Skip to main content
Log in

Tricholoma matsutake can absorb and accumulate trace elements directly from rock fragments in the shiro

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Tricholoma matsutake, a highly valued delicacy in Japan and East Asia, is an ectomycorrhizal fungus typically found in a complex soil community of mycorrhizae, soil microbes, and host-tree roots referred to as the shiro in Japan. A curious characteristic of the shiro is an assortment of small rock fragments that have been implicated as a direct source of minerals and trace elements for the fungus. In this study, we measured the mineral content of 14 samples of shiro soil containing live matsutake mycelium and the extent to which the fungus can absorb minerals directly from the rock fragments. X-ray powder diffraction identified major phases of quartz, microcline, orthoclase, and albite in all shiro samples. PCR-denaturing gradient gel electrophoresis (DGGE) fingerprinting and direct sequencing confirmed the presence of T. matsutake on 32 of 33 rock fragments. Piloderma sp. co-occurred on 40 % of fragments and was positively correlated with locations known to produce good mushroom crops. The ability of T. matsutake to absorb trace elements directly from rock fragments was examined in vitro on nutrient-agar plates supplemented with rock fragments from the shiro. In comparison to the mineral content of tissues grown on control media, the concentration of Al, Cu, Fe, Mn, P, and Zn increased from 1.1 to 106.4 times for both T. matsutake and Piloderma sp. Mineral content of dried sporocarps sampled from the study site partially reflected the results of the in vitro study. We discuss the implications of our results with respect to the natural development and artificial culture of this important fungus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arocena JM, Glowa KR, Massicotte HB, Lavkulich L (1999) Chemical and mineral composition of ectomycorrhizosphere soils of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) in the Ae horizon of Luvisol. Can J Soil Sci 79:25–35

    Article  CAS  Google Scholar 

  • Bergius N, Danell E (2000) The Swedish matsutake (Tricholoma nauseosum syn. T. matsutake): distribution, abundance and ecology. Scand J For Res 15:318–325

    Article  Google Scholar 

  • Bruce RC, Warrell LA, Edwards DG, Bell LC (1988) Effects of aluminum and calcium in the soil solution of acid soils on root elongation of Glycine max cv. Forrest. Aust J Agric Res 39:319–338

    Article  CAS  Google Scholar 

  • Development Core Team R (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Gong MQ, Chen Y, Wang FZ, Chen YL (1999) Tricholoma matsutake. In: Gong MQ et al. (eds), Tricholoma matsutake. Yunnan Science and Technology Publishing House, Kunming, pp 16–19 and pp 44–54 (In Chinese)

  • GTK active map explorer (2013) GTK active map explorer. http://geomaps2.gtk.fi/activemap/. Accessed 20 May 2013

  • Guilford JP, Perry NC (1951) Estimation of other coefficients of correlation from the phi coefficient. Psychometrika 16:335–346

    Article  Google Scholar 

  • Haavisto-Hyvärinen M, Grönholm S, Kielosto S, Stén C-G (2001) Nuuksion järviylänkö: Geology of the Nuuksio lake upland. The Geological Survey of Finland (GTK), Espoo, Finland, pp 31–45

  • Hagerberg D, Pallon J, Wallander H (2005) The elemental content in the mycelium of the ectomycorrhizal fungus Piloderma sp. during the colonization of hardened wood ash. Mycorrhiza 15:387–392

    Article  CAS  PubMed  Google Scholar 

  • Hamada M (1970) Diaries on armillaria matsutake (5). Trans Mycol Soc Jpn 11:81–86

    Google Scholar 

  • Hari P, Heliövaara K, Kulmala L (eds) (2013) Physical and physiological forest ecology. Springer, Dordrecht, p 531

    Google Scholar 

  • Hoffland E, Kuyper TW, Wallander H, Plassard C, Gorbushina AA, Haselwandter K, Holmstrom S, Landeweert R, Lundstrom US, Rosling A, Sen R, Smits MM, van Hees PAW, van Breemen N (2004) The role of fungi in weathering. Front Ecol Environ 2(5):258–264

    Article  Google Scholar 

  • Hosford D, Plz D, Molina R, Amaranthus M (1997) Ecology and management of the commercially harvested American matsutake. USDA general technical report PNW-GTR-412

  • Kalač P, Svoboda L (2000) A review of trace element concentrations in edible mushrooms. Food Chem 69:273–281

    Article  Google Scholar 

  • Kobayashi H, Terasaki M, Yamada A (2009) The persistence of matsutake mycorrhizae two years after the transplantation of pine seedlings (CD-ROM). In: Proceedings of the 120th annual Japanese forestry society meeting (in Japanese)

  • Kŏljalg U et al (2005) UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol 166:1063–1068

    Article  PubMed  Google Scholar 

  • Korkama T, Pakkanen A, Pennanen T (2006) Ectomycorrhizal community structure varies among Norway spruce (Picea abies) clones. New Phytol 171:815–824

    Article  CAS  PubMed  Google Scholar 

  • Kytövuori I (1988) The Tricholoma caligatum group in Europe and North Africa. Karstenia 28:65–77

    Google Scholar 

  • Landweert R, Hooffland E, Finlay RD, Kuyper TW, van Breemen N (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16:248–254

    Article  Google Scholar 

  • Lian C, Narimatsu M, Nara K, Hogetsu T (2006) Tricholoma matsutake in a natural Pinus densiflora forest: correspondence between above- and below-ground genets, association with multiple host trees and alteration of existing ectomycorrhizal communities. New Phytol 171:825–836

    Article  PubMed  Google Scholar 

  • Macdonald TL, Martin RB (1988) Aluminum ion in biological systems. Trends Biochem Sci 13:15–19

    Article  CAS  PubMed  Google Scholar 

  • Machuca A, Pereira G, Aguiar A, Milagres AMF (2007) Metal-chelating compounds produced by ectomycorrhizal fungi collected from pine plantations. Lett Appl Microbiol 44:7–12

    Article  CAS  PubMed  Google Scholar 

  • Marx DH (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59:153–163

    Google Scholar 

  • Matsushita N, Kikuchi K, Sasaki Y, Guerin-Laguette A, Lapeyrie F, Vaario L-M, Intini M, Suzuki K (2005) Genetic relationship of Tricholoma matsutake and T. nauseosum from the Northern Hemisphere based on analyses of ribosomal DNA spacer regions. Mycoscience 46:90–96

    Article  CAS  Google Scholar 

  • Molina R, Massicotte HB, Trappe JM (1992) Specificity phenomena in mycorrhiza symbioses: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning, an integrative plant-fungal process. Routledge, Chapman and Hall, New York, pp 357–423

    Google Scholar 

  • Nagasaka K (2013) Comparative economic value estimation of matsutake mushroom and timber production in Swedish Scots pine forest. Master Thesis n. 218, Swedish University of Agricultural Sciences

  • Ogawa M (1977) Microbial ecology of “Shiro” In Tricholoma matsutake (Ito et Imai) Sing and ItS allied speoes. V Trwholoma matsutake In Tsuga steboldu forests Transactions of the Mycological Society of Japan 18 34–46 (In Japanese)

  • Ogawa M (1978) The biology of matsutake mushroom. Tsukiji Shokan, Tokyo, p 326 (in Japanese)

    Google Scholar 

  • Pelkonen R, Alfthan G, Järvinen O (2006) Cadmium, lead, arsenic and nickel in wild edible mushrooms. The Finnish environment 17, Suomen ympäristökeskus. Edita Prima Ltd, Helsinki, pp 25–31

  • Pelkonen R, Alfthan G, Järvinen O (2008) Element concentrations in wild edible mushrooms in Finland. The finnish environment 25, Suomen ympäristökeskus. Edita Prima Ltd, Helsinki, pp 18–26

    Google Scholar 

  • Quirk J, Andrews MY, Leake JR, Banwart SA, Beerling DJ (2014) Ectomycorrhizal fungi and past CO2 atmospheres enhance mineral weathering through increased below-ground carbon-energy fluxes. Biol Lett 10:20140375. doi:10.1098/rsbl.2014.0375

  • Rosling A, Roose T, Herrmann AM, Davidson FA, Finlay RD, Gadd GM (2009) Approaches to modeling mineral weathering by fungi. Fungal Biol Rev 23:138–144

    Article  Google Scholar 

  • Simts MM, Johansson L, Wallander H (2014) Soil fungi appear to have a retarding rather than a stimulating role on soil apatite weathering. Plant Soil. doi:10.1007/s11104-014-2222-6

    Google Scholar 

  • Smith SE, Read DJ (eds) (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London, pp 192–197

  • Smits MM, Bonneville S, Haward S, Leake JR (2008) Ectomycorrhizal weathering, a matter of scale? Mineral Mag 72:135–138

    Article  Google Scholar 

  • Vaario L-M, Pennanen T, Sarjala T, Savonen E-M, Heinonsalo J (2010) Ectomycorrhization of Tricholoma matsutake and two major conifers in Finland—an assessment of in vitro mycorrhiza formation. Mycorrhiza 20:511–518

    Article  PubMed  Google Scholar 

  • Vaario L-M, Fritze H, Spetz P, Heinonsalo J, Pennanen T (2011) Tricholoma matsutake dominates diverse microbial communities in different forest soils. Appl Environ Microbiol 77(24):8523–8531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vaario L-M, Heinonsalo J, Spetz P, Pennanen T, Heinonen J, Tervahauta A, Fritze H (2012) The ectomycorrhizal fungus Tricholoma matsutake is a facultative saprotroph in vitro. Mycorrhiza 22:409–418

    Article  CAS  PubMed  Google Scholar 

  • Vaario L-M, Kiikkilä O, Hamberg L (2013) The influences of litter cover and understorey vegetation on fruitbody formation of Tricholoma matsutake in southern Finland. Appl Soil Ecol 66:56–60

    Article  Google Scholar 

  • Vaario L-M, Lu J, Koistinen A, Tervahauta A, Aronen T (2014) Variation among matsutake ectomycorrhizae in four clones of Pinus sylvestris. Mycorrhiza. doi:10.1007/s00572-014-0601-8

    Google Scholar 

  • van Schöll L, Smits MM, Hoffland E (2006) Ectomycorrhizal weathering of the soil minerals muscovite and hornblende. New Phytol 171:805–813

    Article  PubMed  Google Scholar 

  • Venäläinen A, Tuomenvirta H, Pirinen P, Drebs A (2005) A basic Finnish climate data set 1961–2000 description and illustrations. Finnish Meteorological Institute, Reports 2005:5

  • Wang Y, Hall IR, Evans LA (1997) Ectomycorrhizal fungi with edible fruit bodies. 1. Tricholoma matsutake and related fungi. Econ Bot 51:311–327

    Article  Google Scholar 

  • Wang Y, Cummings N, Guerin-Laguette A (2012) Cultivation of basidiomycete edible ectomycorrhizal mushrooms: Tricholoma, Lactarius, and Rhizopogon. In: Zambonelli, Bonito (eds) Edible ectomycorrhizal mushrooms. Springer, Verlag, pp 281–304

    Chapter  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis et al (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank Kristi Palmén and Matti Palmén for the matsutake sporocarps from northern Finland, the Laboratory of Forest Botany (U. Tokyo) for providing the Japanese isolate, Toyohiro Miyazawa for the help in monitoring the fruiting period of matsutake at the study site, Michael Hardman (Lucidia) for revising the English, Anne Siika for preparing the illustrative material, and the two anonymous reviewers for the useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu-Min Vaario.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaario, LM., Pennanen, T., Lu, J. et al. Tricholoma matsutake can absorb and accumulate trace elements directly from rock fragments in the shiro. Mycorrhiza 25, 325–334 (2015). https://doi.org/10.1007/s00572-014-0615-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-014-0615-2

Keywords

Navigation