Skip to main content

Biogeography of the Japanese Gourmet Fungus, Tricholoma matsutake: A Review of the Distribution and Functional Ecology of Matsutake

  • Chapter
  • First Online:
Biogeography of Mycorrhizal Symbiosis

Part of the book series: Ecological Studies ((ECOLSTUD,volume 230))

Abstract

Tricholoma matsutake (S. Ito & S. Imai) Singer is an ectomycorrhizal basidiomycete that produces highly prized mushrooms known as ‘true matsutake’. Recent research has shown that T. matsutake has a wide but patchy distribution in temperate and boreal forests of Eurasia and subtropical China in association with Pinus, Picea, Tsuga, Abies and even fagaceous broadleaves. Molecular analyses of the microbial communities living in shiro soil have been made in certain locations, but their generality has yet to be determined systematically and across the entire range. Variation in fruiting in relation to climate and geography has improved our understanding of matsutake phenology, and important in-roads have been made into its ecology over the past 15 years. T. matsutake is a commercially-important fungal species that plays a significant role in the functional diversity of forests in the Northern Hemisphere, but much remains to be learned about this enigmatic taxon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agerer R (1987–1998) Colour atlas of ectomycorrhizae vol 1st–11th del. Einhorn-Verlag, Munich

    Google Scholar 

  • Amann RI, Luowid W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amaranthus MP, Pilz D, Moore A, Abbott R, Luoma D (2000) American matsutake (Tricholoma magnivelare) across spatial and temporal scales. General Technical Report—Pacific Southwest Research Station, USDA Forest Service (No. PSW-GTR-178), pp 99–108

    Google Scholar 

  • Amend A, Garbelotto M, Fang ZD, Keeley S (2010) Isolation by landscape in populations of a prized edible mushroom Tricholoma matsutake. Conserv Genet 11:795–802

    Article  Google Scholar 

  • Antony-Babu S, Deveau A, Van Nostrand JD, Zhou J, Le Tacon F, Robin C, Frey-Klett P, Uroz S (2014) Black truffle-associated bacterial communities during the development and maturation of Tuber melanosporum ascocarps and putative functional roles. Environ Microbiol 16:2831–2847

    Article  CAS  PubMed  Google Scholar 

  • Bergius N, Danell E (2000) The Swedish matsutake (Tricholoma nauseosum syn. T. matsutake): distribution, abundance and ecology. Scand J For Res 15:318–325

    Article  Google Scholar 

  • Bessette A, Bessette A, Roody W, Trudell S (2013) Tricholomas of North America: a mushroom field guide. University of Texas Press, Austin

    Google Scholar 

  • Bon M (1991) Flore mycologique d’Europe 2. Les tricholomes et ressemblants. Tricholomataceae (Fayod) Heim (lere partie)Tricholomoideae et Leucopaxilloideae genres Tricholoma, Tricholomopsis, Callistosporium, Porpoloma, Floccularia, Leucopaxillus et Melanoleuca. Documents mycologiques, Memoire hors serie no 2. Association decologie et de mycologie, U.E.R. pharmacie, Lille

    Google Scholar 

  • Bryla DR, Koide RT (1990) Regulation of reproduction in wild and cultivated Lycopersicon esculentum mill by vesicular arbuscular mycorrhizal infection. Oecologia 84:74–81

    Article  PubMed  Google Scholar 

  • Buée M, Vairelles D, Garbaye J (2005) Year-round monitoring of diversity and potential metabolic activity of the ectomycorrhizal community in a beech (Fagus silvatica) forest subjected to two thinning regimes. Mycorrhiza 15:235–245

    Article  PubMed  Google Scholar 

  • Buntgen U, Peter M, Kauserud H, Egli S (2013) Unraveling environmental drivers of a recent increase in Swiss fungi fruiting. Glob Chang Biol 19:2785–2794

    Article  PubMed  Google Scholar 

  • Buntgen U, Egli S, Galvan JD, Diez JM, Aldea J, Latorre J, Martinez-Pena F (2015) Drought-induced changes in the phenology, productivity and diversity of Spanish fungi. Fungal Ecol 16:6–18

    Article  Google Scholar 

  • Cairney J, Chambers S (1999) Ectomycorrhizal fungi key genera in profile. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Chapela IH, Garbelotto M (2004) Phylogeography and evolution in matsutake and close allies inferred by analyses of ITS sequences and AFLPs. Mycologia 96:730–741

    Article  CAS  PubMed  Google Scholar 

  • Chen G-L, Zhou D-Q, Yang Y-P, Yang X-F (2011) Fruiting pattern of Tricholoma matsutake and its relationship with meteorological factors in Yunnan, China. Plant Divers Resour 33:547–555

    Google Scholar 

  • Christensen M, Heilmann-Clausen J (2013) The genus ‘Tricholoma’. Danish Mycological Societies, Hornbak

    Google Scholar 

  • Courty PE, Labbe J, Kohler A, Marcais B, Bastien C, Churin JL, Garbaye J, Le Tacon F (2011) Effect of poplar genotypes on mycorrhizal infection and secreted enzyme activities in mycorrhizal and non-mycorrhizal roots. J Exp Bot 62:249–260

    Article  CAS  PubMed  Google Scholar 

  • Cullings K, Courty PE (2009) Saprotrophic capabilities as functional traits to study functional diversity and resilience of ectomycorrhizal community. Oecologia 161:661–664

    Article  PubMed  Google Scholar 

  • Deacon J, Fleming L (1992) Interactions of ectomycorrhizal fungi. In: Allen MF (ed) Mycorrhiza functioning: an integrative plant process. Chapman & Hall, New York, pp 249–300

    Google Scholar 

  • Endo N, Dokmai P, Suwannasai N, Phosri C, Horimai Y, Hirai N, Fukuda M, Yamada A (2015) Ectomycorrhization of Tricholoma matsutake with Abies veitchii and Tsuga diversifolia in the subalpine forests of Japan. Mycoscience 56:402–412

    Article  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36

    Article  CAS  PubMed  Google Scholar 

  • Furukawa H, Masuno K, Takeuchi Y (2016) Forest management of matsutake productive sites for the optimization to global warming. Annual reports of the Nagano Prefecture Forestry Research Center 30:87–100

    Google Scholar 

  • Gange AC, Gange EG, Sparks TH, Boddy L (2007) Rapid and recent changes in fungal fruiting patterns. Science 316:71–71

    Article  CAS  PubMed  Google Scholar 

  • Gill WM, Guerin-Laguette A, Lapeyrie F, Suzuki K (2000) Matsutake—morphological evidence of ectomycorrhiza formation between Tricholoma matsutake and host roots in a pure Pinus densiflora forest stand. New Phytol 147:381–388

    Article  Google Scholar 

  • Gong M, Chen Y, Wang F, Chen Y (1999) Song Rong (Tricholoma matsutake). Yunnan Science and Technology Publishing House, Kunming

    Google Scholar 

  • Grayston SJ, Vaughan D, Jones D (1997) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56

    Article  Google Scholar 

  • Guerin-Laguette A, Matsushita N, Kikuchi K, Iwase K, Lapeyrie F, Suzuki K (2002) Identification of a prevalent Tricholoma matsutake ribotype in Japan by rDNA IGS1 spacer characterization. Mycol Res 106:435–443

    Article  CAS  Google Scholar 

  • Guerin-Laguette A, Shindo K, Matsushita N, Suzuki K, Lapeyrie F (2004) The mycorrhizal fungus Tricholoma matsutake stimulates Pinus densiflora seedling growth in vitro. Mycorrhiza 14:397–400

    Article  PubMed  Google Scholar 

  • Guerin-Laguette A, Matsushita N, Lapeyrie F, Shindo K, Suzuki K (2005) Successful inoculation of mature pine with Tricholoma matsutake. Mycorrhiza 15:301–305

    Article  PubMed  Google Scholar 

  • Hall IR, Yun W, Amicucci A (2003) Cultivation of edible ectomycorrhizal mushrooms. Trends Biotechnol 21:433–438

    Article  CAS  PubMed  Google Scholar 

  • Hamada M (1953) Matsutake. Shizen 8:56–64

    Google Scholar 

  • Hamada M (1964) General introduction to Tricholoma matsutake (in Japanese). In: The Matsutake Research Association (ed) Matsutake (Tricholoma matsutake Singer)—its fundamental studies and economic production of the fruit-body, vol 6. The Matsutake Research Association

    Google Scholar 

  • Hasebe K, Ohira I, Arita I (1998) Genetic relationship between high-, medium-, and low-temperature-type fruiting of Lentinula edodes in wood log culture, vol 36, Tottori Mycological Institute

    Google Scholar 

  • Hosford D, Pilz D, Molina R, Amaranthus M (1997) Ecology and management of the commercially harvested American matsutake. General Technical Report (GTR) PNW-GTR-412. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR

    Google Scholar 

  • Hur T-C, Ka K-H, Joo S-H, Terashita T (2001) Characteristics of the amylase and its related enzymes produced by ectomycorrhizal fungus Tricholoma matsutake. Mycobiology 29:183–189

    CAS  Google Scholar 

  • Intini M, Doğan HH, Riva A (2003) Tricholoma anatolicum spec. Nov.: a new member of the matsutake group. Micol Veget Medit 18:135–142

    Google Scholar 

  • Jiang H, He CG, Yu FQ, Liu PG, Zhao WQ (2015) Bacterial diversity cultured from shiros of Tricholoma matsutake. Chinese J Ecol 34:150–156

    Google Scholar 

  • Ka K, Park H, Hur T, Bak W (2008) Selection of Ectomycorrhizal Iiolates of Tricholoma matsutake and T. magnivelare for inoculation on seedlings of Pinus densiflora in vitro. Korean J Mycol 36:148–152

    Article  Google Scholar 

  • Kataoka R, Siddiqui ZA, Kikuchi J, Ando M, Sriwati R, Nozaki A, Futai K (2012) Detecting nonculturable bacteria in the active mycorrhizal zone of the pine mushroom Tricholoma matsutake. J Microbiol 50:199–206

    Article  PubMed  Google Scholar 

  • Kauserud H, Heegaard E, Semenov MA, Boddy L, Halvorsen R, Stige LC, Sparks TH, Gange AC, Stenseth NC (2010) Climate change and spring-fruiting fungi. Proc R Soc B Biol Sci 277:1169–1177

    Article  Google Scholar 

  • Kiikkilä O, Kitunen V, Smolander A (2011) Properties of dissolved organic matter derived from silver birch and Norway spruce stands: degradability combined with chemical characteristics. Soil Biol Biochem 43:421–430

    Article  CAS  Google Scholar 

  • Kim M, Yoon H, You YH, Kim YE, Woo JR, Seo Y, Lee GM, Kim YJ, Kong WS, Kim JG (2013) Metagenomic analysis of fungal communities inhabiting the fairy ring zone of Tricholoma matsutake. J Microbiol Biotechnol 23:1347–1356

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Yoon H, Kim YE, Kim YJ, Kong WS, Kim JG (2014) Comparative analysis of bacterial diversity and communities inhabiting the fairy ring of Tricholoma matsutake by barcoded pyrosequencing. J Appl Microbiol 117:699–710

    Article  CAS  PubMed  Google Scholar 

  • Kinugawa K (1963) Ecological studies on the development of fruit-body in Armillaria matsutake Ito et Imai: analysis of growth curves. Bull Univ Osaka Prefect B 14:27–60

    Google Scholar 

  • Kobayashi H, Watahiki T, Kuramochi M, Onose K, Yamada A (2007) Production of pine seedlings with the shiro-like structure of the matsutake mushroom (Tricholoma matsutake (S. Ito et Imai) Sing.) in a large culture bottle. Mushroom Sci Biotechnol 15:151–155

    Google Scholar 

  • Kobayashi H, Terasaki M, Yamada A (2015) Two-year survival of Tricholoma matsutake ectomycorrhizas on Pinus densiflora seedlings after outplanting to a pine forest. Mushroom Sci Biotechnol 23:108–113

    Google Scholar 

  • Kretzer AM, Dunham S, Molina R, Spatafora JW (2005) Patterns of vegetative growth and gene flow in Rhizopogon vinicolor and R. vesiculosus (Boletales, Basidiomycota). Mol Ecol 14:2259–2268

    Article  CAS  PubMed  Google Scholar 

  • Kusuda M, Ueda M, Konishi Y, Araki Y, Yamanaka K, Nakazawa M, Miyatake K, Terashita T (2006) Detection of beta-glucosidase as saprotrophic ability from an ectomycorrhizal mushroom, Tricholoma matsutake. Mycoscience 47:184–189

    Article  CAS  Google Scholar 

  • Kusuda M, Ueda M, Miyatake K, Terashita T (2008) Characterization of the carbohydrase productions of an ectomycorrhizal fungus, Tricholoma matsutake. Mycoscience 49:291–297

    Article  CAS  Google Scholar 

  • Kytövuori I (1988) The Tricholoma caligatum group in Europe and north Africa. Karstenia 28:65–78

    Google Scholar 

  • Li Q, Li XL, Huang WL, Xiong C, Yang Y, Yang ZR, Zheng LY (2014) Community structure and diversity of entophytic bacteria in Tricholoma matsutake in Sichuan Province, Southwest China. Ying Yong Sheng Tai Xue Bao 25:3316–3322

    CAS  PubMed  Google Scholar 

  • Lian C, Narimatsu M, Nara K, Hogetsu T (2006) Tricholoma matsutake in a natural Pinus densiflora forest: correspondence between above- and below-ground genets, association with multiple host trees and alteration of existing ectomycorrhizal communities. New Phytol 171:825–836

    Article  PubMed  Google Scholar 

  • Lindahl BD, Tunlid A (2015) Ectomycorrhizal fungi–potential organic matter decomposers, yet not saprotrophs. New Phytol 205:1443–1447

    Article  CAS  PubMed  Google Scholar 

  • Lombard N, Prestat E, van Elsas JD, Simonet P (2011) Soil-specific limitations for access and analysis of soil microbial communities by metagenomics. FEMS Microbiol Ecol 78:31–49

    Article  CAS  PubMed  Google Scholar 

  • Maier A, Riedlinger J, Fiedler H-P, Hampp R (2004) Actinomycetales bacteria from a spruce stand: characterization and effects on growth of root symbiotic and plant parasitic soil fungi in dual culture. Mycol Prog 3:129–136

    Article  Google Scholar 

  • Matsushita N, Kikuchi K, Sasaki Y, Guerin-Laguette A, Lapeyrie F, Vaario L-M, Intini M, Suzuki K (2005) Genetic relationship of Tricholoma matsutake and T. nauseosum from the northern hemisphere based on analyses of ribosomal DNA spacer regions. Mycoscience 46:90–96

    Article  CAS  Google Scholar 

  • Morales SE, Holben WE (2011) Linking bacterial identities and ecosystem processes: can ‘omic’ analyses be more than the sum of their parts? FEMS Microbiol Ecol 75:2–16

    Article  CAS  PubMed  Google Scholar 

  • Mosca E, Montecchio L, Scattolin L, Garbaye J (2007) Enzymatic activities of three ectomycorrhizal types of Quercus robur L. in relation to tree decline and thinning. Soil Biol Biochem 39:2897–2904

    Article  CAS  Google Scholar 

  • Murata Y, Minamide T (1989) Occurrences of Tricholoma matsutake. Hokkaido Hoppo Ringyo 41:293–299

    Google Scholar 

  • Murata Y, Takahashi Y, Horahiro K, Adachi Y (2001) Productivity of matsutake in a natural forest of Todo-fir and environmental improvement for its occurrence. Bull Hokkaido Forestry Res Inst 38:1–22

    Google Scholar 

  • Murata H, Babasaki K, Saegusa T, Takemoto K, Yamada A, Ohta A (2008) Traceability of Asian Matsutake, specialty mushrooms produced by the ectomycorrhizal basidiomycete Ticholoma matsutake, on the basis of retroelement-based DNA markers. Appl Environ Microbiol 74:2023–2031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murata H, Yamada A, Maruyama T, Endo N, Yamamoto K, Ohira T, Shimokawa T (2013a) Root endophyte interaction between ectomycorrhizal basidiomycete Tricholoma matsutake and arbuscular mycorrhizal tree Cedrela odorata, allowing in vitro synthesis of rhizospheric “shiro”. Mycorrhiza 23:235–242

    Article  CAS  PubMed  Google Scholar 

  • Murata H, Ota Y, Yamaguchi M, Yamada A, Katahata S, Otsuka Y, Babasaki K, Neda H (2013b) Mobile DNA distributions refine the phylogeny of “matsutake” mushrooms, tricholoma sect. Caligata. Mycorrhiza 23:447–461

    Article  PubMed  Google Scholar 

  • Murata H, Yamada A, Yokota S, Maruyama T, Endo N, Yamamoto K, Ohira T, Neda H (2014a) Root endophyte symbiosis in vitro between the ectomycorrhizal basidiomycete Tricholoma matsutake and the arbuscular mycorrhizal plant Prunus speciosa. Mycorrhiza 24:315–321

    Article  PubMed  Google Scholar 

  • Murata H, Yamada A, Maruyama T, Endo N, Yamamoto K, Hayakawa N, Neda H (2014b) In vitro shiro formation between the ectomycorrhizal basidiomycete Tricholoma matsutake and Cedrela herrerae in the mahogany family (Meliaceae). Mycoscience 55:275–279

    Article  Google Scholar 

  • Murata H, Ohta A, Yamada A, Horimai Y, Katahata S, Yamaguchi M, Neda H (2015a) Monokaryotic hyphae germinated from a single spore of the ectomycorrhizal basidiomycete Tricholoma matsutake. Mycoscience 56:287–292

    Article  CAS  Google Scholar 

  • Murata H, Yamada A, Maruyama T, Neda H (2015b) Ectomycorrhizas in vitro between Tricholoma matsutake, a basidiomycete that associates with Pinaceae, and Betula platyphylla Var. japonica, an early-successional birch species, in cool-temperate forests. Mycorrhiza 25:237–241

    Article  PubMed  Google Scholar 

  • Murata H, Yamada A, Yamamoto K, Maruyama T, Igasaki T, Mohri T, Yamanaka T, Shimokawa T, Neda H (2016) The ectomycorrhizal basidiomycete Tricholoma matsutake associates with the root tissues of the model tree Populus tremula × tremuloides in vitro. Bull FFPRI 15:17–18

    Google Scholar 

  • Narimatsu M, Koiwa T, Masaki T, Sakamoto Y, Ohmori H, Tawaraya K (2015) Relationship between climate, expansion rate, and fruiting in fairy rings (‘shiro’) of an ectomycorrhizal fungus Tricholoma matsutake in a Pinus densiflora forest. Fungal Ecol 15:18–28

    Article  Google Scholar 

  • Nishino K, Shiro M, Oizumi K, Okura R, Fujita T, Yamaguchi M, Yamada A, Tanaka C, Sasamori T, Tokitoh N, Hirai N (2016a) The growth strategy of Tricholoma matsutake with antimicrobial (oxalato)aluminate complex. In: 127th Annual Japanese Forest Society Meeting, Kanakawa, p M4

    Google Scholar 

  • Nishino K, Shiro M, Okura R, Oizumi K, Fujita T, Sasamori T, Tokitoh N, Yamada A, Tanaka C, Yamaguchi M, Hiradate S, Hirai N (2016b) The (oxalato) aluminate complex as an antimicrobial substance protecting the “shiro” of Tricholoma matsutake from soil micro-organisms. Biosci Biotechnol Biochem 81:102–111

    Article  PubMed  CAS  Google Scholar 

  • Ogawa M (1976a) Microbial ecology of ‘Shiro’ in Tricholoma matsutake (S. Ito et Imai) Sing. and its allied species. II: Tricholoma matsutake in Pinus pumila Var. yezoalpina forest. Trans Mycol Soc Jpn 17:176–187

    Google Scholar 

  • Ogawa M (1976b) Microbial ecology of ‘Shiro’ in Tricholoma matsutake (S. Ito et Imai) Sing. and its allied species. III: Tricholoma matsutake in Picea glehnii and Picea glehnii-Abies sachalinensis forests. Trans Mycol Soc Jpn 17:188–198

    Google Scholar 

  • Ogawa M (1977a) Microbial ecology of ‘Shiro’ in Tricholoma matsutake (S. Ito et Imai) Sing. and its allied species. IV: Tricholoma matsutake in Tsuga Diversifolia forests. Trans Mycol Soc Jpn 18:20–33

    Google Scholar 

  • Ogawa M (1977b) Microbial ecology of ‘Shiro’ in Tricholoma matsutake (S. Ito et Imai) Sing. and its allied species. V: Tricholoma matsutake in Tsuga sieboldii forests. Trans Mycol Soc Jpn 18:34–46

    Google Scholar 

  • Ogawa M (1978) Biology of Matsutake mushroom. Tsukiji Shokan, Tokyo, p 333

    Google Scholar 

  • Ohara H (1980) Bacterial population in the shiro of Tricholoma matsutake and its allied species II. Bacterial behaviour in the shiro of T. matsutake under various forest conditions. Doshisha Women’s College of Liberal Arts. Ann Rep Stud 31:240–269

    Google Scholar 

  • Ohara H, Hamada M (1967) Disappearance of bacteria from zone of active mycorrhizas in Tricholoma matsutake (S. Ito Et Imai) Singer. Nature 213:528–529

    Article  Google Scholar 

  • Okada K, Okada S, Yasue K, Fukuda M, Yamada A (2011) Six-year monitoring of pine ectomycorrhizal biomass under a temperate monsoon climate indicates significant annual fluctuations in relation to climatic factors. Ecol Res 26:411–419

    Article  Google Scholar 

  • Ota Y, Yamanaka T, Murata H, Neda H, Ohta A, Kawai M, Yamada A, Konno M, Tanaka C (2012) Phylogenetic relationship and species delimitation of matsutake and allied species based on multilocus phylogeny and haplotype analyses. Mycologia 104:1369–1380

    Article  PubMed  Google Scholar 

  • Park M, Sim S, Cheon W (2007) Methods of preparing Tricholoma matsutake-infected young pine by culturing aseptic pine seedlings and T. matsutake, US726993

    Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Koppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644

    Article  Google Scholar 

  • Põlme S, Bahram M, Yamanaka T, Nara K, Dai YC, Grebenc T, Kraigher H, Toivonen M, Wang PH, Matsuda Y, Naadel T, Kennedy PG, Koljalg U, Tedersoo L (2013) Biogeography of ectomycorrhizal fungi associated with alders (Alnus spp.) in relation to biotic and abiotic variables at the global scale. New Phytol 198:1239–1249

    Article  PubMed  CAS  Google Scholar 

  • Ray N, Adams JM (2001) A GIS-based vegetation map of the world at the last glacial maximum (25,000–15,000 BP). Int Archaeol 11

    Google Scholar 

  • Risberg L, Danell E, Dahlberg A (2004) Is Tricholoma matsutake associated with continuity of scots pine trees? (Finns goliatmusseronen enbart i tallskogar som aldrig kalavverkats?). Sven Bot Tidskr 98:317–327

    Google Scholar 

  • Rudnick MB, van Veen JA, de Boer W (2015) Baiting of rhizosphere bacteria with hyphae of common soil fungi reveals a diverse group of potentially mycophagous secondary consumers. Soil Biol Biochem 88:73–82

    Article  CAS  Google Scholar 

  • Ryman S, Bergius N, Danell E (2000) (1459) Proposal to conserve the name Armillaria matsutake against Armillaria nauseosa (fungi, Basidiomycotina, Tricholomataceae). Taxon 49:555–556

    Article  Google Scholar 

  • Satake Y, Hara H, Watari S, Tominari T (1989) Wild flowers of Japan: woody plants. Heibonsha, Tokyo

    Google Scholar 

  • Sato H, Morimoto S, Hattori T (2012) A thirty-year survey reveals that ecosystem function of fungi predicts phenology of mushroom fruiting. PLoS One 7:e49777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrey SD, Schellhammer M, Ecke M, Hampp R, Tarkka MT (2005) Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol 168:205–216

    Article  CAS  PubMed  Google Scholar 

  • Seipke RF, Kaltenpoth M, Hutchings MI (2012) Streptomyces as symbionts: an emerging and widespread theme? FEMS Microbiol Rev 36:862–876

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read D (2008) Mycorrhizal Symbiosis. In: Mycorrhizal symbiosis, 3rd edn. Academic Press, London, pp 1–787

    Chapter  Google Scholar 

  • Suzuki K (2005) Ectomycorrhizal ecophysiology and the puzzle of Tricholoma matsutake. J Jpn For Soc 87:90–102

    Article  CAS  Google Scholar 

  • Tagu D, Bastien C, Faivre-Rampant P, Garbaye J, Vion P, Villar M, Martin F (2005) Genetic analysis of phenotypic variation for ectomycorrhiza formation in an interspecific F1 poplar full-sib family. Mycorrhiza 15:87–91

    Article  CAS  PubMed  Google Scholar 

  • Talbot J, Allison S, Treseder K (2008) Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct Ecol 22:955–963

    Article  Google Scholar 

  • Tarkka MT, Lehr N-A, Hampp R, Schrey SD (2008) Plant behavior upon contact with Streptomycetes. Plant Signal Behav 3:917–919

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor AFS, Alexander I (2005) The ectomycorrhizal symbiosis: life in the real world. Mycologist 19:102–112

    Article  Google Scholar 

  • Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A (2014) Global diversity and geography of soil fungi. Science 346:1256688

    Article  PubMed  CAS  Google Scholar 

  • Terashita T, Kono M, Yoshikawa K, Shishiyama J (1995) Productivity of hydrolytic enzymes by mycorrhizal mushrooms. Mycoscience 36(2):221–225

    Article  CAS  Google Scholar 

  • The Global Fungal Red List Initiative (2015) Tricholoma matsutake (S. Ito & S. Imai) Singer. http://iucn.ekoo.se/iucn/species_view/307044

  • The Matsutake Research Association (1964) Matsutake (Tricholoma matsutake Singer)—its fundamental studies and economic production of the fruitbody. The Matsutake Research Association, Kyoto

    Google Scholar 

  • Vaario LM, Guerin-Laguette A, Matsushita N, Suzuki K, Lapeyrie F (2002) Saprobic potential of Tricholoma matsutake: growth over pine bark treated with surfactants. Mycorrhiza 12:1–5

    Article  CAS  PubMed  Google Scholar 

  • Vaario LM, Pennanen T, Sarjala T, Savonen E-M, Heinonsalo J (2010) Ectomycorrhization of Tricholoma matsutake and two major conifers in Finland-an assessment of in vitro mycorrhiza formation. Mycorrhiza 20:511–518

    Article  PubMed  Google Scholar 

  • Vaario LM, Fritze H, Spetz P, Heinonsalo J, Hanajik P, Pennanen T (2011) Tricholoma matsutake dominates diverse microbial communities in different forest soils. Appl Environ Microbiol 77:8523–8531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaario LM, Heinonsalo J, Spetz P, Pennanen T, Heinonen J, Tervahauta A, Fritze H (2012) The ectomycorrhizal fungus Tricholoma matsutake is a facultative saprotroph in vitro. Mycorrhiza 22:409–418

    Article  CAS  PubMed  Google Scholar 

  • Vaario LM, Kiikkilä O, Hamberg L (2013) The influences of litter cover and understorey vegetation on fruitbody formation of Tricholoma matsutake in southern Finland. Appl Soil Ecol 66:56–60

    Article  Google Scholar 

  • Vaario LM, Lu JR, Koistinen A, Tervahauta A, Aronen T (2015a) Variation among matsutake ectomycorrhizae in four clones of Pinus sylvestris. Mycorrhiza 25:195–204

    Article  PubMed  Google Scholar 

  • Vaario LM, Pennanen T, Lu JR, Palmen J, Stenman J, Leveinen J, Kilpelainen P, Kitunen V (2015b) Tricholoma matsutake can absorb and accumulate trace elements directly from rock fragments in the shiro. Mycorrhiza 25:325–334

    Article  CAS  PubMed  Google Scholar 

  • Vaario LM, Savonen EM, Peltoniemi M, Miyazawa T, Pulkkinen P, Sarjala T (2015c) Fruiting pattern of Tricholoma matsutake in southern Finland. Scan J For Res 30:259–265

    Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  CAS  Google Scholar 

  • Vincenot L, Nara K, Sthultz C, Labbe J, Dubois M, Tedersoo L, Martin F, Selosse M (2012) Extensive gene flow over Europe and possible speciation over Eurasia in the ectomycorrhizal basidiomycete Laccaria amethystina complex. Mol Ecol 21:281–299

    Article  CAS  PubMed  Google Scholar 

  • Wan J, Koike A, Yamanaka K, Sotome K, Morinaga T, Tanaka C, Terashima Y, Aimi T (2012) Genetic diversity of Tricholoma matsutake and close allies associated with broad-leaved trees in Asia. Mushroom Sci Biotechnol 19:167–174

    Google Scholar 

  • Wang Y, Hall IR, Evans LA (1997) Ectomycorrhizal fungi with edible fruiting bodies 1.Tricholoma Matsutake and related fungi. Econ Bot 51:311–327

    Article  Google Scholar 

  • Wang Y, Cummings N, Guerin-Laguette A (2012) Cultivation of basidiomycete edible ectomycorrhizal mushrooms: Tricholoma, Lactarius, and Rhizopogon. In: Zambonelli A, Bonito GM (eds) Edible ectomycorrhizal mushrooms. Springer, Heidelberg, pp 281–304

    Chapter  Google Scholar 

  • Westover KM, Kennedy AC, Kelley SE (1997) Patterns of rhizosphere microbial community structure associated with co-occurring plant species. J Ecol 85:863–873

    Article  Google Scholar 

  • Xu JP, Sha TA, Li YC, Zhao ZW, Yang ZL (2008) Recombination and genetic differentiation among natural populations of the ectomycorrhizal mushroom Tricholoma matsutake from southwestern China. Mol Ecol 17:1238–1247

    Article  PubMed  Google Scholar 

  • Xu JP, Cadorin M, Liang YJ, Yang ZL (2010) DNA-based geographic typing of the gourmet mushroom Tricholoma matsutake traded in China. Mycoscience 51:248–251

    Article  CAS  Google Scholar 

  • Yamada A (2015) Ecology of Tricholoma matsutake as the mycorrhizal mushroom. JATAFF J 3:30–34

    Google Scholar 

  • Yamada A, Kobayashi H (2008) Future perspective in the cultivation of matsuake. Shinrin Kagaku 53:41–42

    Google Scholar 

  • Yamada A, Kanekawa S, Ohmasa M (1999) Ectomycorrhiza formation of Tricholoma matsutake on Pinus densiflora. Mycoscience 40:193–198

    Article  Google Scholar 

  • Yamada A, Maeda K, Kobayashi H, Murata H (2006) Ectomycorrhizal symbiosis in vitro between Tricholoma matsutake and Pinus densiflora seedlings that resembles naturally occurring ‘shiro’. Mycorrhiza 16:111–116

    Article  PubMed  Google Scholar 

  • Yamada A, Kobayashi H, Murata H, Kalmis E, Kalyoncu F, Fukuda M (2010) In vitro ectomycorrhizal specificity between the Asian red pine Pinus densiflora and Tricholoma matsutake and allied species from worldwide Pinaceae and Fagaceae forests. Mycorrhiza 20:333–339

    Article  PubMed  Google Scholar 

  • Yamada A, Endo N, Murata H, Ohta A, Fukuda M (2014) Tricholoma matsutake Y1 strain associated with Pinus Densiflora shows a gradient of in vitro ectomycorrhizal specificity with Pinaceae and oak hosts. Mycoscience 55:27–34

    Article  Google Scholar 

  • Yamaguchi M, Narimatsu M, Fujita T, Kawai M, Kobayashi H, Ohta A, Yamada A, Matsushita N, Neda H, Shimokawa T, Murata H (2016) A qPCR assay that specifically quantifies Tricholoma matsutake biomass in natural soil. Mycorrhiza 26:847–861

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka T, Aimi T, Wan J, Cao H, Chen M (2011) Species of host trees associated with Tricholoma matsutake and allies in Asia. Mushroom Sci Biotechnol 19:79–87

    Google Scholar 

  • Yang XF, Luedeling E, Chen GL, Hyde KD, Yang YJ, Zhou DQ, Xu JC, Yang YP (2012) Climate change effects fruiting of the prize matsutake mushroom in China. Fungal Divers 56:189–198

    Article  Google Scholar 

  • Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84:2042–2050

    Article  Google Scholar 

  • Zang M (1990) A taxonomic and geographic study on the song Rong (matsutake) group and its allied species. Acta Mycol Sin 9:112–127

    Google Scholar 

  • Zeng DF, Chen B (2015) Genetic variability and bottleneck detection of four Tricholoma matsutake populations from northeastern and southwestern China. Environ Microbiol 17:2870–2881

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to all our colleagues whose work could not be cited here because of space limitations. We thank Michael Hardman for revising the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu-Min Vaario .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Vaario, LM., Yang, X., Yamada, A. (2017). Biogeography of the Japanese Gourmet Fungus, Tricholoma matsutake: A Review of the Distribution and Functional Ecology of Matsutake. In: Tedersoo, L. (eds) Biogeography of Mycorrhizal Symbiosis. Ecological Studies, vol 230. Springer, Cham. https://doi.org/10.1007/978-3-319-56363-3_15

Download citation

Publish with us

Policies and ethics