Skip to main content
Log in

Bioremediation of hydrocarbon-contaminated polar soils

  • Review
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Bioremediation is increasingly viewed as an appropriate remediation technology for hydrocarbon-contaminated polar soils. As for all soils, the successful application of bioremediation depends on appropriate biodegradative microbes and environmental conditions in situ. Laboratory studies have confirmed that hydrocarbon-degrading bacteria typically assigned to the genera Rhodococcus, Sphingomonas or Pseudomonas are present in contaminated polar soils. However, as indicated by the persistence of spilled hydrocarbons, environmental conditions in situ are suboptimal for biodegradation in polar soils. Therefore, it is likely that ex situ bioremediation will be the method of choice for ameliorating and controlling the factors limiting microbial activity, i.e. low and fluctuating soil temperatures, low levels of nutrients, and possible alkalinity and low moisture. Care must be taken when adding nutrients to the coarse-textured, low-moisture soils prevalent in continental Antarctica and the high Arctic because excess levels can inhibit hydrocarbon biodegradation by decreasing soil water potentials. Bioremediation experiments conducted on site in the Arctic indicate that land farming and biopiles may be useful approaches for bioremediation of polar soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aislabie J, McLeod M, Fraser R (1998) Potential of biodegradation of hydrocarbons in soil from the Ross Dependency, Antarctica. Appl Microbiol Biotechnol 49:210–214

    Article  Google Scholar 

  • Aislabie J, Foght J, Saul D (2000) Aromatic-hydrocarbon degrading bacteria isolated from soil near Scott Base, Antarctica. Polar Biol 23:183–188

    Article  Google Scholar 

  • Aislabie J, Fraser R, Duncan S, Farrell RL (2001) Effects of oil spills on microbial heterotrophs in Antarctic soils. Polar Biol 24:308–313

    Article  Google Scholar 

  • Aislabie JM, Balks MR, Foght JM, Waterhouse EJ (2004) Hydrocarbon spills on Antarctic soils: effects and management. Environ Sci Technol 38:1265–1274

    Article  PubMed  Google Scholar 

  • Atlas RM (1986) Fate of petroleum pollutants in Arctic ecosystems. Water Sci Technol 18:59–67

    Google Scholar 

  • Balks MR, Paetzold RF, Kimble JM, Aislabie J, Campbell IB (2002) Effects of hydrocarbon spills on the temperature and moisture regimes of Crysols in the Ross Sea region. Ant Sci 14:319–326

    Article  Google Scholar 

  • Baraniecki CA, Aislabie J, Foght JM (2002) Characterisation of Sphingomonas sp. Ant 17, an aromatic hydrocarbon-degrading bacterium isolated from Antarctic soil. Microb Ecol 43:44–54

    Article  PubMed  Google Scholar 

  • Bej AK, Saul DJ, Aislabie J (2000) Cold tolerant alkane-degrading Rhodococcus species from Antarctica. Polar Biol 23:100–105

    Article  Google Scholar 

  • Braddock JF, Ruth ML, Catterall PH, Walworth JL, McCarthy KA (1997) Enhancement and inhibition of microbial activity in hydrocarbon-contaminated arctic soils: implications for nutrient-amended bioremediation. Environ Sci Technol 31:2078–2084

    Article  Google Scholar 

  • Braddock JF, Walworth JL, McCarthy KA (1999) Biodegradation of aliphatic vs. aromatic hydrocarbons in fertilized Arctic soils. Biorem J 3:105–116

    Article  Google Scholar 

  • Coulon F, Pelletier E, St Louis R, Gourhant L, Delille D (2004) Degradation of petroleum hydrocarbons in two sub-Antarctic soils: influence of an oleophilic fertilizer. Environ Toxicol Chem 23:1893–1901

    Article  PubMed  Google Scholar 

  • Delille D, Pelletier E, Delille B, Coulon F (2003) Effects of nutrient enrichments on the bacterial assemblage of Antarctic soils contaminated by diesel or crude oil. Polar Rec 39:1–10

    Article  Google Scholar 

  • Delille D, Coulon F, Pelletier E (2004a) Biostimulation of natural microbial assemblages in oil-amended vegetated and desert sub-Antarctic soils. Microb Ecol 47:407–415

    Article  Google Scholar 

  • Delille D, Coulon F, Pelletier E (2004b) Effects of temperature warming during a bioremediation study of natural and nutrient-amended hydrocarbon-contaminated sub-Antarctic soils. Cold Reg Sci Technol 40:61–70

    Article  Google Scholar 

  • Dibble JT Bartha R (1979) Effect of environmental parameters on the biodegradation of oil sludge. Appl Environ Microbiol 37:729–739

    PubMed  Google Scholar 

  • Eckford R, Cook FD, Saul D, Aislabie J, Foght J (2002) Free-living nitrogen-fixing bacteria from fuel-contaminated Antarctic soils. Appl Environ Microbiol 68:5181–5185

    Article  PubMed  Google Scholar 

  • Eriksson M, Ka J-O, Mohn WW (2001) Effects of low temperature and freeze–thaw cycles on hydrocarbon biodegradation in Arctic tundra soil. Appl Environ Microbiol 67:5107–5112

    Article  PubMed  Google Scholar 

  • Eriksson M, Dalhammar G, Mohn WW (2002) Bacterial growth and biofilm production on pyrene. FEMS Microbiol Ecol 40:21–27

    Google Scholar 

  • Eriksson M, Sodersten E, Yu Z, Dalhammer G, Mohn WW (2003) Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from Northern soils. Appl Environ Microbiol 69:275–284

    Article  PubMed  Google Scholar 

  • Ferguson SH, Franzmann PD, Revill AT, Snape I, Rayner JL (2003) The effects of nitrogen and water on mineralisation of hydrocarbons in diesel-contaminated terrestrial Antarctic soils. Cold Reg Sci Technol 37:197–212

    Article  Google Scholar 

  • Filler DM, Lindstrom JE, Braddock JF, Johnson RA, Nickalaski R (2001) Integral biopile components for successful bioremediation in the Arctic. Cold Reg Sci Technol 32:143–156

    Article  Google Scholar 

  • Grishchenkov VG, Shishmakov DA, Kosheleva IA, Boronin AM (2003) Growth of bacteria degrading naphthalene and salicylate at low temperatures. Appl Biochem Microbiol 39:282–288

    Article  Google Scholar 

  • Kerry E (1990) Microorganisms colonizing plants and soil subjected to different degrees of human activity, including petroleum contamination, in the Vestfold Hills and MacRobertson Land, Antarctica. Polar Biol 10:423–430

    Google Scholar 

  • Kerry E (1993) Bioremediation of experimental petroleum spills on mineral soils in the Vestfold Hills, Antarctica. Polar Biol 13:163–170

    Article  Google Scholar 

  • Luz AP, Pellizari VH, Whyte LG, Greer CW (2004) A survey of indigenous microbial hydrocarbon degradation genes in soils from Antarctica and Brazil. Can J Microbiol 50:323–333

    Article  PubMed  Google Scholar 

  • MacCormack WP, Fraile ER (1997) Characterization of a hydrocarbon-degrading psychrotrophic Antarctic bacterium. Ant Sci 9:150–155

    Google Scholar 

  • Margesin R, Schinner F (1999) Biological decontamination of oil spils in cold environments. J Chem Technol Biotechnol 74:381–389

    Article  Google Scholar 

  • Master ER, Mohn WW (1998) Psychrotolerant bacteria isolated from Arctic soil that degrade polychlorinated biphenyls at low temperatures. Appl Environ Microbiol 64:4823–4829

    PubMed  Google Scholar 

  • McCarthy K, Walker L, Vigoren L, Bartel J (2004) Remediation of spilled hydrocarbons by in situ landfarming at an arctic site. Cold Reg Sci Technol 40:31–39

    Article  Google Scholar 

  • Mohn WW, Stewart GR (2000) Limiting factors for hydrocarbon degradation at low temperature in Arctic soils. Soil Biol Biochem 32:1161–1172

    Article  Google Scholar 

  • Mohn WW, Radziminski CZ, Fortin M-C, Reimer KJ (2001) On site bioremediation of hydrocarbon-contaminated Arctic tundra soils in inoculated biopiles. Appl Microbiol Biotechnol 57:242–247

    Article  PubMed  Google Scholar 

  • Morgan R, Watkinson RJ (1989) Hydrocarbon degradation in soils and methods for soil treatment. CRC Crit Rev Biotechnol 8:305–333

    Google Scholar 

  • Panicker G, Aislabie J, Saul D, Bej AK (2002) Cold tolerance of Pseudomonas sp. 30-3 isolated from oil-contaminated soil, Antarctica. Polar Biol 25:5–11

    Article  Google Scholar 

  • Pruthi V, Cameotra SS (1997) Production and properties of a biosurfactant synthesized by Arthrobacter protophormiae—an Antarctic strain. World J Microbiol Biotechnol 13:137–139

    Google Scholar 

  • Rike AG, Haugen KB, Børresen M, Engene B, Kolstad P (2003). In situ biodegradation of petroleum hydrocarbons in frozen arctic soils. Cold Reg Sci Technol 37:97–120

    Article  Google Scholar 

  • Rike AG, Haugen KB, Engene B (2005) In situ biodegradation of hydrocarbons in arctic soil at sub-zero temperatures—field monitoring and theoretical simulation of the microbial activation temperature at a Spitsbergen contaminated site. Cold Reg Sci Technol 41:189–209

    Article  Google Scholar 

  • Ruberto LAM, Vazquez SC, MacCormack WP (2003) Effectiveness of the natural bacterial flora, biostimulation and bioaugmentation on the bioremediation of a hydrocarbon contaminated Antarctic soil. Int Biodeter Biodeg 52:115–125

    Article  Google Scholar 

  • Ruberto LAM, Vazquez SC, Lobalo A, MacCormack WP (2005) Psychrotolerant hydrocarbon-degrading Rhodococcus strains isolated from polluted Antarctic soils. Ant Sci 17:47–56

    Article  Google Scholar 

  • Saul DJ, Aislabie J, Brown CE, Harris L, Foght JM (2005) Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMS Microbiol Ecol 53:141–155

    Article  PubMed  Google Scholar 

  • Snape I, Ferguson S, Revill A (2003) Constraints on rates of natural attenuation and in situ bioremediation of petroleum spills in Antarctica. In: Nahir M, Biggar K, Cotta G (eds) Assessment and remediation of contaminated sites in Arctic and cold climates (Proceedings). St. Joseph’s Print Group Inc., Edmonton AB, pp 257–261

  • Tarnocai C, Campbell IB (2002) Soils of the polar regions. In: Lal R (ed) Encyclopedia of soil science, Marcel Dekker, New York, pp 1018–1021

    Google Scholar 

  • Thomassin-Lacroix EJM, Yu Z, Eriksson M, Reimer KJ, Mohn WW (2001) DNA-based and culture-based characterization of hydrocarbon-degrading consortium enriched from Arctic soil. Can J Microbiol 47:1107–1115

    Article  PubMed  Google Scholar 

  • Thomassin-Lacroix EJM, Eriksson M, Reimer KJ, Mohn WW (2002) Biostimulation and bioaugmentation for on-site treatment of weathered diesel fuel in Arctic soil. Appl Microbiol Biotechnol 59:551–556

    Article  PubMed  Google Scholar 

  • Walworth JL, Reynolds CM (1995) Bioremediation of a petroleum-contaminated cryic soil: effects of phosphorus, nitrogen, and temperature. J Soil Contam 4:299–310

    Google Scholar 

  • Walworth JL, Woolard CR, Braddock JF, Reynolds CM (1997) Enhancement and inhibition of soil petroleum biodegradation through the use of fertilizer nitrogen: an approach to determining optimum levels. J Soil Contam 6:465–480

    Google Scholar 

  • Walworth JL, Woolard CR, Harris KC (2003) Nutrient amendments for contaminated peri-glacial soils: use of cod bone meal as a controlled release nutrient source. Cold Reg Sci Technol 37:81–88

    Article  Google Scholar 

  • Whyte LG, Greer CW, Inniss WE (1996) Assessment of the biodegradation potential of psychrotrophic microorganisms. Can J Microbiol 42:99–106

    PubMed  Google Scholar 

  • Whyte LG, Bourbonniere L, Greer CW (1997) Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways. Appl Environ Microbiol 63:3719–3723

    PubMed  Google Scholar 

  • Whyte LG, Bourbonniere L, Bellerose C, Greer CW (1999a) Bioremediation assessment of hydrocarbon-contaminated soils from the High Arctic. Biorem J 3:69–79

    Article  Google Scholar 

  • Whyte LG, Slagman SJ, Pietrantonio F, Bourbonniere L, Koval SF, Lawrence JR, Inniss WE, Greer CW (1999b) Physiological adaptations involved in alkane assimilation at low temperatures by Rhodococcus sp. Strain Q15. Appl Environ Microbiol 65:2961–2968

    Google Scholar 

  • Whyte LG, Goalen B, Hawari J, Labbe D, Greer CW, Nahir M (2001) Bioremediation treatability assessment of hydrocarbon-contaminated soils from Eureka, Nunavut. Cold Reg Sci Technol 32:121–132

    Article  Google Scholar 

  • Whyte LG, Schultz A, van Beilen JB, Luz AP, Pellizari V, Labbe D, Greer CW (2002) Prevalence of alkane monooxygenase genes in Arctic and Antarctic hydrocarbon-contaminated and pristine soils. FEMS Microbiol Ecol 41:141–150

    Google Scholar 

  • Yu Z, Stewart GR, Mohn WW (2000) Apparent contradiction: Psychrotolerant bacteria from hydrocarbon-contaminated Arctic tundra soils that degrade diterpenoids synthesized by trees. Appl Environ Microbiol 66:5148–5154

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Foundation for Research, Science and Technology, New Zealand (C09X0307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jackie Aislabie.

Additional information

Communicated by D. A. Cowan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aislabie, J., Saul, D.J. & Foght, J.M. Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles 10, 171–179 (2006). https://doi.org/10.1007/s00792-005-0498-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-005-0498-4

Keywords

Navigation