Skip to main content

Genomic Selection in Hybrid Breeding

  • Chapter
  • First Online:
Genomic Selection for Crop Improvement

Abstract

This chapter aims to outline the basic concepts underlying genomic selection (GS) in hybrid breeding. First, the concepts of dominance, heterosis, combining ability and heterotic groups are presented as a special feature of hybrid breeding, giving special attention to the breeding method of recurrent reciprocal selection. Subsequently, the cross-validated predictability is introduced as an evaluation criterion for the performance of GS and the relatedness between estimation and prediction sets is presented as its fundamental influential factor in hybrid breeding. Consequently, cross-validation schemes which consider different levels of relatedness according to particular breeding scenarios are illustratively explained. Later, classical mixed models and Bayesian GS approaches modeling dominance and additive effects receive special treatment in this chapter. Even though classical mixed models are in principle not suited for all genetic architectures, it seems they are preferred because of their relatively straightforward understanding and implementation plus their considerable robust performance. Moreover, modeling dominance in addition to additive effects seems to be beneficial when dominance effects are expected to have an important influence on predicted traits. GS models efficiently accommodating epistasis are available, but they have not received the attention needed to properly evaluate their advantages and limitations for hybrid performance prediction. Furthermore, other GS approaches are briefly introduced. Finally, the implementation of GS as a tool to assist hybrid breeding is dissected as an optimization problem, giving later emphasis to the model recalibration after implementing GS for the early stages of a breeding program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BLUP:

Best linear unbiased prediction

e-Bayes:

Empirical Bayes method

GCA:

General combining ability

GS:

Genomic selection

LD:

Linkage disequilibrium

MAS:

Marker assisted selection

PS:

Phenotypic selection

RE:

Relative efficiency

REML:

Restricted maximum likelihood

RKHS:

Reproducing kernel Hilbert space

RR-BLUP:

Ridge regression best linear unbiased prediction

RRS:

Recurrent reciprocal selection

SCA:

Specific combining ability

SNP:

Single nucleotide polymorphism

W-BLUP:

Weighted best linear unbiased prediction

References

  • Akdemir D, Sanchez JI, Jannink JL (2015) Optimization of genomic selection training populations with a genetic algorithm. Genet Sel Evol 47:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Albrecht T, Wimmer V, Auinger HJ, Erbe M, Knaak C, Ouzunova M, Simianer H, Schön CC (2011) Genome-based prediction of testcross values in maize. Theor Appl Genet 123:339–350

    Article  PubMed  Google Scholar 

  • Albrecht T, Auinger HJ, Wimmer V, Ogutu JO, Knaak C, Ouzunova M, Piepho HP, Schön CC (2014) Genome-based prediction of maize hybrid performance across genetic groups, testers, locations, and years. Theor Appl Genet 127:1375–1386

    Article  PubMed  Google Scholar 

  • Becker H (2011) Pflanzenzüchtung (in German). Auflagennr. 2. Verlag Eugen Ulmer, Stuttgart

    Google Scholar 

  • Bernardo R (1994) Prediction of maize single-cross performance using RFLPs and information from related hybrids. Crop Sci 34:20–25

    Article  Google Scholar 

  • Bernardo R (1996) Best linear unbiased prediction of maize single-cross performance. Crop Sci 36:50–56

    Article  Google Scholar 

  • Bernardo R (2010) Breeding for quantitative traits in plants. Stemma Press, Woodbury

    Google Scholar 

  • Bernardo R (2014) Genomewide selection when major genes are known. Crop Sci 54:68–75

    Article  Google Scholar 

  • Bos I, Caligari P (2008) Selection methods in plant breeding, 2nd edn. Springer, Dordrecht

    Book  Google Scholar 

  • Bruce AB (1910) The Mendelian theory of heredity and the augmentation of vigor. Science 32:627–628

    Article  CAS  PubMed  Google Scholar 

  • Burrows PM (1975) Expected selection differentials for directional selection. Biometrics 28:1091–1100

    Article  Google Scholar 

  • Clark SA, Hickey JM, Daetwyler HD, Van der Werf JHJ (2012) The importance of information on relatives for the prediction of genomic breeding values and implications for the makeup of reference populations in livestock breeding schemes. Genet Sel Evol 44:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Collins GN (1921) Dominance and vigor of first generation hybrids. Am Nat 55:116–133

    Article  Google Scholar 

  • Comstock RE, Robinson HF, Harvey PH (1949) A breeding procedure designed to make maximum use of both general and specific combining ability. Agron J 41:360–367

    Article  Google Scholar 

  • Crossa J, Pérez-Rodríguez P, Hickey J, Burgueño J, Ornella L, Cerón-Rojas J et al (2013) Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity 112:48–60

    Article  PubMed  PubMed Central  Google Scholar 

  • Crow JF (1948) Alternative hypotheses of hybrid vigor. Genetics 33:477–487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Da Y, Wang C, Wang S, Hu G (2014) Mixed model methods for genomic prediction and variance component estimation of additive and dominance effects using SNP markers. PLoS One 9:e87666

    Article  PubMed  PubMed Central  Google Scholar 

  • Daetwyler HD, Villanueva B, Woolliams JA (2008) Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS One 3:e3395

    Article  PubMed  PubMed Central  Google Scholar 

  • Desta ZA, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19:592–601

    Article  CAS  PubMed  Google Scholar 

  • East EM (1936) Heterosis. Genetics 21:375–397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Endelman JB, Atlin GN, Beyene Y, Semagn K, Zhang X, Sorrells ME, Jannink JL (2014) Optimal design of preliminary yield trials with genome-wide markers. Crop Sci 54:48–59

    Article  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Ronald Press Company, New York

    Google Scholar 

  • Feher K, Lisec J, Römisch-Margl L, Selbig J, Gierl A, Piepho HP, Nikiloski Z, Willmitzer L (2014) Deducing hybrid performance from parental metabolic profiles of young primary roots of maize by using a multivariate Diallel approach. PLoS One 9:e85435

    Article  PubMed  PubMed Central  Google Scholar 

  • Gianola D, van Kaam JB (2008) Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Genetics 178:2289–2303

    Article  PubMed  PubMed Central  Google Scholar 

  • Gianola D, Fernando RL, Stella A (2006) Genomic-assisted prediction of genetic value with semiparametric procedures. Genetics 173:1761–1776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gowda M, Zhao Y, Maurer HP, Weissmann EA, Würschum T, Reif JC (2013) Best linear unbiased prediction of triticale hybrid performance. Euphytica 191:223–230

    Article  Google Scholar 

  • Gowda M, Zhao Y, Würschum T, Longin CFH, Miedaner T, Ebmeyer E, Schachschneider R, Kazman E, Schacht J, Martinant JP, Mette MF, Reif JC (2014) Relatedness severely impacts accuracy of marker-assisted selection for disease resistance in hybrid wheat. Heredity 112:552–561

    Article  CAS  PubMed  Google Scholar 

  • Guo T, Li H, Yan J, Tang J, Li J, Zhang Z, Zhang L, Wang J (2013) Performance prediction of F1 hybrids between recombinant inbred lines derived from two elite maize inbred lines. Theor Appl Genet 126:189–201

    Article  CAS  PubMed  Google Scholar 

  • Guo G, Zhao F, Wang Y, Zhang Y, Du L, Su G (2014) Comparison of single-trait and multiple-trait genomic prediction models. BMC Genet 15:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Habier D, Fernando RL, Dekkers JCM (2007) The impact of genetic relationship information on genome-assisted breeding values. Genetics 177:2389–2397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Habier D, Fernando R, Kizilkaya K, Garrick D (2011) Extension of the bayesian alphabet for genomic selection. BMC Bioinf 12:186

    Article  Google Scholar 

  • Hallauer AR, Carena MJ, Miranda Filho JB (2010) Quantitative genetics in maize breeding. Iowa State University Press, Ames

    Google Scholar 

  • Hayashi T, Iwata H (2013) A Bayesian method and its variational approximation for prediction of genomic breeding values in multiple traits. BMC Bioinf 14:34

    Article  Google Scholar 

  • Hayes BJ, Visscher PM, Goddard ME (2009) Increased accuracy of artificial selection by using the realized relationship matrix. Genet Res 91:47–60

    Article  CAS  Google Scholar 

  • Henderson CR (1984) Applications of linear models in animal breeding. University of Guelph, Guelph

    Google Scholar 

  • Henderson CR (1985) Best linear unbiased prediction of non-additive genetic merits. J Anim Sci 60:111–117

    Article  Google Scholar 

  • Heslot N, Akdemir D, Sorrells M, Jannink JL (2014) Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions. Theor Appl Genet 127:463–480

    Article  PubMed  Google Scholar 

  • Hillier FS, Lieberman GJ (2001) Introduction to operations research, 7nd edn. McGraw Hill, New York

    Google Scholar 

  • Hjorth JSU (1994) Computer intensive statistical methods. Validation model selection and bootstrap. Chapman & Hall, London

    Google Scholar 

  • Hofheinz N, Borchardt D, Weissleder K, Frisch M (2012) Genome-based prediction of test cross performance in two subsequent breeding cycles. Theor Appl Genet 125:1639–1645

    Article  PubMed  Google Scholar 

  • Holland JB, Nyquist WE, Cervantes-MartiÅ„ex CT (2003) Estimating and interpreting heritability for plant breeding: an update. In: Janick J (ed) Plant breeding reviews, vol 22. Wiley, New York, pp 9–112

    Google Scholar 

  • Hull FH (1945) Recurrent selection for specific combining ability in corn. J Am Soc Agron 37:134–145

    Article  Google Scholar 

  • Jacobson A, Lian L, Zhong S, Bernardo R (2014) General combining ability model for genomewide selection in a biparental cross. Crop Sci 54:895–905

    Article  Google Scholar 

  • Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9:166–177

    Article  CAS  PubMed  Google Scholar 

  • Jia Y, Jannink JL (2012) Multiple-trait genomic selection methods increase genetic value prediction accuracy. Genetics 192:1513–1522

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Reif JC (2015) Modeling epistasis in genomic selection. Genetics 201:759–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DF (1917) Dominance of linked factors as a means of accounting for heterosis. Genetics 2:466–479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keeble F, Pellew C (1910) The mode of inheritance of stature and of time of flowering in peas (Pisum sativum). J Genet 1:47–56

    Article  Google Scholar 

  • Krchov LM, Bernardo R (2015) Relative efficiency of genomewide selection for testcross performance of doubled haploid lines in a maize breeding program. Crop Sci 55:2091–2099

    Article  CAS  Google Scholar 

  • Krchov LM, Gordillo GA, Bernardo R (2015) Multienvironment validation of the effectiveness of phenotypic and genomewide selection within biparental maize populations. Crop Sci 55:1068–1075

    Article  Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lehermeier C, Schön CC, de los Campos G (2015) Assessment of genetic heterogeneity in structured plant populations using multivariate whole-genome regression models. Genetics. doi:10.1534/genetics.115.177394

  • Longin CFH, Mühleisen J, Maurer HP, Zhang H, Gowda M, Reif JC (2012) Hybrid breeding in autogamous cereals. Theor Appl Genet 125:1087–1096

    Article  PubMed  Google Scholar 

  • Longin CFH, Mi X, Würschum T (2015) Genomic selection in wheat: optimum allocation of test resources and comparison of breeding strategies for line and hybrid breeding. Theor Appl Genet 128:1297–1306

    Article  PubMed  Google Scholar 

  • Lorenz AJ (2013) Resource allocation for maximizing prediction accuracy and genetic gain of genomic selection in plant breeding: a simulation experiment. G3 3:481–491

    Google Scholar 

  • Lorenzana RE, Bernardo R (2009) Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet 120:151–161

    Article  PubMed  Google Scholar 

  • Massman JM, Gordillo A, Lorenzana RE, Bernardo R (2013) Genomewide predictions from maize single-cross data. Theor Appl Genet 126:13–22

    Article  PubMed  Google Scholar 

  • Melchinger AE, Gumber RK (1998) Overview of heterosis and heterotic groups in agronomic crops. In: Lamkey KR, Staub JE (eds) Concepts and breeding of heterosis in crop plants. ASACSSA-SSSA Publication, Madison, pp 29–44

    Google Scholar 

  • Meuwissen THE (2009) Accuracy of breeding values of ‘unrelated’ individuals predicted by dense SNP genotyping. Genet Sel Evol 41:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miedaner T, Zhao Y, Gowda M, Longin CFH, Korzun V, Ebmeyer E, Kazman E, Reif JC (2013) Genetic architecture of resistance to Septoria Tritici blotch in European wheat. BMC Genomics 14:858

    Article  PubMed  PubMed Central  Google Scholar 

  • Mirdita V, Liu G, Zhao Miedaner T, Longin CFH, Gowda M, Mette MF, Reif JC (2015) Genetic architecture is more complex for resistance to Septoria Tritici blotch than to Fusarium head blight in central European winter wheat. BMC Genet 16:430

    Article  Google Scholar 

  • Mrode RA (2005) Linear models for the prediction of animal breeding values, 2nd edn. CABI Publishing, Wallingford

    Book  Google Scholar 

  • Nishio M, Satoh M (2014) Including dominance effects in the genomic BLUP method for genomic evaluation. PLoS One 9:e85792

    Article  PubMed  PubMed Central  Google Scholar 

  • Patti GJ, Yanes O, Siuzdak G (2012) Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13:263–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piepho HP (2009) Ridge regression and extensions for genomewide selection in maize. Crop Sci 49:1165–1176

    Article  Google Scholar 

  • Piepho HP, Möhring J (2007) Computing heritability and selection response from unbalanced plant breeding trials. Genetics 177:1881–1888

    Article  PubMed  PubMed Central  Google Scholar 

  • Reif JC, Gumpert F, Fischer S, Melchinger AE (2007) Impact of genetic divergence on additive and dominance variance in hybrid populations. Genetics 176:1931–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reif JC, Zhao YS, Würschum T, Gowda M, Hahn V (2013) Genomic prediction of sunflower hybrid performance. Plant Breed 132:107–114

    Article  CAS  Google Scholar 

  • Richey FD (1942) Mock-dominance and hybrid vigor. Science 96:280–281

    Article  CAS  PubMed  Google Scholar 

  • Riedelsheimer C, Melchinger AE (2013) Optimizing the allocation of resources for genomic selection in one breeding cycle. Theor Appl Genet 126:2835–2848

    Article  CAS  PubMed  Google Scholar 

  • Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F, Sulpice R, Altmann T, Stitt M, Willmitzer L, Melchinger AE (2012) Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet 44:217–220

    Article  CAS  PubMed  Google Scholar 

  • Rincent R, Laloë D, Nicolas S, Altmann T, Brunel D, Revilla P, Rodriguez VM, Moreno-Gonzalez J, Melchinger A, Bauer E (2012) Maximizing the reliability of genomic selection by optimizing the calibration set of reference individuals: comparison of methods in two diverse groups of maize in breds (Zea mays L.) Genetics 192:715–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnell FW, Cockerham CC (1992) Multiplicative vs. Arbitrary gene action in heterosis. Genetics 131:461–469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schrag TA, Frisch M, Dhillon BS, Melchinger AE (2009) Marker-based prediction of hybrid performance in maize single-crosses involving doubled haploids. Maydica 54:353–362

    Google Scholar 

  • Schulthess AW, Wang Y, Miedaner T, Wilde T, Reif JC, Zhao Y (2016) Multiple-trait- and selection indices-genomic predictions for grain yield and protein content in rye for feeding purposes. Theor Appl Genet 129:273–287

    Article  CAS  PubMed  Google Scholar 

  • Schulz-Streeck T, Ogutu JO, Gordillo A, Karaman Z, Knaak C, Piepho HP (2013) Genomic selection allowing for marker-by-environment interaction. Plant Breed 132:532–538

    Article  Google Scholar 

  • Sorensen D, Gianola D (2002) Likelihood, Bayesian, and MCMC methods in quantitative genetics. Springer, New York

    Book  Google Scholar 

  • Stuber CW, Cockerham CC (1966) Gene effects and variances in hybrid populations. Genetics 54:1279–1286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su G, Christensen OF, Ostersen T et al (2012) Estimating additive and non-additive genetic variances and predicting genetic merits using genome-wide dense single nucleotide polymorphism markers. PLoS One 7:e45293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Technow F, Riedelsheimer C, Ta S, Melchinger AE (2012) Genomic prediction of hybrid performance in maize with models incorporating dominance and population specific marker effects. Theor Appl Genet 125:1181–1194

    Article  PubMed  Google Scholar 

  • Technow F, Schrag TA, Schipprack W, Bauer E, Simianer H, Melchinger AE (2014) Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize. Genetics 197:1343–1355

    Article  PubMed  PubMed Central  Google Scholar 

  • Tracy WF, Chandler MA (2006) The historical and biological basis of the concept of heterotic patterns in corn belt dent maize. In: Lamkey KR, Lee M (eds) Plant breeding: the Arnel R Hallauer international symposium. Blackwell Publishing, Ames, pp 219–233

    Google Scholar 

  • VanRaden PM (2007) Genomic measures of relationship and inbreeding. Interbull Bull 37:33–36

    Google Scholar 

  • VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Mette MF, Miedaner T, Gottwald M, Wilde P, Reif JC, Zhao Y (2014) The accuracy of prediction of genomic selection in elite hybrid rye populations surpasses the accuracy of marker-assisted selection and is equally augmented by multiple field evaluation locations and test years. BMC Genomics 15:556

    Article  PubMed  PubMed Central  Google Scholar 

  • Ward J, Rakszegi M, Bedo Z, Shewry P, Mackay I (2015) Differentially penalized regression to predict agronomic traits from metabolites and markers in wheat. BMC Genet 16:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitford R, Fleury D, Reif JC, Garcia M, Okada T, Korzun V, Langridge P (2013) Hybrid breeding in wheat: technologies to improve hybrid wheat seed production. J Exp Bot 64:5411–5428

    Article  CAS  PubMed  Google Scholar 

  • Whittaker JC, Thompson R, Denham MC (2000) Marker-assisted selection using ridge regression. Genet Res 75:249–252

    Article  CAS  PubMed  Google Scholar 

  • Windhausen VS, Atlin GN, Hickey JM, Crossa J, Jannink JL, Sorrels ME, Raman B, Cairns JE, Tarekegne A, Semagn K, Beyene Y, Grudloyma P, Technow F, Riedelsheimer C, Melchinger AE (2012) Effectiveness of genomic prediction of maize hybrid performance in different breeding populations and environments. G3 2:1427–1436

    Article  PubMed  PubMed Central  Google Scholar 

  • Wricke G, Weber WE (1986) Quantitative genetics and selection in plant breeding. Gruyter, Berlin

    Book  Google Scholar 

  • Würschum T, Reif JC, Kraft T, Janssen G, Zhao Y (2013) Genomic selection in sugar beet breeding populations. BMC Genet 14:85

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu S, Zhu D, Zhang Q (2014) Predicting hybrid performance in rice using genomic best linear unbiased prediction. Proc Natl Acad Sci U S A 111:12456–12461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Pérez-Rodríguez P, Semagn K, Beyene Y, Babu R, López-Cruz MA, San Vicente F, Olsen M, Buckler E, Jannink JL, Prasanna BM, Crossa J (2015) Genomic prediction in biparental tropical maize populations in water-stressed and well-watered environments using low-density and GBS SNPs. Heredity 114:291–299

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Gowda M, Liu W, Würschum T, Maurer HP, Longin CFH, Ranc N, Reif JC (2012a) Accuracy of genomic selection in European maize elite breeding populations. Theor Appl Genet 124:769–776

    Article  PubMed  Google Scholar 

  • Zhao Y, Gowda M, Longin CFH, Würschum T, Ranc N, Reif JC (2012b) Impact of selective genotyping in the training population on accuracy and bias of genomic selection. Theor Appl Genet 125:707–713

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Gowda M, Würschum T, Longin CFH, Korzun V, Kollers S, Schachschneider R, Zeng J, Fernando R, Dubcovsky J (2013a) Dissecting the genetic architecture of frost tolerance in Central European winter wheat. J Exp Bot 64:4453–4460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Zeng J, Fernando R, Reif JC (2013b) Genomic prediction of hybrid wheat performance. Crop Sci 53:802–810

    Article  Google Scholar 

  • Zhao Y, Mette MF, Gowda M, Longin CFH, Reif JC (2014a) Bridging the gap between marker-assisted and genomic selection of heading time and plant height in hybrid wheat. Heredity 112:638–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Mette MF, Reif JC (2014b) Genomic selection in hybrid breeding. Plant Breed. doi:10.1111/pbr.12231

  • Zhao Y, Li Z, Liu G, Jiang Y, Maurer HP, Würschum T, Mock HP, Matros A, Ebmeyer E, Schachschneider R, Kazman E, Schacht J, Gowda M, Longin CFH, Reif JC (2015) Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1514547112

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen C. Reif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schulthess, A.W., Zhao, Y., Reif, J.C. (2017). Genomic Selection in Hybrid Breeding. In: Varshney, R., Roorkiwal, M., Sorrells, M. (eds) Genomic Selection for Crop Improvement. Springer, Cham. https://doi.org/10.1007/978-3-319-63170-7_7

Download citation

Publish with us

Policies and ethics