Skip to main content
Log in

Genome-based prediction of maize hybrid performance across genetic groups, testers, locations, and years

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The calibration data for genomic prediction should represent the full genetic spectrum of a breeding program. Data heterogeneity is minimized by connecting data sources through highly related test units.

Abstract

One of the major challenges of genome-enabled prediction in plant breeding lies in the optimum design of the population employed in model training. With highly interconnected breeding cycles staggered in time the choice of data for model training is not straightforward. We used cross-validation and independent validation to assess the performance of genome-based prediction within and across genetic groups, testers, locations, and years. The study comprised data for 1,073 and 857 doubled haploid lines evaluated as testcrosses in 2 years. Testcrosses were phenotyped for grain dry matter yield and content and genotyped with 56,110 single nucleotide polymorphism markers. Predictive abilities strongly depended on the relatedness of the doubled haploid lines from the estimation set with those on which prediction accuracy was assessed. For scenarios with strong population heterogeneity it was advantageous to perform predictions within a priori defined genetic groups until higher connectivity through related test units was achieved. Differences between group means had a strong effect on predictive abilities obtained with both cross-validation and independent validation. Predictive abilities across subsequent cycles of selection and years were only slightly reduced compared to predictive abilities obtained with cross-validation within the same year. We conclude that the optimum data set for model training in genome-enabled prediction should represent the full genetic and environmental spectrum of the respective breeding program. Data heterogeneity can be reduced by experimental designs that maximize the connectivity between data sources by common or highly related test units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albrecht T, Wimmer V, Auinger HJ, Erbe M, Knaak C, Ouzunova M, Simianer H, Schön CC (2011) Genome-based prediction of testcross values in maize. Theor Appl Genet 123:339–350

    Article  PubMed  Google Scholar 

  • Astle W, Balding DJ (2009) Population structure and cryptic relatedness in genetic association studies. Stat Sci 24:451–471

    Article  Google Scholar 

  • Burgueño J, de los Campos G, Weigel K, Crossa J (2012) Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers. Crop Sci 53:707–719

    Article  Google Scholar 

  • Crossa J, de los Campos G, Pérez P, Gianola D, Burgueño J, Araus JL, Makumbi D, Singh RP, Dreisigacker S, Yan J, Arief V, Banzinger M, Braun HJ (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186:713–724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ganal MW, Durstewitz G, Polley A, Bérard A, Buckler ES, Charcosset A, Clarke JD, Graner EM, Hansen M, Joets J, Le Paslier MC, McMullen MD, Montalent P, Rose M, Schön CC, Sun Q, Walter H, Martin OC, Falque M (2011) A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS One 6:e28334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gianola D (2013) Priors in whole-genome regression: the Bayesian alphabet returns. Genetics 194:573–596

    Article  CAS  PubMed  Google Scholar 

  • Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2009) ASReml user guide release 3.0. VSN International Ltd. Hemel Hempstead

  • Gordillo GA, Geiger HH (2008) Alternative recurrent selection strategies using doubled haploid lines in hybrid maize breeding. Crop Sci 48:911–922

    Article  Google Scholar 

  • Grubbs FE (1950) Sample criteria for testing outlying observations. Ann Math Stat 21:27–58

    Article  Google Scholar 

  • Guo Z, Tucker DM, Lu J, Kishore V, Gay G (2012) Evaluation of genome-wide selection efficiency in maize nested association mapping populations. Theor Appl Genet 124:261–275

    Article  PubMed  Google Scholar 

  • Guo Z, Tucker DM, Basten CJ, Gandhi H, Ersoz E, Guo B, Xu Z, Wang D, Gay G (2014) The impact of population structure on genomic prediction in stratified populations. Theor Appl Genet 127:749–762

    Google Scholar 

  • Habier D, Tetens J, Seefried F-R, Lichtner P, Thaller G (2010) The impact of genetic relationship information on genomic breeding values in German Holstein cattle. Genet Sel Evol 42:5

    Article  PubMed Central  PubMed  Google Scholar 

  • Hayes BJ, Bowman PJ, Chamberlain AC, Verbyla K, Goddard ME (2009) Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genet Sel Evol 41:51

    Article  PubMed Central  PubMed  Google Scholar 

  • Heslot N, Yang HP, Sorrells ME, Jannink JL (2012) Genomic selection in plant breeding: a comparison of models. Crop Sci 52:146–160

    Article  Google Scholar 

  • Hofheinz N, Borchardt D, Weissleder K, Frisch M (2012) Genome-based prediction of test cross performance in two subsequent breeding cycles. Theor Appl Genet 125:1639–1645

    Article  PubMed  Google Scholar 

  • Holland JB, Nyquist WE, Cervantes-Martínez CT (2003) Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev 22:9–112

    Google Scholar 

  • Jonas E, de Koning DJ (2013) Does genomic selection have a future in plant breeding? Trends Biotechnol 31:497–504

    Article  CAS  PubMed  Google Scholar 

  • Lehermeier C, Wimmer V, Albrecht T, Auinger HJ, Gianola D, Schmid VJ, Schön CC (2013) Sensitivity to prior specification in Bayesian genome-based prediction models. Stat Appl Genet Mol Biol 12:375–391

    PubMed  Google Scholar 

  • Melchinger AE, Utz HF, Schön CC (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149:383–403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pérez-Rodríguez P, Gianola D, González-Camacho JM, Crossa J, Manès Y, Dreisigacker S (2012) Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat. G3 2:1595–1605

    Article  PubMed Central  PubMed  Google Scholar 

  • Piepho HP, Williams ER, Fleck M (2006) A note on the analysis of designed experiments with complex treatment structure. HortScience 41:446–452

    Google Scholar 

  • Piepho HP, Möhring J, Schulz-Streeck T, Ogutu JO (2012) A stage-wise approach for the analysis of multi-environment trials. Biom J 54:844–860

    Article  PubMed  Google Scholar 

  • Reif J, Gumpert FM, Fischer S, Melchinger AE (2007) Impact of interpopulation divergence on additive and dominance variance in hybrid populations. Genetics 176:1931–1934

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F, Sulpice R, Altmann T, Stitt M, Willmitzer L, Melchinger AE (2012) Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet 44:217–220

    Article  CAS  PubMed  Google Scholar 

  • Riedelsheimer C, Endelman JB, Stange M, Sorrells ME, Jannink JL, Melchinger AE (2013) Genomic predictability of interconnected biparental maize populations. Genetics 194:493–503

    Article  PubMed  Google Scholar 

  • Rincent R, Laloë D, Nicolas S, Altmann T, Brunel D, Revilla P, Rodríguez VM, Moreno-Gonzalez J, Melchinger AE, Bauer E, Schön CC, Meyer N, Giauffret C, Bauland C, Jamin P, Laborde J, Monod H, Flament P, Charcosset A, Moreau L (2012) Maximizing the reliability of genomic selection by optimizing the calibration set of reference individuals: comparison of methods in two diverse groups of maize inbreds (Zea mays L.). Genetics 192:715–728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saatchi M, McClure MC, McKay SD, Rolf MM, Kim JW, Decker JE, Taxis TM, Chapple RH, Ramey HR, Northcutt SL, Bauck S, Woodward B, Dekkers JCM, Fernando RL, Schnabel RD, Garrick DJ, Taylor JF (2011) Accuracies of genomic breeding values in American Angus beef cattle using k-means clustering for cross-validation. Genet Sel Evol 43:40

    Article  PubMed Central  PubMed  Google Scholar 

  • Schulz-Streeck T, Ogutu JO, Karaman Z, Knaak C, Piepho HP (2012) Genomic selection using multiple populations. Crop Sci 52:2453–2461

    Article  Google Scholar 

  • Stram DO, Lee JW (1994) Variance components testing in the longitudinal mixed effects model. Biometrics 50:1171–1177

    Article  CAS  PubMed  Google Scholar 

  • Utz HF, Melchinger AE, Schön CC (2000) Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross-validation and validation with independent samples. Genetics 154:1839–1849

    PubMed Central  PubMed  Google Scholar 

  • Wimmer V, Albrecht T, Auinger HJ, Schön CC (2012) synbreed: a framework for the analysis of genomic prediction data using R. Bioinformatics 28:2086–2087

    Article  CAS  PubMed  Google Scholar 

  • Wimmer V, Lehermeier C, Albrecht T, Auinger HJ, Wang Y, Schön CC (2013) Genome-wide prediction of traits with different genetic architecture through efficient variable selection. Genetics 195:573–587

    Article  PubMed  Google Scholar 

  • Windhausen VS, Atlin GN, Hickey JM, Crossa J, Jannink JL, Sorrels ME, Raman B, Cairns JE, Tarekegne A, Semagn K, Beyene Y, Grudloyma P, Technow F, Riedelsheimer C, Melchinger AE (2012) Effectiveness of genomic prediction of maize hybrid performance in different breeding populations and environments. G3 2:1427–1436

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Daniel Gianola, Sofia daSilva, and Torben Schulz-Streeck for helpful comments on the manuscript. We also thank Ruedi Fries and Hubert Pausch for processing of SNP arrays. This research was funded by the German Federal Ministry of Education and Research (BMBF) within the AgroClustEr “Synbreed—Synergistic plant and animal breeding” (FKZ: 0315528A).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors declare that the experiments comply with the current laws of Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris-Carolin Schön.

Additional information

Communicated by J. Crossa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1088 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albrecht, T., Auinger, HJ., Wimmer, V. et al. Genome-based prediction of maize hybrid performance across genetic groups, testers, locations, and years. Theor Appl Genet 127, 1375–1386 (2014). https://doi.org/10.1007/s00122-014-2305-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2305-z

Keywords

Navigation