Skip to main content
Log in

Genomic prediction of hybrid performance in maize with models incorporating dominance and population specific marker effects

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Identifying high performing hybrids is an essential part of every maize breeding program. Genomic prediction of maize hybrid performance allows to identify promising hybrids, when they themselves or other hybrids produced from their parents were not tested in field trials. Using simulations, we investigated the effects of marker density (10, 1, 0.3 marker per mega base pair, Mbp−1), convergent or divergent parental populations, number of parents tested in other combinations (2, 1, 0), genetic model (including population-specific and/or dominance marker effects or not), and estimation method (GBLUP or BayesB) on the prediction accuracy. We based our simulations on marker genotypes of Central European flint and dent inbred lines from an ongoing maize breeding program. To simulate convergent or divergent parent populations, we generated phenotypes by assigning QTL to markers with similar or very different allele frequencies in both pools, respectively. Prediction accuracies increased with marker density and number of parents tested and were higher under divergent compared with convergent parental populations. Modeling marker effects as population-specific slightly improved prediction accuracy under lower marker densities (1 and 0.3 Mbp−1). This indicated that modeling marker effects as population-specific will be most beneficial under low linkage disequilibrium. Incorporating dominance effects improved prediction accuracies considerably for convergent parent populations, where dominance results in major contributions of SCA effects to the genetic variance among inter-population hybrids. While the general trends regarding the effects of the aforementioned influence factors on prediction accuracy were similar for GBLUP and BayesB, the latter method produced significantly higher accuracies for models incorporating dominance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albrecht T, Wimmer V, Auinger HJ, Erbe M, Knaak C, Ouzunova M, Simianer H, Schön CC (2011) Genome-based prediction of testcross values in maize. Theor Appl Genet 123:339–350

    Article  PubMed  Google Scholar 

  • Bates D, Maechler M, Bolker B (2011) lme4: linear mixed-effects models using S4 classes. http://CRAN.R-project.org/package=lme4, r package version 0.999375-39

  • Bernardo R (1996) Best linear unbiased prediction of maize single-cross performance. Crop Sci 36:50–56

    Article  Google Scholar 

  • Browning BL, Browning SR (2009) A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 84:210–223

    Article  PubMed  CAS  Google Scholar 

  • Charcosset A, Essioux L (1994) The effect of population structure on the relationship between heterosis and heterozygosity at marker loci. Theor Appl Genet 89:336–343

    Article  Google Scholar 

  • Clark S, Hickey JM, van der Werf JH (2011) Different models of genetic variation and their effect on genomic evaluation. Genet Sel Evol 43:18

    Article  PubMed  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. 4th edn. Longmans Green, Harlow

    Google Scholar 

  • Fischer S, Möhring J, Schön CC, Piepho HP, Klein D, Schipprack W, Utz HF, Melchinger AE, Reif JC (2008) Trends in genetic variance components during 30 years of hybrid maize breeding at the University of Hohenheim. Plant Breeding 127:446–451

    Article  Google Scholar 

  • Ganal MW, Durstewitz G, Polley A, Bérard A, Buckler ES, Charcosset A, Clarke JD, Graner EM, Hansen M, Joets J, Le Paslier MC, McMullen MD, Montalent P, Rose M, Schön CC, Sun Q, Walter H, Martin OC, Falque M (2011) A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS ONE 6:e28,334

    Article  CAS  Google Scholar 

  • Gardner C (1963) Estimates of genetic parameters in cross-fertilizing plants and their implications in plant breeding. In: Statistical genetics and plant breeding. Comittee on Plant Breeding and Genetics of the Agricultural Board at the North Carolina State College Raleigh, NC, vol 982, pp 225–251

  • Gardner C, Lonnquist J (1959) Linkage and the degree of dominance of genes controlling quantitative characters in maize. Agron J 51:524–528

    Article  Google Scholar 

  • Goddard M (2009) Genomic selection: prediction of accuracy and maximisation of long term response. Genetica 136:245–257

    Article  PubMed  Google Scholar 

  • Hayes BJ, Pryce J, Chamberlain AJ, Bowman PJ, Goddard M (2010) Genetic architecture of complex traits and accuracy of genomic prediction: coat colour, milk-fat percentage, and type in Holstein cattle as contrasting model traits. PLoS Genet 6:e1001,139

    Article  Google Scholar 

  • Ibánez-Escriche N, Fernando RL, Toosi A, Dekkers JCM (2009) Genomic selection of purebreds for crossbred performance. Genet Sel Evol 41:12

    Article  PubMed  Google Scholar 

  • Kizilkaya K, Carnier P, Albera A, Bittante G, Tempelman R (2003) Cumulative t-link threshold models for the genetic analysis of calving ease scores. Genet Sel Evol 35:489–512

    Article  PubMed  Google Scholar 

  • Labate J, Lamkey K, Lee M, Woodman W (1999) Temporal changes in allele frequencies in two reciprocally selected maize populations. Theor Appl Genet 99:1166–1178

    Article  Google Scholar 

  • Li Z, Sillanpää MJ (2012) Estimation of quantitative trait locus effects with epistasis by variational Bayes algorithms. Genetics 190:231–249

    Article  PubMed  Google Scholar 

  • Maenhout S, De Baets B, Haesaert G (2010) Prediction of maize single-cross hybrid performance: support vector machine regression versus best linear prediction. Theor Appl Genet 120:415–427

    Article  PubMed  Google Scholar 

  • Meuwissen TH, Goddard M (2010) Accurate prediction of genetic values for complex traits by whole-genome resequencing. Genetics 185:623–631

    Article  PubMed  CAS  Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard M (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  CAS  Google Scholar 

  • Müller P (1991) A generic approach to posterior integration and Gibbs sampling. Technical report, Purdue University # 91-09

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  PubMed  CAS  Google Scholar 

  • Pikkuhookana P, Sillanpää MJ (2009) Correcting for relatedness in Bayesian models for genomic data association analysis. Heredity 103:223–237

    Article  PubMed  CAS  Google Scholar 

  • Plummer M, Best N, Cowles K, Vines K (2010) coda: output analysis and diagnostics for MCMC. http://CRAN.R-project.org/package=coda, r package version 0.14-2

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/, ISBN 3-900051-07-0

  • Ramsey J, Ripley B (2010) pspline: penalized smoothing splines. http://CRAN.R-project.org/package=pspline, r package version 1.0-14

  • Reif JC, Gumpert FM, Fischer S, Melchinger AE (2007) Impact of interpopulation divergence on additive and dominance variance in hybrid populations. Genetics 176:1931–1934

    Article  PubMed  CAS  Google Scholar 

  • Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F, Sulpice R, Altmann T, Stitt M, Willmitzer L, Melchinger AE (2012) Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet 44:217–220

    Article  PubMed  CAS  Google Scholar 

  • Schaefer J, Opgen-Rhein R, Zuber V, Silva APD, Strimmer K (2012) corpcor: efficient estimation of covariance and (partial) correlation. http://CRAN.R-project.org/package=corpcor, r package version 1.6.2

  • Schrag TA, Melchinger AE, Sørensen AP, Frisch M (2006) Prediction of single-cross hybrid performance for grain yield and grain dry matter content in maize using AFLP markers associated with QTL. Theor Appl Genet 113:1037–1047

    Article  PubMed  CAS  Google Scholar 

  • Stich B, Melchinger AE, Piepho HP, Hamrit S, Schipprack W, Maurer HP, Reif JC (2007) Potential causes of linkage disequilibrium in a European maize breeding program investigated with computer simulations. Theor Appl Genet 115:529–536

    Article  PubMed  Google Scholar 

  • Van Inghelandt D, Melchinger AE, Lebreton C, Stich B (2010) Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor Appl Genet 120:1289–1299

    Article  PubMed  Google Scholar 

  • Van Inghelandt D, Reif JC, Dhillon BS, Flament P, Melchinger AE (2011) Extent and genome-wide distribution of linkage disequilibrium in commercial maize germplasm. Theor Appl Genet 123:11–20

    Article  PubMed  Google Scholar 

  • Xu S (2003) Estimating polygenic effects using markers of the entire genome. Genetics 163:789–801

    PubMed  CAS  Google Scholar 

  • Yan J, Shah T, Warburton M, Buckler E, McMullen M, Crouch J (2009) Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS One 4:e8451

    Article  PubMed  Google Scholar 

  • Yang W, Tempelman RJ (2012) A Bayesian antedependence model for whole genome prediction. Genetics 190:1491–1501

    Article  PubMed  Google Scholar 

  • Zhong S, Dekkers JCM, Fernando RL, Jannink JL (2009) Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a Barley case study. Genetics 182:355–364

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the German Federal Ministry of Education and Research (BMBF) within the AgroClustEr Synbreed—Synergistic plant and animal breeding (FKZ: 0315528d).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albrecht E. Melchinger.

Additional information

Communicated by M. Sillanpää.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (1085 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Technow, F., Riedelsheimer, C., Schrag, T.A. et al. Genomic prediction of hybrid performance in maize with models incorporating dominance and population specific marker effects. Theor Appl Genet 125, 1181–1194 (2012). https://doi.org/10.1007/s00122-012-1905-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1905-8

Keywords

Navigation