Skip to main content
Log in

Saprotrophic capabilities as functional traits to study functional diversity and resilience of ectomycorrhizal community

  • Views and Comments
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

In an accompanying editorial Dr Petr Baldrian made a case casting doubt on our recent work addressing the saprophytic potential of ectomycorrhizal (EM) fungi. Dr Baldrian’s statements illustrate a very valid truth: the book is still very much open on this subject. The point he raised that the only logical reason for these fungi to be responding to high carbon demand or decreased host photosynthetic capacity by up-regulating enzymes is for the purpose of carbon acquisition is valid as well. Despite this, he makes the case that there is no compelling evidence that EM fungi exhibit saprophytic activity. The concept central to Dr Baldrian’s conclusion is that even though some EM fungi possess the genes necessary for saprophytic behaviour and may even express these genes, EM fungi do not inhabit a position in the soil column that provides access to usable substrate. In this paper we present both previously published and newly obtained data that demonstrate that this assumption is erroneous, and we present arguments that place the saprophytic potential of EM fungi within a broad ecological context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agerer R (2001) Exploration types of ectomycorrhizae: a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114

    Article  Google Scholar 

  • Baier R, Ingenhaag J, Blaschke H, Göttlein A, Agerer R (2006) Vertical distribution of an ectomycorrhizal community in upper soil horizons of a young Norway spruce (Picea abies [L.] Karst.) stand of the Bavarian Limestone Alps. Mycorrhiza 16:197–206

    Article  PubMed  Google Scholar 

  • Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read DJ (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc R Soc Lond B 271:1799–1806

    Article  CAS  Google Scholar 

  • Boland GJ, Melzer MS, Hopkin A, Higgins V, Nassuth A (2004) Climate change and plant diseases in Ontario. Can J Plant Pathol 26:335–350

    Google Scholar 

  • Buée M, Courty PE, Mignot D, Garbaye J (2007) Soil niche effect on species diversity and catabolic activities in an ectomycorrhizal fungal community. Soil Biol Biochem 39:1947–1955

    Article  Google Scholar 

  • Courty PE, Pritsch K, Schloter M, Hartmann A, Garbaye J (2005) Activity profiling of ectomycorrhiza communities in two forest soils using multiple enzymatic tests. New Phytol 167:309–319

    Article  CAS  PubMed  Google Scholar 

  • Courty PE, Pouysegur R, Buée M, Garbaye J (2006) Laccase and phosphatase activities of the dominant ectomycorrhizal types in a lowland oak forest. Soil Biol Biochem 38:1219–1222

    Article  CAS  Google Scholar 

  • Courty PE, Bréda N, Garbaye J (2007) Relation between oak tree phenology and the secretion of organic matter degrading enzymes by Lactarius quietus ectomycorrhizas before and during bud break. Soil Biol Biochem 39:1655–1663

    Article  CAS  Google Scholar 

  • Courty PE, Poletto M, Duchaussoy F, Buée M, Garbaye J, Martin F (2008a) Gene transcription in Lactarius quietus–Quercus petraea ectomycorrhizas from a forest soil. Appl Environ Microbiol 74:6598–6605

    Article  CAS  PubMed  Google Scholar 

  • Courty PE, Franc A, Pierrat JC, Garbaye J (2008b) Temporal changes of the ectomycorrhizal community in two soil horizons of a temperate oak forest. Appl Environ Microbiol 74:5792–5801

    Article  CAS  PubMed  Google Scholar 

  • Courty PE, Hoegger P, Kilaru S, Kohler A, Buée M, Garbaye J, Martin F, Kües U (2009) Phylogenetic analysis, genomic organization and expression analysis of multicopper oxidases in the ectomycorrhizal basidiomycete Laccaria bicolor. New Phytol 182:736–750

    Article  CAS  PubMed  Google Scholar 

  • Cullings KW, New MH, Makhija S, Parker VT (2003) Effects of litter addition on the ectomycorrhizal associates of a lodgepole pine (Pinus contorta) stand in Yellowstone National Park. Appl Environ Microbiol 69:3772–3776

    Article  CAS  PubMed  Google Scholar 

  • Cullings K, Ishkhanova G, Henson J (2008) Defoliation effects on enzyme activities of the ectomycorrhizal fungus Suillus granulatus in a Pinus contorta (lodgepole pine) stand in Yellowstone National Park. Oecologia 158:77–83

    Article  PubMed  Google Scholar 

  • Dickie IA, Xu B, Koide RT (2002) Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol 156:527–535

    Article  CAS  Google Scholar 

  • DiMarino E, Scattolin L, Bodensteinger P, Agerer R (2008) Sistotrema is a genus with ectomycorrhizal species—confirmation of what sequence studies have already suggested. Mycol Res 7:169–176

    Google Scholar 

  • Gerini MF, Roccatano D, Baciocchi E, Di Nola A (2003) Molecular dynamics simulations of lignin peroxidase in solution. Biophys J 84:3883–3893

    Article  CAS  Google Scholar 

  • Goodman DM, Trofymow JA (1998) Distribution of ectomycorrhizas in micro-habitats in mature and old-growth stands of Douglas-fir on southeastern Vancouver Island. Soil Biol Biochem 30:2127–2138

    Article  CAS  Google Scholar 

  • Gramss G, Kirsche B, Voigt BK, Th Günther, Fritsche W (1999) Conversion rate of 5 polycyclic aromatic hydrocarbons in liquid cultures of fifty-eight fungi and concomitant production of oxidative enzymes. Mycol Res 103:1009–1018

    Article  CAS  Google Scholar 

  • Hibbett DS, Gilbert LB, Donoghue MJ (2000) Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature 407:506–508

    Article  CAS  PubMed  Google Scholar 

  • Hiner ANP, Ruiz JH, Lopez JNR, Canovas FG, Brisset NC, Smith AT, Arnao MB, Acosta M (2002) Reactions of class II peroxidases lignin peroxidase and Arthromyces ramusos peroxidase, with hyrdogen peroxide. J Biol Chem 277:26879–26885

    Article  CAS  PubMed  Google Scholar 

  • Kellner H, Luis P, Buscot F (2007) Diversityof laccase-like multicopperoxidase genes in Morchellaceae: identification of genes potentially involved in extracellular activities related to plant litter decay. FEMS Microbiol Ecol 61:153–163

    Article  CAS  PubMed  Google Scholar 

  • Koide RT, Sharda JN, Herr JR, Malcolm GM (2008) Ectomycorrhizal fungi and the biotrophy–saprotrophy continuum. New Phytol 178:230–233

    Article  PubMed  Google Scholar 

  • Kusuda M, Ueda M, Konishi Y, Araki Y, Yamanaka K, Nakazawa M, Miyatake K, Terashita T (2006) Detection of β-glucosidase as saprotrophic ability from an ectomycorrhizal mushroom, Tricholoma matsutake. Mycoscience 47:184–189

    Article  CAS  Google Scholar 

  • Leonowicz A, Cho N-K, Luterek J, Wilkolazaka A, Wojtas-Wasilewska M, Matuszewska A, Hofrichter M, Wesenberg D, Rogalski J (2001) Fungal laccase: properties and activity on lignin. J Basic Microbiol 41:185–227

    Article  CAS  PubMed  Google Scholar 

  • Lindahl BD, Boberg J (2008) Distribution and function of litter basidiomycetes in coniferous forests. In: Boddy L, Frankland JC, Van West P, British Mycological Society (eds) Ecology of saprotrophic basidiomycetes. Elsevier, London, pp 183–196

    Chapter  Google Scholar 

  • Luis P, Walther G, Kellner H, Martin F, Buscot F (2004) Diversity of laccase genes from basidiomycetes in a forest soil. Soil Biol Biochem 34:1025–1036

    Article  Google Scholar 

  • Luis P, Kellner H, Martin F, Buscot F (2005) A molecular method to evaluate basidiomycete laccase gene expression in forest soils. Geoderma 128:18–27

    Article  CAS  Google Scholar 

  • Neville J, Tessier JL, Morrison I, Scarrat J, Canning B, Klironomos JN (2002) Soil depth distribution of ecto- and arbuscular mycorrhizal fungi associated with Populus tremuloides within a 3-year-old boreal forest clear-cut. Appl Soil Ecol 19:209–216

    Article  Google Scholar 

  • Nilsson RH, Larsson KH, Larsson E, Köljalg U (2006) Fruiting body-guided molecular identification of root-tip mantle mycelia provides strong indications of ectomycorrhizal associations of two species of Sistotrema (Basidiomycota). Mycol Res 110:1426–1432

    Article  CAS  PubMed  Google Scholar 

  • Rosling A, Landeweert R, Lindahl BD, Larsson K-H, Kuyper TW, Taylor AFS, Finlay RD (2003) Vertical distribution of ectomycorrhizal fungal taxa in a podzol soil profile. New Phytol 159:775–783

    Article  CAS  Google Scholar 

  • Tedersoo L, Kõljalg U, Hallenberg N, Larsson KH (2003) Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. New Phytol 159:153–165

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Pierre-Emmanuel Courty gratefully acknowledges the Swiss National Science Foundation. Ken Cullings gratefully acknowledges the National Sciences Foundation, and the US Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Cullings.

Additional information

Communicated by Russell Monson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cullings, K., Courty, PE. Saprotrophic capabilities as functional traits to study functional diversity and resilience of ectomycorrhizal community. Oecologia 161, 661–664 (2009). https://doi.org/10.1007/s00442-009-1434-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-009-1434-6

Keywords

Navigation