Skip to main content

Advertisement

Log in

Microbial ecology and biodiversity in permafrost

  • Review
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Permafrost represents 26% of terrestrial soil ecosystems; yet its biology, essentially microbiology, remains relatively unexplored. The permafrost environment is considered extreme because indigenous microorganisms must survive prolonged exposure to subzero temperatures and background radiation for geological time scales in a habitat with low water activity and extremely low rates of nutrient and metabolite transfer. Yet considerable numbers and biodiversity of bacteria exist in permafrost, some of which may be among the most ancient viable life on Earth. This review describes the permafrost environment as a microbial habitat and reviews recent studies examining microbial biodiversity found in permafrost as well as microbial growth and activity at ambient in situ subzero temperatures. These investigations suggest that functional microbial ecosystems exist within the permafrost environment and may have important implications on global biogeochemical processes as well as the search for past or extant life in permafrost presumably present on Mars and other bodies in our solar system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1

Similar content being viewed by others

References

  • Bakermans C, Tsapin AI, Souza-Egipsy V, Gilichinsky DA, Nealson KH (2003) Reproduction and metabolism at −10°C of bacteria isolated from Siberian permafrost. Environ Microbiol 5:321–326

    Article  PubMed  Google Scholar 

  • Bakermans C, Nealson KH (2004) Relationship of critical temperature to macromolecular synthesis and growth yield in Psychrobacter cryopegella. J Bacteriol 186:2340–2345

    Article  PubMed  CAS  Google Scholar 

  • Boyd WL, Boyd JW (1964) The presence of bacteria in permafrost of the Alaskan Arctic. Can J Microbiol 10:917–919

    Article  PubMed  CAS  Google Scholar 

  • Boynton WV, Feldman WC, Squyres SW, Prettyman TH, Bruckner J, Evans LG, Reedy RC, Starr R, Arnold JR, Drake DM, Englert PA, Metzger AE, Mitrofanov I, Trombka JI, D’Uston C, Wanke H, Gasnault O, Hamara DK, Janes DN, Marcialis RL, Maurice S, Mikheeva I, Taylor GJ, Tokar R, Shinohara C (2002) Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. Science 297:81–85

    Article  PubMed  CAS  Google Scholar 

  • Breezee J, Cady N, Staley JT (2004) Subfreezing growth of the sea ice bacterium “Psychromonas ingrahmii”. Microb Ecol 47:300–304

    Article  PubMed  CAS  Google Scholar 

  • Brinton KLF, Tsapin AI, Gilichinsky DA, McDonald GD (2002) Aspartic acid racemization and age–depth relationships for organic carbon in Siberian permafrost. Astrobiology 2:77–82

    Article  PubMed  CAS  Google Scholar 

  • Cameron RE, Morelli FA (1974) Viable microoganisms from ancient Ross Island and Taylor Valley drill core. Antarct J US 9:113–116

    Google Scholar 

  • Carpenter EJ, Lin S, Capone DG (2000) Bacterial activity in South Pole snow. Appl Environ Microbiol 66:4514–4517

    Article  PubMed  CAS  Google Scholar 

  • Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low temperature extremophiles and their applications. Curr Opin Biotechnol 13:253–261

    Article  PubMed  CAS  Google Scholar 

  • Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN (2001) Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ Microbiol 3:570–577

    Article  PubMed  CAS  Google Scholar 

  • Christner BC, Kvitko BHI, Reeve JN (2003) Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7:177–183

    PubMed  CAS  Google Scholar 

  • Cowan DA, Russell N, Mamais A, Sheppard DM (2002) Antarctic Dry Valley mineral soils contain unexpectedly high levels of microbial biomass. Extremophiles 6:431–436

    Article  PubMed  CAS  Google Scholar 

  • Cowan DA, Ah Tow L (2004) Endangered Antarctic environments. Annu Rev Microbiol 58:649–690

    Article  PubMed  CAS  Google Scholar 

  • Deming J (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5:301–309

    Article  PubMed  CAS  Google Scholar 

  • Dickinson WW, Rosen MR (2003) Antarctica permafrost: an analogue for water and diagenetic minerals on Mars. Geology 31:199–202

    Article  CAS  Google Scholar 

  • Dmitriev VV, Suzina NE, Rusakova TG, Gilichinsky DA, Duda VI (2000) Ultrastructural characteristics of natural forms of microorganisms isolated from permafrost grounds of eastern Siberia by the method of low-temperature fractionation. Dokl Biol Sci 378:304–306

    Article  Google Scholar 

  • Dumont MG, Murrell JC (2005) Stable isotope probing–linking microbial identity to function. Nat Rev Microbiol 6:499–504

    Article  CAS  Google Scholar 

  • Franks F (2003) Nucleation of ice and its management in ecosystems. Phil Trans R Soc Lond A 361:557–574

    Article  CAS  Google Scholar 

  • Friedmann EI (1994) Permafrost as microbial habitat. In: Gilichinsky DA (ed) Viable microorganisms in permafrost. Russian Academy of Sciences, pp 21–26

  • Gilichinsky D (2002a) Permafrost. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 2367–2385

    Google Scholar 

  • Gilichinsky DA (2002b) Permafrost model of extraterrestrial habitats. In: Horneck G, Baumstark-Khan C (eds) Astrobiology: the quest for the conditions of life. Springer, Berlin Heidelberg New York, pp 125–142

    Google Scholar 

  • Gilichinsky DA, Khlebnikova GM, Zvyagintsev DG, Fedorov-Davydov DG, Kudryavtseva NN (1989) Microbiology of sedimentary materials in the permafrost zone. Int Geol Rev 31:847–858

    Article  Google Scholar 

  • Gilichinsky DA, Vorobyova E, Erokhina LG, Fyordorov-Dayvdov DG, Chaikovskaya NR (1992) Long-term preservation of microbial ecosystems in permafrost. Adv Space Res 12:255–263

    Article  PubMed  CAS  Google Scholar 

  • Gilichinsky DA, Wagener S, Vishnivetskaya TA (1995) Permafrost microbiology. Permafrost Periglac Process 6:281–291

    Article  Google Scholar 

  • Gilichinsky DA, Rivkina E, Shcherbakova V, Laurinavichuis K, Tiedje JM (2003) Supercooled water brines within permafrost—An unknown ecological niche for microoganisms: a model for astrobiology. Astrobiology 3:331–341

    Article  PubMed  CAS  Google Scholar 

  • Gilichinsky D, Rivkina E, Bakermans C, Shcherbakova V, Petrovskaya L, Ozerskaya S, Ivanushkina N, Kochkina G, Laurinavichuis K, Pecheritsina S, Fattakhova R, Tiedje JM (2005) Biodiversity of cryopegs in permafrost. FEMS Microbiol Ecol 53:117–128

    Article  PubMed  CAS  Google Scholar 

  • Harry DG (1989) Ground ice and permafrost. In: Clark MJ (ed) Advances in periglacial geomorphology. Wiley, New York, pp 114–149

    Google Scholar 

  • Horowitz NH, Cameron RE, Hubbard JS (1972) Microbiology of the dry valleys of Antarctica. Science 176:242–245

    Article  PubMed  Google Scholar 

  • Jakosky BM, Nealson KH, Bakermans C, Ley RE, Mellon MT (2003) Subfreezing activity of microorganisms and the potential habitability of Mars’ polar regions. Astrobiology 3:343–350

    Article  PubMed  CAS  Google Scholar 

  • James N, Sutherland ML (1942) Are there living bacteria in permanently frozen subsoil? Can J Res 20:229–235

    Google Scholar 

  • Juck DF, Whissell G, Steven B, Pollard W, McKay CP, Greer CW, Whyte LG (2005) Utilization of fluorescent microspheres and a green fluorescent protein-marked strain for assessment of microbiological contamination of permafrost and ground ice core samples from the Canadian High Arctic. Appl Environ Microbiol 71:1035–1041

    Article  PubMed  CAS  Google Scholar 

  • Junge K, Krembs C, Deming J, Stierle A, Eicken H (2001) A microscopic approach to investigate bacteria under in situ conditions in sea-ice samples. Ann Glaciol 33:304–310

    Article  CAS  Google Scholar 

  • Junge K, Eicken H, Deming JW (2003) Motility of Colwellia psychrerythraea strain 34H at subzero temperatures. Appl Environ Microbiol 69:4282–4284

    Article  PubMed  CAS  Google Scholar 

  • Junge K, Eicken H, Deming JW (2004) Bacterial activity at −2 to −20°C in Arctic wintertime sea ice. Appl Environ Microbiol 70:550–557

    Article  PubMed  CAS  Google Scholar 

  • Karl DM, Bird DF, Björkman K, Houlihan T, Shackelford R, Tupas L (1999) Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science 286:2144–2147

    Article  PubMed  CAS  Google Scholar 

  • Khlebnikova GM, Gilichinsky DA, Fedorov-Davydov DG, Vorob’eva EA (1990) Quantitative evaluation of microorganisms in permafrost deposits and buried soils. Translated from Mikrobiologiya 59:148–155

    Google Scholar 

  • Knoblauch C, Jørgensen BB, Harder J (1999a) Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments. Appl Environ Microbiol 65:4230–4233

    CAS  Google Scholar 

  • Knoblauch C, Sahm K, Jørgensen BB (1999b) Psychrophilic sulfate-reducing bacteria isolated from permanently cold Arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov. Int J Syst Evol Microbiol 49:1631–1643

    Article  CAS  Google Scholar 

  • Kostka JE, Thamdrup B, Nohr Glud R, Canfield DE (1999) Rates and pathways of carbon oxidation in permanently cold Arctic sediments. Mar Ecol Prog Ser 180:7–21

    Article  CAS  Google Scholar 

  • Lock GSH (1990) The Growth and decay of Ice. Cambridge University press, Cambridge, p 434

    Google Scholar 

  • Mackay JR (1972) The world of underground ice. Ann Assoc Am Geogr 62:1–22

    Article  Google Scholar 

  • Miteva VI, Sheridan PP, Brenchley JE (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland ice core. Appl Environ Microbiol 70:202–213

    Article  PubMed  CAS  Google Scholar 

  • Monfort P, Demers S, Levasseur M (2000) Bacterial dynamics in first year sea ice and underlying seawater of Saroma-ko lagoon (sea of Okhotsk, Japan) and Resolute passage (High Canadian arctic): inhibitory effects of ice algae on bacterial dynamics. Can J Microbiol 46:623–632

    Article  PubMed  CAS  Google Scholar 

  • Ochsenreiter T, Selezi D, Quaiser A, Bonch-Osmolovskaya L, Schleper C (2003) Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ Microbiol 5:787–797

    Article  PubMed  CAS  Google Scholar 

  • Ostroumov V (1995) A physical and chemical characterization of martian permafrost as a possible habitat for viable microorganisms. Adv Space Res 15:229–236

    Article  PubMed  CAS  Google Scholar 

  • Ostroumov VE, Siegert C (1996) Exobiological aspects of mass transfer in microzones of permafrost deposits. Adv Space Res 18:79–86

    Article  CAS  Google Scholar 

  • Permafrost Subcommittee (1988) Glossary of permafrost and related ground-ice terms. Associate Committee on Geotechnical Research, National Research Council of Canada, Ottawa

  • Pikuta EV, Marsic D, Bej A, Tang J, Krader P, Hoover RB (2005) Carnobacterium pleistocenium sp. nov., a novel psychrotolerant, facultative anaerobe isolated from permafrost of the Fox Tunnel in Alaska. Int J Syst Evol Microbiol 55:473–478

    Article  PubMed  CAS  Google Scholar 

  • Pollard WH (2000) Distribution and characterization of ground ice on Fosheim Peninsula, Ellesmere Island, Nunavut. In: Garneau M, Alt BT (eds) Environmental response to climate change in the Canadian High Arctic: geological survey of Canada. Bulletin 529, pp 207–233

  • Ponder MA, Gilmour SJ, Bergholz PW, Mindock CA, Hollingsworth R, Thomashow MF, Tiedje JM (2005) Characterization of potential stress responses in ancient Siberian permafrost psychroactive bacteria. FEMS Microbiol Ecol 53:103–115

    Article  PubMed  CAS  Google Scholar 

  • Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci USA 101:4631–4636

    Article  PubMed  CAS  Google Scholar 

  • Priscu JC, Christner BC (2004) Earth’s icy biosphere. In: Bull AT (ed) Microbial Diversity and Bioprospecting. ASM Press, Washington, pp 130–145

    Google Scholar 

  • Ravenschlag K, Sahm K, Pernthaler J, Amann R (1999) High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol 65:3982–3989

    PubMed  CAS  Google Scholar 

  • Rivkina E, Gilichinsky D, Wagener S, Tiedje JM, McGrath J (1998) Biogeochemical activity of anaerobic microorganisms from buried permafrost sediments. Geomicrobiol J 15:187–193

    Article  Google Scholar 

  • Rivkina EM, Laurinavichus KS, Gilichinsky DA, Shcherbakova (2001) Methane generation in permafrost sediments. Dokl Biol Sci 383:179–181

    Article  Google Scholar 

  • Rivkina E, Laurinavichuis K, McGrath J, Tiedje JM, Shcherbakova V, Gilichinsky D (2004) Microbial life in permafrost. Adv Space Res 33:1215–1221

    Article  PubMed  CAS  Google Scholar 

  • Rivkina EM, Friedmann EI, McKay CP, Gilichinsky D (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66:3230–3233

    Article  PubMed  CAS  Google Scholar 

  • Sattler B, Puxbaum H, Psenner R (2001) Bacterial growth in supercooled cloud droplets. Geophys Res Lett 28:239–242

    Article  Google Scholar 

  • Shcherbakova VA, Chuvilskaya NA, Rivkina EM, Pecheritsyna SA, Laurinavichius KS, Suzina NE, Osipov GA, Lysenko AM, Gilichinsky DA, Akimenko VK (2005) Novel psychrophilic anaerobic spore-forming bacterium from the overcooled water brine in permafrost: description Clostridium algoriphilum sp. nov. Extremophiles 9:239–246

    Article  CAS  Google Scholar 

  • Sheridan PP, Miteva VI, Brenchley JE (2003) Phylogenetic analysis of anaerobic psychrophilic enrichment cultures obtained from a Greenland glacier ice core. Appl Environ Microbiol 69:2153–2160

    Article  PubMed  CAS  Google Scholar 

  • Shi T, Reeves RH, Gilichinsky DA, Friedmann EI (1997) Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing. Microb Ecol 33:169–179

    Article  PubMed  CAS  Google Scholar 

  • Skidmore ML, Foght JM, Sharp MJ (2000) Microbial life beneath a High Arctic glacier. Appl Environ Microbiol 66:3214–3220

    Article  PubMed  CAS  Google Scholar 

  • Smith REH, Clement P (1990) Heterotrophic activity and bacterial productivity in assemblages of microbes from sea ice in the high Arctic. Polar Biol 10:351–357

    Article  Google Scholar 

  • Soina V, Vorobiova EA, Zvyagintsev DG, Gilichinsky DA (1995) Preservation of cell structures in permafrost: a model for exobiology. Adv Space Res 15:237–242

    Article  PubMed  CAS  Google Scholar 

  • Soina V, Mulyukin AL, Demkina EV, Vorobyova EA, El-Registan GI (2004) The structure of resting bacterial populations in soil and subsoil permafrost. Astrobiology 4:345–358

    Article  PubMed  Google Scholar 

  • Steven B, Pollard W, McKay CP, Greer CW, Whyte LG (2004) Diversity of culturable bacteria isolated from permafrost and ground ice from the Canadian High Arctic. In: 10th International symposium on microbial ecology

  • Vainshtein MB, Gogotova GI, Hippe H (1995) A sulfate-reducing bacterium from permafrost. Microbiology 64:514–518

    CAS  Google Scholar 

  • Vishnivetskaya T, Kathariou S, McGrath J, Gilichinsky DA, Tiedje JM (2000) Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4:165–173

    Article  PubMed  CAS  Google Scholar 

  • Vorobyova E, Soina V, Gorlenko M, Minkovskaya N, Zalinova N, Mamukelashvili A, Gilichinsky DA, Rivkina E, Vishnivetskaya T (1997) The deep cold biosphere: facts and hypothesis. FEMS Microbiol Rev 20:277–290

    Article  CAS  Google Scholar 

  • Vorobyova E, Minkovsky N, Mamukelashvili A, Zvyagintsev D, Soina V, Polanskaya L, Gilichinsky D (2001) Micro-organisms and biomarkers in permafrost. In: Paepe R, Melnikov VP (eds) Permafrost response on economic development, environmental security and natural resources. Kluwer Academic Publishers, New York, pp 527–541

    Google Scholar 

  • Willerslev E, Hansen AJ, Rønn R, Brand TB, Barnes I, Wiuf C, Gilichinsky D, Mitchell D, Cooper A (2004) Long-term persistence of bacterial DNA. Curr Biol 14:R9–R10

    Article  PubMed  CAS  Google Scholar 

  • Williams PJ, Smith MW (1989) The frozen earth: fundementals of geocryology. Cambridge University Press, Cambridge, pp 306

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyle G. Whyte.

Additional information

Communicated by D. A. Cowan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steven, B., Léveillé, R., Pollard, W.H. et al. Microbial ecology and biodiversity in permafrost. Extremophiles 10, 259–267 (2006). https://doi.org/10.1007/s00792-006-0506-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-006-0506-3

Keywords

Navigation