFKksg%3D%3D Occurrence Handle2798131

    CAS  PubMed  Google Scholar 

  12. S Fantroussi ParticleEl L Verschuere W Verstraete EM Top (1999) ArticleTitleEffect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles Appl Environ Microbiol 65 982–988 Occurrence Handle10049851

    PubMed  Google Scholar 

  13. TW Federle DC Dobbins JR Thornton-Manning DD Jones (1986) ArticleTitleMicrobial biomass, activity, and community structure in subsurface soils. Worthington, OH Water Well J Pub 24 365–374 Occurrence Handle1:CAS:528:DyaL28Xkt1emsb0%3D

    CAS  Google Scholar 

  14. KP Feris PW Ramsey C Frazar M Rillig JN Moore JE Gannon WE Holben (2004) ArticleTitleSeasonal dynamics of shallow-hyporheic-zone microbial community structure along a heavy-metalcontamination gradient Appl Environ Microbiol 70 2323–2331 Occurrence Handle1:CAS:528:DC%2BD2cXjtlOhsr0%3D Occurrence Handle15066828

    CAS  PubMed  Google Scholar 

  15. KP Feris PW Ramsey M Rillig JN Moore JE Gannon WE Holben (2004) ArticleTitleDetermining rates of change and evaluating group-level resiliency differences in hyporheic microbial communities in response to fluvial heavy-metal deposition Appl Environ Microbiol 70 4756–4765 Occurrence Handle1:CAS:528:DC%2BD2cXms1elu78%3D Occurrence Handle15294812

    CAS  PubMed  Google Scholar 

  16. GB Fogel CR Collins J Li CF Brunk (1999) ArticleTitleProkaryotic genome size and SSU rDNA copy number: estimation of microbial relative abundance from a mixed population Microb Ecol 38 93–113 Occurrence Handle10.1007/s002489900162 Occurrence Handle1:CAS:528:DyaK1MXltF2qu7c%3D Occurrence Handle10441703

    Article  CAS  PubMed  Google Scholar 

  17. DW Freckman RA Virginia (1997) ArticleTitleLow-diversity Antarctic soil nematode communities: distribution and response to disturbance Ecology 78 363–369

    Google Scholar 

  18. A Frostegård A Tunlid E Baath (1993) ArticleTitlePhospholipid fatty acid composition, biomasss, and activity of microbial communities from two soil types experimentally exposed to different heavy metals Appl Environ Microbiol 59 3605–3617 Occurrence Handle16349080

    PubMed  Google Scholar 

  19. E Kandeler C Kampichler O Horak (1996) ArticleTitleInfluence of heavy metals on the functional diversity of soil microbial communities Biol Fertil Soils 23 299–306 Occurrence Handle1:CAS:528:DyaK28XnsFemurw%3D

    CAS  Google Scholar 

  20. JJ Kelly RL Tate (1998) ArticleTitleEffects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter J Environ Qual 27 609–617 Occurrence Handle1:CAS:528:DyaK1cXjtlWitLc%3D

    CAS  Google Scholar 

  21. JJ Kelly MM Haggblom RL Tate (2003) ArticleTitleEffects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter as indicated by analysis of microbial community phospholipid fatty acid profile Biol Fertil Soils 38 65–710 Occurrence Handle10.1007/s00374-003-0642-1 Occurrence Handle1:CAS:528:DC%2BD3sXls1Wqu7Y%3D

    Article  CAS  Google Scholar 

  22. BP Knight SP Mcgrath AM Chaudri (1997) ArticleTitleBiomass carbon measurements and substrate utilization patterns of microbial populations from soils amended with cadmium, copper, or zinc Appl Environ Microbiol 63 39–43 Occurrence Handle1:CAS:528:DyaK2sXhs1Kqtw%3D%3D

    CAS  Google Scholar 

  23. A Konopka T Zakharova M Bischoff L Oliver C Nakatsu RF Turco (1999) ArticleTitleMicrobial biomass and activity in lead-contaminated soil Appl Environ Microbiol 65 2256–2259 Occurrence Handle1:CAS:528:DyaK1MXjtVamt7k%3D Occurrence Handle10224032

    CAS  PubMed  Google Scholar 

  24. J Kozdroj JD Elsas Particlevan (2000) ArticleTitleResponse of the bacterial community to root exudates in soil polluted with heavy metals assessed by molecular and cultural approaches Soil Biol Biochem 32 1405–1417 Occurrence Handle1:CAS:528:DC%2BD3cXmsVWgt7c%3D

    CAS  Google Scholar 

  25. J Kozdroj JD Elsas Particlevan (2001) ArticleTitleStructural diversity of microbial communities in arable soils of a heavily industrialised area determined by PCR-DGGE fingerprinting and FAME profiling Appl Soil Ecol 17 31–42

    Google Scholar 

  26. T Kunito K Saeki H Oyaizu S Matsumoto (1999) ArticleTitleInfluences of copper forms on the toxicity to microorganisms in soils Ecotoxicol Environ Saf 44 174–181 Occurrence Handle1:CAS:528:DyaK1MXntlGqs7Y%3D Occurrence Handle10571464

    CAS  PubMed  Google Scholar 

  27. JE Landmeyer PM Bradley FH Chapelle (1993) ArticleTitleInfluence of Pb on microbial activity in Pb-contaminated soils Soil Biol Biochem 25 1465–1466 Occurrence Handle10.1016/0038-0717(93)90064-I Occurrence Handle1:CAS:528:DyaK2cXns1yj

    Article  CAS  Google Scholar 

  28. TM LaPara CH Nakatsu L Pantea JE Alleman (2000) ArticleTitlePhylogenetic analysis of bacterial communities in mesophilic and thermophilic bioreactors treating pharmaceutical wastewater Appl Environ Microbiol 66 3951–3959 Occurrence Handle10.1128/AEM.66.9.3951-3959.2000 Occurrence Handle1:CAS:528:DC%2BD3cXmsVajs7Y%3D Occurrence Handle10966414

    Article  CAS  PubMed  Google Scholar 

  29. L Leita M Denobili G Muhlbachova C Mondini L Marchiol G Zerbi (1995) ArticleTitleBioavailability and effects of heavy-metals on soil microbial biomass survival during laboratory incubation Biol Fertil Soils 19 103–108 Occurrence Handle10.1007/BF00336144 Occurrence Handle1:CAS:528:DyaK2MXkvVCkt7c%3D

    Article  CAS  Google Scholar 

  30. S Macnaughton JR Stephen YJ Chang A Peacock CA Flemming KT Leung DC White (1999) ArticleTitleCharacterization of metal-resistant soil eubacteria by polymerase chain reaction-denaturing gradient gel electrophoresis with isolation of resistant strains Can J Microbiol 45 116–124 Occurrence Handle10.1139/cjm-45-2-116 Occurrence Handle1:CAS:528:DyaK1MXjvValtL4%3D Occurrence Handle10380644

    Article  CAS  PubMed  Google Scholar 

  31. SJ Macnaughton JR Stephen AD Venosa GA Davis YJ Chang DC White (1999) ArticleTitleMicrobial population changes during bioremediation of an experimental oil spill Appl Environ Microbiol 65 3566–3574 Occurrence Handle1:CAS:528:DyaK1MXltVOltr0%3D Occurrence Handle10427050

    CAS  PubMed  Google Scholar 

  32. BL Maidak JR Cole TG Lilburn CT Parker PR Saxman RJ Farris GM Garrity GJ Olsen TM Schmidt JM Tiedje (2001) ArticleTitleThe RDP-II (Ribosomal Database Project) Nucleic Acids Res 29 173–174 Occurrence Handle10.1093/nar/29.1.173 Occurrence Handle1:CAS:528:DC%2BD3MXjtlWmsr0%3D Occurrence Handle11125082

    Article  CAS  PubMed  Google Scholar 

  33. AA Massol-Deya DA Odelson RF Hickey JM Tiedje (1995) Bacterial community fingerprinting of amplified 16S and 16-23S ribosomal DNA gene sequences and restriction endonuclease analysis (ARDRA) ADI Akkerman JDV Elsas FJD Bruijn (Eds) Molecular Microbial Ecology Kluwer Academic Publisher Dordrecht, Netherlands

    Google Scholar 

  34. G Muyzer EC Waal Particlede AG Uitterlinden (1993) ArticleTitleProfiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA Appl Environ Microbiol 59 695–700 Occurrence Handle1:CAS:528:DyaK3sXit1Kktrk%3D Occurrence Handle7683183

    CAS  PubMed  Google Scholar 

  35. CH Nakatsu V Torsvik L Øvreås (2000) ArticleTitleSoil community analysis using DGGE of 16S rDNA polymerase chain reaction products Soil Sci Soc Am J 64 1382–1388 Occurrence Handle1:CAS:528:DC%2BD3cXmsF2iu7o%3D

    CAS  Google Scholar 

  36. T Pennanen A Frostegard H Fritze E Baath (1996) ArticleTitlePhospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in coniferous forests Appl Environ Microbiol 62 420–428 Occurrence Handle1:CAS:528:DyaK28XovVCmug%3D%3D

    CAS  Google Scholar 

  37. EC Pielou (1969) An Introduction to Mathematical Ecology Wiley-Interscience New York

    Google Scholar 

  38. RMCP Rajapaksha MA Tobor-Kaplon E Baath (2004) ArticleTitleMetal toxicity affects fungal and bacterial activities in soil differently Appl Environ Microbiol 70 2966–2973 Occurrence Handle10.1128/AEM.70.5.2966-2973.2004 Occurrence Handle1:CAS:528:DC%2BD2cXktlCntr8%3D Occurrence Handle15128558

    Article  CAS  PubMed  Google Scholar 

  39. HC Ramirez-Saad A Sessitsch WM Vos Particlede ADL Akkermans (2000) ArticleTitleBacterial community changes and enrichment of Burkholderia-like bacteria induced by chlorinated benzoates in a peat–forest soil-microcosm Syst Appl Microbiol 23 591–598 Occurrence Handle1:CAS:528:DC%2BD3MXit1WmtbY%3D Occurrence Handle11249031

    CAS  PubMed  Google Scholar 

  40. C Ratledge SG Wilkinson (1988) Microbial Lipids, vol. 1 Academic Press New York

    Google Scholar 

  41. TM Roane ST Kellogg (1996) ArticleTitleCharacterization of bacterial communities in heavy metal contaminated soils Can J Microbiol 42 593–603 Occurrence Handle1:CAS:528:DyaK28Xjtlykt7w%3D Occurrence Handle8801006

    CAS  PubMed  Google Scholar 

  42. J Sambrook EF Fritsch T Maniatis (1989) Molecular Cloning: A Laboratory Manual Cold Spring Harbor Press New York

    Google Scholar 

  43. RA Sandaa V Torsvik O Enger (2001) ArticleTitleInfluence of long-term heavy-metal contamination on microbial communities in soil Soil Biol Biochem 33 287–295 Occurrence Handle10.1016/S0038-0717(00)00139-5 Occurrence Handle1:CAS:528:DC%2BD3MXhslKls7s%3D

    Article  CAS  Google Scholar 

  44. RA Sandaa V Torsvik O Enger FL Daae T Castberg D Hahn (1999) ArticleTitleAnalysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution FEMS Microbiol Ecol 30 237–251 Occurrence Handle1:CAS:528:DyaK1MXmsFahs78%3D Occurrence Handle10525180

    CAS  PubMed  Google Scholar 

  45. W Shi J Becker M Bischoff RF Turco AE Konopka (2002) ArticleTitleAssociation of microbial community composition and activity with lead, chromium, and hydrocarbon contamination Appl Environ Microbiol 68 3859–3866 Occurrence Handle10.1128/AEM.68.8.3859-3866.2002 Occurrence Handle1:CAS:528:DC%2BD38XmtVaqu78%3D Occurrence Handle12147482

    Article  CAS  PubMed  Google Scholar 

  46. E Smit P Leeflang K Wernars (1997) ArticleTitleDetection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis FEMS Microbiol Ecol 23 249–261 Occurrence Handle1:CAS:528:DyaK2sXlt1Ogtrs%3D

    CAS  Google Scholar 

  47. DL Sparks AL Page PA Helmke RH Loeppert PN Soltanpour MA Tabatabai CT Johnson ME Sumner (1996) Methods of Soil Analysis: Part 3—Chemical Methods Soil Sci Soc Am Madison

    Google Scholar 

  48. JC Tipper (1979) ArticleTitleRarefaction and rarefiction—the use and abuse of a method in paleontology Paleobiology 5 423–434

    Google Scholar 

  49. V Torsvik J Goksoyr FL Daae (1990) ArticleTitleHigh diversity in DNA of soil bacteria Appl Environ Microbiol 56 782–787 Occurrence Handle1:CAS:528:DyaK3cXhsFCqt74%3D Occurrence Handle2317046

    CAS  PubMed  Google Scholar 

  50. V Torsvik FL Daae RA Sandaa L Ovreas (1998) ArticleTitleNovel techniques for analysing microbial diversity in natural and perturbed environments J Biotechnol 64 53–62 Occurrence Handle10.1016/S0168-1656(98)00103-5 Occurrence Handle1:CAS:528:DyaK1cXntV2ku7s%3D Occurrence Handle9823658

    Article  CAS  PubMed  Google Scholar 

  51. V Torsvik L Ovreas TF Thingstad (2002) ArticleTitleProkaryotic diversity—magnitude, dynamics, and controlling factors Science 296 1064–1066 Occurrence Handle10.1126/science.1071698 Occurrence Handle1:CAS:528:DC%2BD38Xjslantrc%3D Occurrence Handle12004116

    Article  CAS  PubMed  Google Scholar 

  52. R Turpeinen T Kairesalo MM Haggblom (2004) ArticleTitleMicrobial community structure and activity in arsenic-, chromium- and copper-contaminated soils FEMS Microbiol Ecol 47 39–50 Occurrence Handle1:CAS:528:DC%2BD2cXltVyntg%3D%3D

    CAS  Google Scholar 

  53. DH Wall RA Virginia (1999) ArticleTitleControls on soil biodiversity: insights from extreme environments Appl Soil Ecol 13 137–150 Occurrence Handle10.1016/S0929-1393(99)00029-3

    Article  Google Scholar 

  54. DF Wenderoth HH Reber (1999) ArticleTitleCorrelation between structural diversity and catabolic versatility of metal-affected prototrophic bacteria in soil Soil Biol Biochem 31 345–352 Occurrence Handle1:CAS:528:DyaK1MXitVOrsrs%3D

    CAS  Google Scholar 

  55. DF Wenderoth E Stackebrandt HH Reber (2001) ArticleTitleMetal stress selects for bacterial ARDRA-types with a reduced catabolic versatility Soil Biol Biochem 33 667–670 Occurrence Handle10.1016/S0038-0717(00)00211-X Occurrence Handle1:CAS:528:DC%2BD3MXis1aksLg%3D

    Article  CAS  Google Scholar 

  56. L Zelles (1997) ArticleTitlePhospholipid fatty acid profiles in selected members of soil microbial communities Chemosphere 35 275–294 Occurrence Handle10.1016/S0045-6535(97)00155-0 Occurrence Handle1:CAS:528:DyaK2sXksFCiurg%3D Occurrence Handle9232001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Departmentof Energy's Natural and Accelerated Bioremediation Research (NABIR) program (Grant # DE-FG02-98ER62681).

Our thanks to Indiana Department of Transport and in particular Bill Jervis for giving us access to this site, Dr. Linda Lee for discussion on soil chemical status of the site, Dr. Jayson Wilbur for discussion on community analysis methods, to Corinne Ackerman and the Purdue University statistical consulting service for advice on statistical analyses, and to Andre Hudson for assisting in sample collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cindy H. Nakatsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joynt, J., Bischoff, M., Turco, R. et al. Microbial Community Analysis of Soils Contaminated with Lead, Chromium and Petroleum Hydrocarbons. Microb Ecol 51, 209–219 (2006). https://doi.org/10.1007/s00248-005-0205-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-005-0205-0

Keywords

Navigation