Skip to main content

Methanogenesis in the Digestive Tracts of Insects and Other Arthropods

  • Living reference work entry
  • First Online:
Biogenesis of Hydrocarbons

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Termites, cockroaches, and scarab beetle larvae are the only insects known to emit methane, but they do so in impressive amounts. Methanogenesis occurs in the enlarged hindgut compartment and is fueled by hydrogen and reduced one-carbon compounds formed during symbiotic digestion of plant fiber and humus. The methanogens either colonize the hindgut wall or are associated with symbiotic protists. They comprise only a relatively small number of lineages from four methanogenic orders that are restricted to the intestinal tract of insects and millipedes. The host specificity of most lineages and the metabolic properties of the few isolates available to date indicate that they are well adapted to the microenvironment of their intestinal habitats. Methanogenesis is generally expected to stimulate symbiotic digestion, but benefits for the host are not well documented. Although the methane emissions of termites are mitigated by the methanotrophic activity of their mounds and the surrounding soil, their enormous biomass in the tropics makes them a significant natural source of atmospheric methane at the global scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akhmanova A, Voncken FGJ, van Alen T, van Hoek A, Boxma B, Vogels G, Veenhuis M, Hackstein JHP (1998) A hydrogenosome with a genome. Nature 396:527–528

    Article  CAS  PubMed  Google Scholar 

  • Bauer E, Lampert N, Mikaelyan A, Köhler T, Maekawa K, Brune A (2015) Physicochemical conditions, metabolites, and community structure of the bacterial microbiota in the gut of wood-feeding cockroaches (Blaberidae: Panesthiinae). FEMS Microbiol Ecol 91:1–14

    Article  PubMed  CAS  Google Scholar 

  • Bayon C (1980) Volatile fatty acids and methane production in relation to anaerobic carbohydrate fermentation in Oryctes nasicornis larvae (Coleoptera: Scarabaeidae). J Insect Physiol 26:819–828

    Article  CAS  Google Scholar 

  • Bayon C, Etiévant P (1980) Methanic fermentation in the digestive tract of a xylophageous insect: Oryctes nasicorni L. larva (Coleoptera; Scarabaeidae). Experientia 36:154–155

    Article  CAS  Google Scholar 

  • Bignell DE (1984a) Direct potentiometric determination of redox potentials of the gut contents in the termites Zootermopsis nevadensis and Cubitermes severus and in three other arthropods. J Insect Physiol 30:169–174

    Article  Google Scholar 

  • Bignell DE (1984b) The arthropod gut as an environment for microorganisms. In: Anderson JM, Rayner ADM, Walton DWH (eds) Invertebrate–microbial interactions. Cambridge University Press, Cambridge, England, pp 205–227

    Google Scholar 

  • Bignell DE (2010) Termites. In: Reay D, Smith P, van Amstel A (eds) Methane and climate change. Earthscan, London, pp 62–73

    Google Scholar 

  • Bignell DE, Oskarsson H, Anderson JM (1980) Specialization of the hindgut wall for the attachment of symbiotic microorganisms in a termite Procubitermes aburiensis. Zoomorphology 96:103–112

    Article  Google Scholar 

  • Bignell DE, Eggleton P, Nunes L, Thomas KL (1997) Termites as mediators of carbon fluxes in tropical forests: budgets for carbon dioxide and methane emissions. In: Watt AB, Stork NE, Hunter MD (eds) Forests and insects. Chapman & Hall, London, pp 109–134

    Google Scholar 

  • Bijnen FGC, Harren FJM, Hackstein JHP, Reuss J (1996) Intracavity CO laser photoacoustic trace gas detection: cyclic CH4, H2O and CO2 emission by cockroaches and scarab beetles. Appl Opt 35:5357–5368

    Article  CAS  PubMed  Google Scholar 

  • Bond JH Jr, Engel RR, Levitt MD (1971) Factors influencing pulmonary methane excretion in man: an indirect method of studying the in situ metabolism of the methane-producing colonic bacteria. J Exp Med 133:572–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borken W, Grundel S, Beese F (2000) Potential contribution of Lumbricus terrestris L. to carbon dioxide, methane and nitrous oxide fluxes from a forest soil. Biol Fertil Soils 32:142–148

    Article  CAS  Google Scholar 

  • Borrel G, Harris HMB, Tottey W, Mihajlosvki A, Parisot N, Peyretaillade E, Peyret P, Gribaldo S, O'Toole PW, Brugère J-F (2012) Genome sequence of “Candidatus Methanomethylophilus alvus” Mx1201, a methanogenic archaeon from the human gut belonging to a seventh order of methanogens. J Bacteriol 194:6944–6945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boucias DG, Cai Y, Sun Y, Lietze V-U, Sen R, Raychoudhury R, Scharf ME (2013) The hindgut lumen prokaryotic microbiota of the termite Reticulitermes flavipes and its responses to dietary lignocellulose composition. Mol Ecol 22:1836–1853

    Article  CAS  PubMed  Google Scholar 

  • Bourguignon T, Lo N, Dietrich C, Šobotník J, Sidek S, Roisin Y, Brune A, Evans TA (2018) Rampant host-switching shaped the termite gut microbiome. Curr Biol 28:649–654.e2

    Article  PubMed  CAS  Google Scholar 

  • Bracke JW, Loeb Cruden D, Markovetz AJ (1978) Effect of metronidazole on the intestinal microflora of the American cockroach, Periplaneta americana L. Antimicrob Agents Chemother 13:115–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brauman A, Kane M, Breznak JA (1992) Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257:1384–1387

    Article  CAS  PubMed  Google Scholar 

  • Brauman A, Dore J, Eggleton P, Bignell D, Breznak JA, Kane MD (2001) Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. FEMS Microbiol Ecol 35:27–36

    Article  CAS  PubMed  Google Scholar 

  • Breznak JA (1975) Symbiotic relationships between termites and their intestinal microbiota. Symp Soc Exp Biol 29:559–580

    Google Scholar 

  • Breznak JA (2000) Ecology of prokaryotic microbes in the guts of wood- and litter-feeding termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbiosis, ecology. Kluwer Academic Publishers, Dordrecht, pp 209–231

    Chapter  Google Scholar 

  • Breznak JA, Switzer JM (1986) Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl Environ Microbiol 52:623–630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Breznak JA, Brill WJ, Mertins JW, Coppel HC (1973) Nitrogen fixation in termites. Nature 244:577–580

    Article  CAS  PubMed  Google Scholar 

  • Breznak JA, Mertins JW, Coppel HC (1974) Nitrogen fixation and methane production in a wood-eating cockroach, Cryptocercus punctulatus Scudder (Orthoptera: Blattidae). Univ Wisc Forest Res Notes 184:1–2

    Google Scholar 

  • Brune A (2010a) Methanogens in the digestive tract of termites. In: Hackstein JHP (ed) (Endo)symbiotic methanogenic archaea. Springer, Heidelberg, pp 81–100

    Chapter  Google Scholar 

  • Brune A (2010b) Methanogenesis in the digestive tracts of insects. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology, vol 8. Springer, Heidelberg, pp 707–728

    Chapter  Google Scholar 

  • Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12:168–180

    Article  CAS  PubMed  Google Scholar 

  • Brune A, Kühl M (1996) pH profiles of the extremely alkaline hindguts of soil-feeding termites (Isoptera: Termitidae) determined with microelectrodes. J Insect Physiol 42:1121–1127

    Article  CAS  Google Scholar 

  • Brune A, Ohkuma M (2011) Role of the termite gut microbiota in symbiotic digestion. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 439–475

    Google Scholar 

  • Brune A, Frenzel P, Cypionka H (2000) Life at the oxic–anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev 24:691–710

    Article  CAS  PubMed  Google Scholar 

  • Byzov BA (2006) Intestinal microbiota of millipedes. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Berlin, pp 89–114

    Chapter  Google Scholar 

  • Cao Y, Sun J-Z, Rodriguez JM, Lee KC (2010) Hydrogen emission by three wood-feeding subterranean termite species (Isoptera: Rhinotermitidae): production and characteristics. Ins Sci 17:237–244

    Article  CAS  Google Scholar 

  • Ceja-Navarro JA, Nguyen NH, Karaoz U, Gross SR, Herman DJ, Andersen GL, Bruns TD, Pett-Ridge J, Blackwell M, Brodie EL (2014) Compartmentalized microbial composition, oxygen gradients and nitrogen fixation in the gut of Odontotaenius disjunctus. ISME J 8:6–18

    Article  CAS  PubMed  Google Scholar 

  • Collins NM, Wood TG (1984) Termites and atmospheric gas production. Science 224:84–86

    Article  CAS  PubMed  Google Scholar 

  • Cook SF (1932) The respiratory gas exchange in Termopsis nevadensis. Biol Bull 63:246–257

    Article  CAS  Google Scholar 

  • Darlington JPEC, Zimmerman PR, Greenberg J, Westberg C, Bakwin P (1997) Production of metabolic gases by nests of the termite Macrotermes jeanneli in Kenya. J Trop Ecol 13:491–510

    Article  Google Scholar 

  • de Angelis MA, Lee C (1994) Methane production during zooplankton grazing on marine phytoplankton. Limnol Oceanogr 39:1298–1308

    Article  Google Scholar 

  • Deevong P, Hattori S, Yamada A, Trakulnaleamsai S, Ohkuma M, Noparatnaraporn N, Kudo T (2004) Isolation and detection of methanogens from the gut of higher termites. Microb Environ 19:221–226

    Article  Google Scholar 

  • Delmas RA, Servant J, Tathy JP, Cros B, Labat M (1992) Sources and sinks of methane and carbon dioxide exchanges in mountain forest in equatorial Africa. J Geophys Res 97D:6169–6179

    Article  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM et al (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, pp 499–587

    Google Scholar 

  • Depkat-Jakob PS, Hunger S, Schulz K, Brown GG, Tsai SM, Drake HL (2012) Emission of methane by Eudrilus eugeniae and other earthworms from Brazil. Appl Environ Microbiol 78:3014–3019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai MS, Brune A (2012) Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites. ISME J 6:1302–1313

    Article  CAS  PubMed  Google Scholar 

  • Ditchfield AK, Wilson ST, Hart MC, Purdy KJ, Green DH, Hatton AD (2012) Identification of putative methylotrophic and hydrogenotrophic methanogens within sedimenting material and copepod faecal pellets. Aquat Microb Ecol 67:151–160

    Article  Google Scholar 

  • Doddema HJ, Vogels GD (1978) Improved identification of methanogenic bacteria by fluorescence microscopy. Appl Environ Microbiol 36:752–754

    CAS  PubMed  PubMed Central  Google Scholar 

  • Donovan SE, Purdy KJ, Kane MD, Eggleton P (2004) Comparison of Euryarchaea strains in the guts and food-soil of the soil-feeding termite Cubitermes fungifaber across different soil types. Appl Environ Microbiol 70:3884–3892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drake HL, Horn MA (2007) As the worm turns: the earthworm gut as a transient habitat for soil microbial biomes. Annu Rev Microbiol 61:169–189

    Article  CAS  PubMed  Google Scholar 

  • Dridi B, Fardeau M-L, Ollivier B, Raoult D, Drancourt M (2012) Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol 62:1902–1907

    Article  CAS  PubMed  Google Scholar 

  • Ebert A, Brune A (1997) Hydrogen concentration profiles at the oxic-anoxic interface: a microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Appl Environ Microbiol 63:4039–4046

    CAS  PubMed  PubMed Central  Google Scholar 

  • Egert M, Wagner B, Lemke T, Brune A, Friedrich MW (2003) Microbial community structure in midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl Environ Microbiol 69:6659–6668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egert M, Stingl U, Dyhrberg Bruun L, Wagner B, Brune A, Friedrich MW (2005) Structure and topology of microbial communities in the major gut compartments of Melolontha melolontha larvae (Coleoptera: Scarabaeidae). Appl Environ Microbiol 71:4556–4566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eggleton P, Homathevi R, Jones DT, MacDonald JA, Jeeva D, Bignell DE, Davies RG, Maryati M (1999) Termite assemblages, forest disturbance and greenhouse gas fluxes in Sabah, East Malaysia. Phil Trans R Soc Lond B 354:1791–1802

    Article  CAS  Google Scholar 

  • Fenchel T, Finlay BJ (1992) Production of methane and hydrogen by anaerobic ciliates containing symbiotic methanogens. Arch Microbiol 157:475–480

    CAS  Google Scholar 

  • Finlay BJ, Esteban G, Clarke KJ, Williams AG, Embley TM, Hirt RP (1994) Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol Lett 117:157–161

    Article  CAS  PubMed  Google Scholar 

  • Friedrich MW, Schmitt-Wagner D, Lueders T, Brune A (2001) Axial differences in community structure of Crenarchaeota and Euryarchaeota in the highly compartmentalized gut of the soil-feeding termite Cubitermes orthognathus. Appl Environ Microbiol 67:4880–4890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gijzen HJ, Barugahare M (1992) Contribution of anaerobic protozoa and methanogens to hindgut metabolic activities of the American cockroach, Periplaneta americana. Appl Environ Microbiol 58:2565–2570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gijzen HJ, Broers CA, Barugahare M, Stumm CK (1991) Methanogenic bacteria as endosymbionts of the ciliate Nyctotherus ovalis in the cockroach hindgut. Appl Environ Microbiol 57:1630–1634

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilmour D (1940) The anaerobic gaseous metabolism of the roach, Cryptocercus punctulatus scudder. Biol Bull 79:297–308

    Article  CAS  Google Scholar 

  • Hackstein JHP (2010) Anaerobic ciliates and their methanogenic endosymbionts. In: JHP H (ed) (Endo)symbiotic Methanogenic Archaea. Springer, Heidelberg, pp 13–23

    Chapter  Google Scholar 

  • Hackstein JHP, Stumm CK (1994) Methane production in terrestrial arthropods. Proc Natl Acad Sci USA 91:5441–5445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hackstein JHP, van Alen TA (2010) Methanogens in the gastro-intestinal tract of animals. In: Hackstein JHP (ed) (Endo)symbiotic methanogenic archaea. Springer, Heidelberg, pp 115–142

    Chapter  Google Scholar 

  • Hackstein JHP, van Alen TA, Rosenberg J (2006) Methane production by terrestrial arthropods. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Berlin, pp 155–180

    Chapter  Google Scholar 

  • Hara K, Shinzato N, Seo M, Oshima T, Yamagishi A (2002) Phylogenetic analysis of symbiotic archaea living in the gut of xylophagous cockroaches. Microb Environ 17:185–190

    Article  Google Scholar 

  • Hara K, Shinzato N, Oshima T, Yamagishi A (2004) Endosymbiotic Methanobrevibacter species living in symbiotic protists of the termite Reticulitermes speratus detected by fluorescent in situ hybridization. Microb Environ 19:120–127

    Article  Google Scholar 

  • Ho A, Erens H, Mujinya BB, Boeckx P, Baert G, Schneider B, Frenzel P, Boon N, Van Ranst E (2013) Termites facilitate methane oxidation and shape the methanotrophic community. Appl Environ Microbiol 79:7234–7240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hongoh Y, Ohkuma M (2010) Termite gut flagellates and their methanogenic and eubacterial symbionts. In: Hackstein JHP (eds) (Endo)symbiotic Methanogenic Archaea. Springer, Heidelberg, pp 55–79

    Chapter  Google Scholar 

  • Horn MA, Schramm A, Drake HL (2003) The earthworm gut: an ideal habitat for ingested N2O-producing microorganisms. Appl Environ Microbiol 69:1662–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hungate RE (1938) Studies on the nutrition of Zootermopsis II. The relative importance of the termite and the protozoa in wood digestion. Ecology 19:1–25

    Article  Google Scholar 

  • Hungate RE (1939) Experiments on the nutrition of Zootermopsis. III. The anaerobic carbohydrate dissimilation by the intestinal protozoa. Ecology 20:230–245

    Article  CAS  Google Scholar 

  • Hungate RE (1943) Quantitative analyses of the cellulose fermentation by termite protozoa. Ann Entomol Soc Am 36:730–739

    Article  CAS  Google Scholar 

  • Hungate RE (1946) The symbiotic utilization of cellulose. J Elisha Mitchell Sci Soc 62:9–24

    CAS  Google Scholar 

  • Hungate RE (1977) The rumen microbial ecosystem. Annu Rev Microbiol 33:1–20

    Article  Google Scholar 

  • Iino T, Tamaki H, Tamazawa S, Ueno Y, Ohkuma M, Suzuki K, Igarashi Y, Haruta S (2013) Candidatus Methanogranum caenicola: a novel methanogen from the anaerobic digested sludge, and proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov. for a methanogenic lineage of the class Thermoplasmata. Microbes Environ 28:244–250

    Article  PubMed  PubMed Central  Google Scholar 

  • Inoue J, Noda S, Hongoh Y, Ui S, Ohkuma M (2008) Identification of endosymbiotic methanogen and ectosymbiotic spirochetes of gut protists of the termite Coptotermes formosanus. Microb Environ 23:94–97

    Article  Google Scholar 

  • Jamali H, Livesley SJ, Dawes TZ, Cook GD, Hutley LB, Arndt SK (2011a) Diurnal and seasonal variations in CH4 flux from termite mounds in tropical savannas of the Northern Territory, Australia. Agric Forest Meteorol 151:1471–1479

    Article  Google Scholar 

  • Jamali H, Livesley SJ, Dawes TZ, Hutley LB, Arndt SK (2011b) Termite mound emissions of CH4 and CO2 are primarily determined by seasonal changes in termite biomass and behaviour. Oecologia 167:525–553

    Article  PubMed  Google Scholar 

  • Jamali H, Livesley SJ, Hutley LB, Fest B, Arndt SK (2013) The relationship between termite mound CH4/CO2 emissions and internal concentration ratios are species specific. Biogeosciences 10:2229–2240

    Article  CAS  Google Scholar 

  • Janssen PH, Kirs M (2008) Structure of the archaeal community of the rumen. Appl Environ Microbiol 74:3619–3625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kammann C, Hepp S, Lenhart K, Müller C (2009) Stimulation of methane consumption by endogenous CH4 production in aerobic grassland soil. Soil Biol Biochem 41:622–629

    Article  CAS  Google Scholar 

  • Kane MD, Breznak JA (1991) Effect of host diet on production of organic acids and methane by cockroach gut bacteria. Appl Environ Microbiol 57:2628–2634

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kappler A, Brune A (2002) Dynamics of redox potential and changes in redox state of iron and humic acids during gut passage in soil-feeding termites (Cubitermes spp.). Soil Biol Biochem 34:221–227

    Article  CAS  Google Scholar 

  • Karl DM, Tilbrook BD (1994) Production and transport of methane in oceanic particulate organic matter. Nature 368:732–734

    Article  CAS  Google Scholar 

  • Khalil MAK, Rasmussen RA, French JRJ, Holt JA (1990) The influence of termites on atmospheric trace gases: CH4, CO2, CHCl3, N2O, CO, H2, and light hydrocarbons. J Geophys Res 95:3619–3634

    Article  Google Scholar 

  • Kinsman R, Sauer FD, Jackson HA, Wolynetz MS (1995) Methane and carbon dioxide emissions from dairy cows in full lactation monitored over a six-month period. J Dairy Sci 78:2760–2766

    Article  CAS  PubMed  Google Scholar 

  • Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG et al (2013) Three decades of global methane sources and sinks. Nat Geosci 6:813–823

    Article  CAS  Google Scholar 

  • Köhler T, Dietrich C, Scheffrahn RH, Brune A (2012) High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.). Appl Environ Microbiol 78:4691–4701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumaresan D, Stralis-Pavese N, Abell GCJ, Bodrossy L, Murrell JC (2011) Physical disturbance to ecological niches created by soil structure alters community composition of methanotrophs. Environ Microbiol Rep 3:613–621

    Article  PubMed  Google Scholar 

  • Lang K, Schuldes J, Klingl A, Poehlein A, Daniel R, Brune A (2015) New mode of energy metabolism in the seventh order of methanogens as indicated by comparative genome analysis of “Candidatus Methanoplasma termitum”. Appl Environ Microbiol 81:1338–1352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leadbetter JR, Breznak JA (1996) Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov. isolated from the hindgut of the termite Reticulitermes flavipes. Appl Environ Microbiol 62:3620–3631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leadbetter JR, Crosby LD, Breznak JA (1998) Methanobrevibacter filiformis sp. nov., a filamentous methanogen from termite hindguts. Arch Microbiol 169:287–292

    Article  CAS  PubMed  Google Scholar 

  • Lee MJ, Schreurs PJ, Messer AC, Zinder SH (1987) Association of methanogenic bacteria with flagellated protozoa from a termite hindgut. Curr Microbiol 15:337–341

    Article  Google Scholar 

  • Lemke T, van Alen T, Hackstein JHP, Brune A (2001) Cross-epithelial hydrogen transfer from the midgut compartment drives methanogenesis in the hindgut of cockroaches. Appl Environ Microbiol 67:4657–4661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemke T, Stingl U, Egert M, Friedrich MW, Brune A (2003) Physicochemical conditions and microbial activities in the highly alkaline gut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl Environ Microbiol 69:6650–6658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lighton JRB, Ottesen EA (2005) To DGC or not to DGC: oxygen guarding in the termite Zootermopsis nevadensis (Isoptera: Termopsidae). J Exp Biol 208:4671–4678

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125:171–189

    Article  CAS  PubMed  Google Scholar 

  • MacDonald JA, Eggleton P, Bignell DE, Forzi F, Fowler D (1998) Methane emission by termites and oxidation by soils, across a forest disturbance gradient in the Mbalmayo Forest Reserve, Cameroon. Glob Chang Biol 4:409–418

    Article  Google Scholar 

  • MacDonald JA, Jeeva D, Eggleton P, Davies R, Bignell DE, Fowler D, Lawton J, Maryati M (1999) The effect of termite biomass and anthropogenic disturbance on the CH4 budgets of tropical forests in Cameroon and Borneo. Glob Chang Biol 5:869–879

    Article  Google Scholar 

  • Messer AC, Lee MJ (1989) Effect of chemical treatments on methane emission by the hindgut microbiota in the termite Zootermopsis angusticollis. Microb Ecol 18:275–284

    Article  CAS  PubMed  Google Scholar 

  • Miyata R, Noda N, Tamaki H, Kinjyo K, Aoyagi H, Uchiyama H, Tanaka H (2007) Phylogenetic relationship of symbiotic archaea in the gut of the higher termite Nasutitermes takasagoensis fed with various carbon sources. Microb Environ 22:157–164

    Article  Google Scholar 

  • Nardi JB, Bee CM, Taylor SJ (2016) Compartmentalization of microbial communities that inhabit the hindguts of millipedes. Arthropod Struct Dev 45:462–474

    Article  PubMed  Google Scholar 

  • Nobu MK, Narihiro T, Kuroda K, Mei R, Liu WT (2016) Chasing the elusive Euryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen. ISME J 10:2478–2487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odelson DA, Breznak JA (1983) Volatile fatty acid production by the hindgut microbiota of xylophagous termites. Appl Environ Microbiol 45:1602–1613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Odelson DA, Breznak JA (1985) Nutrition and growth characteristics of Trichomitopsis termopsidis, a cellulolytic protozoan from termites. Appl Environ Microbiol 49:614–621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohkuma M, Brune A (2011) Diversity, structure, and evolution of the termite gut microbial community. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 413–438

    Google Scholar 

  • Ohkuma M, Kudo T (1998) Phylogenetic analysis of the symbiotic intestinal microflora of the termite Cryptotermes domesticus. FEMS Microbiol Lett 164:389–395

    Article  CAS  Google Scholar 

  • Ohkuma M, Noda S, Horikoshi K, Kudo T (1995) Phylogeny of symbiotic methanogens in the gut of the termite Reticulitermes speratus. FEMS Microbiol Lett 134:45–50

    Article  CAS  PubMed  Google Scholar 

  • Ohkuma M, Noda S, Kudo T (1999) Phylogenetic relationships of symbiotic methanogens in diverse termites. FEMS Microbiol Lett 171:147–153

    Article  CAS  PubMed  Google Scholar 

  • Paul K, Nonoh JO, Mikulski L, Brune A (2012) “Methanoplasmatales,” Thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens. Appl Environ Microbiol 78:8245–8253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pester M, Brune A (2007) Hydrogen is the central free intermediate during lignocellulose degradation by termite gut symbionts. ISME J 1:551–565

    Article  CAS  PubMed  Google Scholar 

  • Pester M, Tholen A, Friedrich MW, Brune A (2007) Methane oxidation in termite hindguts: absence of evidence and evidence of absence. Appl Environ Microbiol 73:2024–2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poehlein A, Seedorf H (2016) Draft genome sequences of Methanobrevibacter curvatus DSM11111, Methanobrevibacter cuticularis DSM11139, Methanobrevibacter filiformis DSM11501, and Methanobrevibacter oralis DSM7256. Genome Announc 4:e00617-16

    PubMed  PubMed Central  Google Scholar 

  • Purdy KJ (2007) The distribution and diversity of euryarchaeota in termite guts. Adv Appl Microbiol 62:63–80

    Article  CAS  PubMed  Google Scholar 

  • Radek R (1994) Monocercomonides termitis n. sp., an oxymonad from the lower termite Kalotermes sinaicus. Arch Protistenkunde 144:373–382

    Article  Google Scholar 

  • Radek R (1997) Spirotrichonympha minor n. sp., a new hypermastigote termite flagellate. Eur J Protistol 33:361–374

    Article  Google Scholar 

  • Rahman NA, Parks DH, Willner DL, Engelbrektson AL, Goffredi SK, Warnecke F, Scheffrahn RH, Hugenholtz P (2015) A molecular survey of Australian and north American termite genera indicates that vertical inheritance is the primary force shaping termite gut microbiomes. Microbiome 3:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasmussen RA, Khalil MAK (1983) Global production of methane by termites. Nature 301:700–702

    Article  CAS  Google Scholar 

  • Rouland C, Brauman A, Labat M, Lepage M (1993) Nutritional factors affecting methane emission from termites. Chemosphere 26:617–622

    Article  CAS  Google Scholar 

  • Sanderson MG (1996) Biomass of termites and their emissions of methane and carbon dioxide: a global database. Global Biogeochem Cycles 10:543–557

    Article  CAS  Google Scholar 

  • Santana RH, Catão ECP, Lopes FAC, Constantino R, Barreto CC, Krüger RH (2015) The gut microbiota of workers of the litter-feeding termite Syntermes wheeleri (Termitidae: Syntermitinae): Archaeal, bacterial, and fungal communities. Microb Ecol 70:545–556

    Article  PubMed  Google Scholar 

  • Sawadogo JB, Traoré AS, Dianou D (2012) Seasonal CO2 and CH4 emissions from termite mounds in the sub-Sahelian area of Burkina Faso. Bot Res Int 5:49–56

    CAS  Google Scholar 

  • Schauer C, Thompson CL, Brune A (2012) The bacterial community in the gut of the cockroach Shelfordella lateralis reflects the close evolutionary relatedness of cockroaches and termites. Appl Environ Microbiol 78:2758–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt-Wagner D, Brune A (1999) Hydrogen profiles and localization of methanogenic activities in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl Environ Microbiol 65:4490–4496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz K, Hunger S, Brown GG, Tsai SM, Cerri CC, Conrad R, Drake HL (2015) Methanogenic food web in the gut contents of methane-emitting earthworm Eudrilus eugeniae from Brazil. ISME J 9:1778–1792

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seedorf H, Dreisbach A, Hedderich R, Shima S, Thauer RK (2004) F420H2 oxidase (FprA) from Methanobrevibacter arboriphilus, a coenzyme F420-dependent enzyme involved in O2 detoxification. Arch Microbiol 182:126–137

    Article  CAS  PubMed  Google Scholar 

  • Seiler W, Conrad R, Scharffe D (1984) Field studies of methane emission from termite nests into the atmosphere and measurements of methane uptake by tropical soils. J Atmosph Chem 1:171–186

    Article  CAS  Google Scholar 

  • Shi Y, Huang Z, Han S, Fan S, Yang H (2015) Phylogenetic diversity of archaea in the intestinal tract of termites from different lineages. J Basic Microbiol 54:1–8

    CAS  Google Scholar 

  • Shinzato N, Yoshino H, Yara K (1992) Methane production by microbial symbionts in the lower and higher termites of the Ryukyu archipelago. In: Sato S, Ishida M, Ishikawa H (eds) Endocytobiology V. Tübingen University Press, Tübingen, pp 161–166

    Google Scholar 

  • Shinzato N, Matsumoto T, Yamaoka I, Oshima T, Yamagishi A (1999) Phylogenetic diversity of symbiotic methanogens living in the hindgut of the lower termite Reticulitermes speratus analyzed by PCR and in situ hybridization. Appl Environ Microbiol 65:837–840

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shinzato N, Matsumoto T, Yamaoka I, Oshima T, Yamagishi A (2001) Methanogenic symbionts and the locality of their host lower termites. Microb Environ 16:43–47

    Article  Google Scholar 

  • Söllinger A, Schwab C, Weinmaier T, Loy A, Tveit AT, Schleper C, Urich T (2016) Phylogenetic and genomic analysis of Methanomassiliicoccales in wetlands and animal intestinal tracts reveals clade-specific habitat preferences. FEMS Microbiol Ecol 92:fiv149

    Article  PubMed  CAS  Google Scholar 

  • Sprenger WW, van Belzen MC, Rosenberg J, Hackstein JHP, Keltjens JT (2000) Methanomicrococcus blatticola gen. nov., sp. nov., a methanol- and methylamine-reducing methanogen from the hindgut of the cockroach Periplaneta americana. Int J Syst Evol Microbiol 50:1989–1999

    Article  CAS  PubMed  Google Scholar 

  • Sprenger WW, Hackstein JHP, Keltjens JT (2005) The energy metabolism of Methanomicrococcus blatticola: physiological and biochemical aspects. Antonie v Leeuwenhoek 87:289–299

    Article  CAS  Google Scholar 

  • Sprenger WW, Hackstein JH, Keltjens JT (2007) The competitive success of Methanomicrococcus blatticola, a dominant methylotrophic methanogen in the cockroach hindgut, is supported by high substrate affinities and favorable thermodynamics. FEMS Microbiol Ecol 60:266–275

    Article  CAS  PubMed  Google Scholar 

  • Stubblefield RD, Bennett GA, Shotwell OL, Hall HH, Jackson RD (1966) Organic acids in the haemolymph of healthy and diseased Popillia japonica (Newman) larvae. J Insect Physiol 12:949–956

    Article  CAS  Google Scholar 

  • Sugimoto A, Inoue T, Kirtibutr N, Abe T (1998a) Methane oxidation by termite mounds estimated by the carbon isotopic composition of methane. Global Biogeochem Cycles 12:595–605

    Article  CAS  Google Scholar 

  • Sugimoto A, Inoue T, Tayasu I, Miller L, Takeichi S, Abe T (1998b) Methane and hydrogen production in a termite-symbiont system. Ecol Res 13:241–257

    Article  CAS  Google Scholar 

  • Sugimoto A, Bignell DE, MacDonald JA (2000) Global impact of termites on the carbon cycle and atmospheric trace gases. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 409–435

    Chapter  Google Scholar 

  • Sustr V, Simek M (2009) Methane release from millipedes and other soil invertebrates in Central Europe. Soil Biol Biochem 41:1684–1688

    Article  CAS  Google Scholar 

  • Sustr V, Chronáková A, Semanová S, Tajovský K, Simek M (2014) Methane production and methanogenic archaea in the digestive tracts of millipedes (Diplopoda). PLoS One 9:e102659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang KW, Glud RN, Glud A, Rysgaard S, Nielsen TG (2011) Copepod guts as biogeochemical hotspots in the sea: evidence from microelectrode profiling of Calanus spp. Limnol Oceanogr 56:666–672

    Article  CAS  Google Scholar 

  • Thauer RK, Kaster A-K, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591

    Article  CAS  PubMed  Google Scholar 

  • Tholen A, Brune A (1999) Localization and in situ activities of homoacetogenic bacteria in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl Environ Microbiol 65:4497–4505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tholen A, Brune A (2000) Impact of oxygen on metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes. Environ Microbiol 2:436–449

    Article  CAS  PubMed  Google Scholar 

  • Tholen A, Schink B, Brune A (1997) The gut microflora of Reticulitermes flavipes, its relation to oxygen, and evidence for oxygen-dependent acetogenesis by the most abundant Enterococcus sp. FEMS Microbiol Ecol 24:137–149

    Article  CAS  Google Scholar 

  • Tholen A, Pester M, Brune A (2007) Simultaneous methanogenesis and oxygen reduction by Methanobrevibacter cuticularis at low oxygen fluxes. FEMS Microbiol Ecol 62:303–312

    Article  CAS  PubMed  Google Scholar 

  • Tinker KA, Ottesen EA (2016) The core gut microbiome of the American cockroach, Periplaneta americana, is stable and resilient to dietary shifts. Appl Environ Microbiol 82:6603–6610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokura M, Ohkuma M, Kudo T (2000) Molecular phylogeny of methanogens associated with flagellated protists in the gut and with the gut epithelium of termites. FEMS Microbiol Ecol 33:233–240

    Article  CAS  PubMed  Google Scholar 

  • van Hoek AHAM, van Alen TA, Sprakel VSI, Leunissen JAM, Brigge T, Vogels GD, Hackstein JHP (2000) Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. Mol Biol Evol 17:251–258

    Article  PubMed  Google Scholar 

  • Vogels GD, Hoppe WF, Stumm CK (1980) Association of methanogenic bacteria with rumen ciliates. Appl Environ Microbiol 40:608–612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wandiga SO, Mugedo JAZ (1987) Methane emissions by tropical termites feeding on soil, wood, grass, and fungus combs. Kenya J Sci 8A:19–25

    Google Scholar 

  • Wheeler GS, Tokoro M, Scheffrahn RH, Su N-Y (1996) Comparative respiration and methane production rates in nearctic termites. J Insect Physiol 42:799–806

    Article  CAS  Google Scholar 

  • Yanase Y, Miura M, Fujii Y, Okumura S, Yoshimura T (2013) Evaluation of the concentrations of hydrogen and methane emitted by termite using a semiconductor gas sensor. J Wood Sci 59:243–248

    Article  CAS  Google Scholar 

  • Zimmerman PR, Greenberg JP, Wandiga SO, Crutzen PJ (1982) Termites: a potentially large source of atmospheric methane, carbon dioxide, and molecular hydrogen. Science 218:563–565

    Article  CAS  PubMed  Google Scholar 

  • Zurek L, Keddie BA (1998) Significance of methanogenic symbionts for development of the American cockroach, Periplaneta americana. J Insect Physiol 44:645–651

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Brune .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Brune, A. (2018). Methanogenesis in the Digestive Tracts of Insects and Other Arthropods. In: Stams, A., Sousa, D. (eds) Biogenesis of Hydrocarbons. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-53114-4_13-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53114-4_13-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53114-4

  • Online ISBN: 978-3-319-53114-4

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics