Skip to main content
Log in

Mobile DNA distributions refine the phylogeny of “matsutake” mushrooms, Tricholoma sect. Caligata

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

“Matsutake” mushrooms are formed by several species of Tricholoma sect. Caligata distributed across the northern hemisphere. A phylogenetic analysis of matsutake based on virtually neutral mutations in DNA sequences resolved robust relationships among Tricholoma anatolicum, Tricholoma bakamatsutake, Tricholoma magnivelare, Tricholoma matsutake, and Tricholoma sp. from Mexico (=Tricholoma sp. Mex). However, relationships among these matsutake and other species, such as Tricholoma caligatum and Tricholoma fulvocastaneum, were ambiguous. We, therefore, analyzed genomic copy numbers of σ marY1 , marY1, and marY2N retrotransposons by comparing them with the single-copy mobile DNA megB1 using real-time polymerase chain reaction (PCR) to clarify matsutake phylogeny. We also examined types of megB1-associated domains, composed of a number of poly (A) and poly (T) reminiscent of RNA-derived DNA elements among these species. Both datasets resolved two distinct groups, one composed of T. bakamatsutake, T. fulvocastaneum, and T. caligatum that could have diverged earlier and the other comprising T. magnivelare, Tricholoma sp. Mex, T. anatolicum, and T. matsutake that could have evolved later. In the first group, T. caligatum was the closest to the second group, followed by T. fulvocastaneum and T. bakamatsutake. Within the second group, T. magnivelare was clearly differentiated from the other species. The data suggest that matsutake underwent substantial evolution between the first group, mostly composed of Fagaceae symbionts, and the second group, comprised only of Pinaceae symbionts, but diverged little within each groups. Mobile DNA markers could be useful in resolving difficult phylogenies due to, for example, closely spaced speciation events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amaranthus MP, Pilz D, Moore A, Abbott R, Luoma D (2000) American matsutake (Tricholoma magnivelare) across spatial and temporal scales. USDA Forest Service Gen. Tech. Rep. PSW-GTR-178:99–108

  • Babasaki K, Neda H, Murata H (2007) megB1, a novel macroevolutionary genomic marker of the fungal phylum Basidiomycota. Biosci Biotechnol Biochem 71:1927–1939

    Article  PubMed  CAS  Google Scholar 

  • Bakkeren G, Jiang G, Warren RL, Butterfield Y, Shin H, Chiu R, Linning R, Schein J, Lee N, Hu G, Kupfer DM, Tang Y, Roe BA, Jones S, Marra M, Kronstad JW (2006) Mating factor linkage and genome evolution in basidiomycetous pathogens of cereals. Fun Gen Biol 43:655–666

    Article  CAS  Google Scholar 

  • Batzer MA, Deininger PL (2002) Alu repeats and human genomic diversity. Nat Rev Genet 3:370–380

    Article  PubMed  CAS  Google Scholar 

  • Bon M (1991) Flore mycologique d'Europe. 2. Les tricholomes et ressemblants. Tricholomataceae (Fayod) Heim (1ère partie). Doc Mycol, Mémoire hors série no 2. Edité par l'association d'écologie et mycologie, Lille

    Google Scholar 

  • Bruns TD (2006) Evolutionary biology: a kingdom revised. Nature 433:758–761

    Article  Google Scholar 

  • Bushman F (2002) Lateral DNA transfer: mechanisms and consequences. Cold Spring Harbor, New York

    Google Scholar 

  • Comeaux MS, Roy-Engel AM, Hedges DJ, Deininger PL (2009) Diverse cis factors controlling Alu retrotransposition: what causes Alu elements to die? Genome Res 19:545–555

    Article  PubMed  CAS  Google Scholar 

  • Deininger PL (1989) SINEs: short interspersed repeated DNA elements in higher eucaryotes. In: Berg DE, Howe MM (eds) Mobile DNA. ASM, Washington DC, pp 619–636

    Google Scholar 

  • Deininger PL, Roy-Engel AM (2002) Mobile elements in animal and plant genomes. In: Craig NL, Craigie R, Gellert M, Lambowitz AM (eds) Mobile DNA II. ASM, Washington DC, pp 1074–1092

    Google Scholar 

  • Dobinson KF, Harris RE, Hamer JE (1993) Grasshopper, a long terminal repeat (LTR) retroelement in the phytopathogenic fungus Magnaporthe grisea. Mol Plant Microbe Interact 6:114–126

    Article  PubMed  CAS  Google Scholar 

  • Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341

    Article  PubMed  CAS  Google Scholar 

  • Gogvadze E, Barbisan C, Lebrun M-H, Buzdin A (2007) Tripartite chimeric pseudogene from the genome of rice blast fungus Magnaporthe grisea suggests double template jumps during long interspersed nuclear element (LINE) reverse transcription. BMC Genomics 8:360

    Article  PubMed  Google Scholar 

  • Guerin-Laguette A, Matsushita N, Kikuchi K, Iwase K, Lapeyrie F, Suzuki K (2000) Identification of a prevalent Tricholoma matsutake ribotype in Japan by rDNA IGS1. Mycol Res 106:435–443

    Article  Google Scholar 

  • Han K, Xing J, Wang H, Hedges DJ, Garber RK, Cordaux R, Batzer MA (2005) Under the genomic radar: the stealth model of Alu amplification. Genome Res 15:655–664

    Article  PubMed  CAS  Google Scholar 

  • Hibbett DS, Thorn RG (2001) Basidiomycota: homobasidiomycetes. In: McLaughlin DJ, Laughlin EG, Lemke PA (eds) The mycota: a comprehensive treatise on fungi as experimental systems for basic and applied research. Springer, Berlin, pp 121–168

    Google Scholar 

  • Hosford D, Pilz D, Molina R, Amaranthus M (1997) Ecology and management of the commercially harvested American matsutake. USDA Forest Service PNW-GTR-412:1–68

  • Huff CD, Xing J, Rogers AR, Witherspoon D, Jorde LB (2010) Mobile elements reveal small population size in the ancient ancestors of Homo sapiens. PNAS 107:2147–2152

    Article  PubMed  CAS  Google Scholar 

  • Intini M, Dogan HH, Riva A (2003) Tricholoma anatolicum spec. nov.: a new member of the matsutake group. Micol Veg Medit 18:135–142

    Google Scholar 

  • Koerner M, Pauler FM, Huang R, Barlow DP (2009) The function of non-coding RNAs in genomic imprinting. Development 136:1771–1783

    Article  PubMed  CAS  Google Scholar 

  • Kytövuori I (1988) The Tricholoma caligatum group in Europe and North Africa. Karstenia 28:65–77

    Google Scholar 

  • Labbé J, Murat C, Morin E, Tuskan GA, Le Tacon F, Martin F (2012) Characterization of transposable elements in the ectomycorrhizal fungus Laccaria bicolor. PLoS One 7:e40197

    Article  PubMed  Google Scholar 

  • Laurie JD, Ali S, Linning R, Mannhaupt G, Wong P, Güldener U, Münsterkötter M, Moore R, Kahmann R, Bakkeren G, Schirawski J (2012) Genome comparison of barley and maize smut fungi reveals targeted loss of RNA silencing components and species-specific presence of transposable elements. Plant Cell 24:1733–1745

    Article  PubMed  CAS  Google Scholar 

  • Lee JT (2012) Epigenetic regulation by long noncoding RNAs. Science 338:1435–1439

    Article  PubMed  CAS  Google Scholar 

  • Lian C, Hogetsu T, Matsushita N, Guerin-Laguette A, Suzuki K, Yamada A (2003) Development of microsatellite markers from an ectomycorrhizal fungus, Tricholoma matsutake, by an ISSR-suppression-PCR method. Mycorrhiza 13:27–31

    Article  PubMed  CAS  Google Scholar 

  • Lian C, Narimatsu M, Nara K, Hogetsu T (2006) Tricholoma matsutake in a natural Pinus densiflora forest: correspondence between above- and below-ground genets, association with multiple host trees and alteration of existing ectomycorrhizal communities. New Phytol 171:825–836

    Article  PubMed  Google Scholar 

  • Martin F, Aerts A, Ahrén D, Brun A, Danchin EG, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V, Salamov A, Shapiro HJ, Wuyts J, Blaudez D, Buée M, Broksein P, Canbäck B, Cohen D, Courty PE, Coutinho PM, Delaruelle C, Detter JC, Deveau A, DiFazio S, Duplessis S, Fraissinet-Tachet L, Lucic E, Frey-Klett P, Fourrey C, Feussner I, Gay G, Grimwood J, Hoegger PJ, Jain P, Kilaru S, Labbé J, Lin YC, Legué V, Le Tacon F, Marmeisse R, Melayah D, Montanini B, Muratet M, Nehls U, Niculita-Hirzel H, Oudot-Le Secq MP, Peter M, Quesneville H, Rajashekar B, Reich M, Rouhier N, Schmutz J, Yin T, Chalot M, Henrissat B, Kües U, Lucas S, Van de Peer Y, Podila GK, Polle A, Pukkila PJ, Richardson PM, Rouzé P, Sanders IR, Stajich JE, Tunlid A, Tuskan G, Grigoriev IV (2008) The genome of Laccaria biocolor provides insights into mycorrhizal symbiosis. Nature 452:88–92

    Article  PubMed  CAS  Google Scholar 

  • Martin F, Kohler A, Murat C, Balestrini R, Coutinho P, Jaillon O, Montanini B, Morin E, Noel B, Percudani R, Porcel B, Rubini A, Amicucci A, Amselem J, Anthouard V, Arcioni S, Artiguenave F, Aury J-M, Ballario P, Bolchi A, Brenna A, Brun A, Buée M, Cantarel B, Chevalier G, Couloux A, Da Silva C, Denoeud F, Duplessis S, Ghignone S, Hilselberger B, Lotti M, Marçais B, Mello A, Miranda M, Pacioni G, Quesneville H, Riccioni C, Ruotolo R, Splivallo R, Stocchi V, Tisserant E, Viscomi AR, Zambonelli A, Zampieri E, Henrissat B, Lebrun M-H, Paolocci F, Bonfante P, Ottonello S, Wincker P (2010) Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033–1038

    Article  PubMed  CAS  Google Scholar 

  • Mourier T, Willerslev E (2009) Retrotransposons and non-protein coding RNAs. Brief Funct Genomic Proteomic 8:493–501

    Article  PubMed  CAS  Google Scholar 

  • Murata H, Babasaki K (2005) Intra- and inter-specific variations in the copy number of two types of retrotransposons from the ectomycorrhizal basidiomycete Tricholoma matsutake. Mycorrhiza 15:381–386

    Article  PubMed  CAS  Google Scholar 

  • Murata H, Miyazaki Y (2001) Expression of marY1, a gypsy-type LTR-retroelement from the ectomycorrhizal homobasidiomycete Tricholoma matsutake, in the budding yeast Saccharomyces cerevisiae. Biosci Biotechnol Biochem 65:993–995

    Article  PubMed  CAS  Google Scholar 

  • Murata H, Miyazaki Y (2004) σ marY1 , the LTR of the gypsy-type retroelement marY1 from the basidiomycete Tricholoma matsutake, allows multicopy DNA integration in Lentinula edodes. Biosci Biotechnol Biochem 68:218–221

    Article  PubMed  CAS  Google Scholar 

  • Murata H, Yamada A (2000) marY1, a member of the gypsy group of long terminal repeat retroelements from the ectomycorrhizal basidiomycete Tricholoma matsutake. Appl Environ Microbiol 66:3642–3645

    Article  PubMed  CAS  Google Scholar 

  • Murata H, Yamada A, Babasaki K (1999) Identification of repetitive sequences containing motifs of retrotransposons in the ectomycorrhizal basidiomycete Tricholoma matsutake. Mycologia 91:766–775

    Article  CAS  Google Scholar 

  • Murata H, Miyazaki Y, Yamada A (2001) marY2N, a LINE-like non-long terminal repeat (non-LTR) retroelement from the ectomycorrhizal homobasidiomycete Tricholoma matsutake. Biosci Biotechnol Biochem 65:2301–2305

    Article  PubMed  CAS  Google Scholar 

  • Murata H, Babasaki K, Yamada A (2005) Highly polymorphic DNA markers to specify strains of the ectomycorrhizal basidiomycete Tricholoma matsutake based on σ marY1 , the long terminal repeat of gypsy-type retroelement marY1. Mycorrhiza 15:179–186

    Article  PubMed  CAS  Google Scholar 

  • Murata H, Babasaki K, Saegusa T, Takemoto K, Yamada A, Ohta A (2008) Traceability of Asian matsutake, specialty mushrooms produced by the ectomycorrhizal basidiomycete Tricholoma matsutake, on the basis of retroelement-based DNA markers. Appl Environ Microbiol 74:2023–2031

    Article  PubMed  CAS  Google Scholar 

  • Murata H, Yamada A, Maruyama T, Endo N, Yamamoto K, Ohira T, Shimokawa T (2012) Root endophyte interaction between ectomycorrhizal basidiomycete Tricholoma matsutake and arbuscular mycorrhizal tree Cedrela odorata, allowing in vitro synthesis of rhizospheric “shiro”. Mycorrhiza DOI 10.1007/s00572-012-0466-7

  • Neda H (2012) Collection of Tricholoma caligatum (European Matsutake) in Italia. Newsl Mycol Soc Jpn 2012–3:2–4 (in Japanese)

    Google Scholar 

  • Nikaido M, Piskurek O, Okada N (2007) Toothed whale monophyly reassessed by SINE insertion analysis: the absence of lineage sorting effects suggests a small population of a common ancestral species. Mol Phylogenet Evol 43:216–224

    Article  PubMed  CAS  Google Scholar 

  • Ota Y, Yamanaka T, Murata H, Neda H, Ohta A, Kawai M, Yamada A, Konno M, Tanaka C (2012) Phylogenetic relationship and species delimitation of matsutake and allied species based on multilocus phylogeny and haplotype analyses. Mycologia 104:1369–1380

    Google Scholar 

  • Otani Y (1976) Tricholoma bakamatsutake Hongo collected in New Guinea. Trans Mycol Soc Jpn 17:363–365

    Google Scholar 

  • Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M, Wörheide G, Baurain D (2011) Resolving difficult phylgenetic questions: why more sequences are not enough. PLoS Biol 9:e1000602

    Article  PubMed  CAS  Google Scholar 

  • Ponting CP, Oliver PL, Wolf R (2009) Evolution and functions of long noncoding RNAs. Cell 136:629–641

    Article  PubMed  CAS  Google Scholar 

  • Roy-Engel AM, Salem AH, Oyeniran OO, Deininger L, Hedges DJ, Kilroy GE, Batzer MA, Deininger PL (2002) Active Alu element “A-tails”: size does matter. Genome Res 12:1333–1344

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Schirawski J, Mannhaupt G, Münch K, Brefort T, Schipper K, Doehlemann G, Di Stasio M, Rössel N, Mendoza-Mendoza A, Pester D, Müller O, Winterberg B, Meyer E, Ghareeb H, Wollenberg T, Münsterkötter M, Wong P, Walter M, Stukenbrock E, Güldener U, Kahmann R (2010) Pathogenicity determinants in smut fungi revealed by genome comparison. Science 330:1546–1548

    Article  PubMed  CAS  Google Scholar 

  • Shedlock AM, Takahashi K, Okada N (2004) SINEs of speciation: tracking lineages with retroposons. Trends Ecol Evol 19:545–553

    Article  PubMed  Google Scholar 

  • Shimamura M, Yasue H, Ohshima K, Abe H, Kato H, Kishiro T, Goto M, Munechika I, Okada N (1997) Molecular evidence from retroposons that whales from a clade within even-toed ungulates. Nature 388:666–670

    Article  PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (2009) Mycorrhizal symbiosis, 3rd edn. Acadmic, London

    Google Scholar 

  • Spanu PD, Abbott JC, Amselem J, Burgis TA, Soanes DM, Stüber K, van Themaat EVL, Brown JKM, Butcher SA, Gurr SJ, Lebrun M-H, Ridout CJ, Schulze-Lefert P, Talbot NJ, Ahmadinejad N, Ametz C, Barton GR, Benjdia M, Bidzinski P, Bindschedler LV, Both M, Brewer MT, Cadle-Davidson L, Cadle-Davidson MM, Collemare J, Cramer R, Frenkel O, Godfrey D, Harriman J, Hoede C, King BC, Klages S, Kleemann J, Knoll D, Koti PS, Kreplak J, López-Ruiz FJ, Lu X, Maekawa T, Mahanil S, Micali C, Milgroom MG, Montana G, Noir S, O'Connell RJ, Oberhaensli S, Parlange F, Pedersen C, Quesneville H, Reinhardt R, Rott M, Sacristán S, Schmidt SM, Schön M, Skamnioti P, Sommer H, Stephens A, Takahara H, Thordal-Christensen H, Vigouroux M, Weßling R, Wicker T, Panstruga R (2010) Genome expansion and gene loss in powdery mildew fungi reveal tradoffs in extreme parasitism. Science 330:1543–1546

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • The ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    Article  Google Scholar 

  • Vaario LM, Pennanen T, Sarjala T, Savonen EM, Heinonsalo J (2010) Ectomycorrhization of Tricholoma matsutake and two major conifers in Finland—an assessment of in vitro maycorrhiza formation. Mycorrhiza 20:511–518

    Article  PubMed  Google Scholar 

  • Vilgalys R, Gonzalez D (1990) Organization of ribosomal DNA in the basidiomycete Thanatephorus praticola. Curr Genet 18:277–280

    Article  PubMed  CAS  Google Scholar 

  • Viviani D (1834) I funghi d'Italia e principalmente le loro specie mangerecce, velenose, o sospette discritte ed illustrate con tavole disegnate, Tipografia e Litografia Ponthenier, Genova pp 1–64

  • Walz M (2004) Electrophoretic karyotyping. In: Esser K, Kück U (eds) The Mycota II, a comprehensive treatise on fungi as experimental systems for basic and applied research: genetics and biotechnology, 2nd edn. Springer, Berlin, pp 53–70

    Google Scholar 

  • Wan J, Koike A, Yamanaka K, Sotome K, Morinaga T, Tanaka C, Terashima Y, Aimi T (2012) Genetic diversity of Tricholoma matsutake and close allies associated with broad-leaved trees in Asia. Mushroom Sci Biotechnol 19:167–174

    Google Scholar 

  • Xu J, Guo H, Yang ZL (2007) Single nucleotide polymorphisms in the ectomycorrhizal mushroom Tricholoma matsutake. Microbiology 153:2002–2012

    Article  PubMed  CAS  Google Scholar 

  • Yamada A, Maeda K, Kobayashi H, Murata H (2006) Ectomycorrhizal symbiosis in vitro between Tricholoma matsutake and Pinus densiflora seedlings that resembles naturally occurring ‘shiro’. Mycorrhiza 16:111–116

    Article  PubMed  Google Scholar 

  • Yamada A, Kobayashi H, Murata H, Kalmiş E, Kalyoncu F, Fukuda M (2010) In vitro ectomycorrhizal specificity between the Asian red pine Pinus densiflora and Tricholoma matsutake and allied species from worldwide Pinaceae and Fagaceae forests. Mycorrhiza 20:333–339

    Article  PubMed  Google Scholar 

  • Yamanaka K, Aimi T, Wan J, Cao H, Chen M (2011) Species of host trees associated with Tricholoma matsutake and allies in Asia. Mushroom Sci Biotechnol 19:79–87

Download references

Acknowledgments

This work was supported by a grant from the Institute for Fermentation, Osaka, Japan. BLASTN was provided freely by the JGI, and was used for this publication/correspondence only. We are grateful to Dr. Pietro Roda (Pellaro di Reggio Calabria, Italy) for providing hearty hospitality to H. Neda while he was searching for T. caligatum in Italy and for generously depositing reliable strains of T. caligatum in the Biological Resource Center, NITE (NBRC). We thank the following institutes for kindly providing mycological samples free of charge: the Natural History Museum and Botanical Garden; the University of Oslo (Norway); the Institute of Biology and Soil Science, Far Eastern Branch; the Russian Academy of Sciences (Vladivostok, Russia); and the Herbarium of the Catalan Society of Mycology, Barcelona, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Murata.

Electronic supplementary material

Below is the link to the electronic supplementary material.

FIG. S1

Multiple alignment of sequences containing megB1 from matsutake. Base positions are given above the alignment. Arrows indicate the location of sequences that form the direct repeat unique to T. magnivelare. SFT08; T. bakamatsutake SF-Tf08, WKN10; T. fulvocastaneum WK-N10-29, R107; T. caligatum TFM-M-R107, R106; T. caligatum TFM-M-R106, TpC3; T. magnivelare Tp-C3, MX1; Tricholoma sp. Mex MX1, S22; T. anatolicum TK S-2-2, Y1; T. matsutake Y1, TnFIN1; T. matsutake Tn-FIN1. (PDF 1088 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murata, H., Ota, Y., Yamaguchi, M. et al. Mobile DNA distributions refine the phylogeny of “matsutake” mushrooms, Tricholoma sect. Caligata . Mycorrhiza 23, 447–461 (2013). https://doi.org/10.1007/s00572-013-0487-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-013-0487-x

Keywords

Navigation