Skip to main content

Response of PGPR and AM Fungi Toward Growth and Secondary Metabolite Production in Medicinal and Aromatic Plants

  • Chapter
  • First Online:
Plant, Soil and Microbes

Abstract

Plant growth-promoting rhizobacteria (PGPRs) are a group of naturally occurring beneficial soil bacteria that colonize with the plant root system and promote growth by triggering the production of growth-regulating substances and facilitate the plants in the uptake of essential nutrients from the surrounding environments. Similarly, arbuscular mycorrhizal (AM) fungi also enhanced the growth, water and nutrient uptake, and especially available phosphate through their specialized hyphae. In addition, PGPR and AM fungi are known to stimulate the accumulation of secondary metabolites in plants. For several years, they are commonly employed to increase the plant yield and productivity especially in agricultural practices. The medicinal and aromatic plants are gaining popularity worldwide due to high therapeutic properties with negligible toxic side effects. To fulfill the global demand and supply gap for medicinal and aromatic plants and their products, farmers are encouraged to cultivate these plants on a large scale. However, there is a need to understand and implement a better cultivation practices in order to improve the quality of medicinal and aromatic plants. In this regard, the utilization of PGPRs and AM fungi as biofertilizers instead of chemical fertilizers could be a promising approach to the development of medicinal and aromatic plants under the sustainable production system. The aim of this chapter is to describe the potentiality of PGPRs and AM fungi to improve growth and development of medicinal and aromatic plants and accumulation of secondary metabolites having high therapeutic worth and also pave a way in the development of new biotechnological products as biofertilizers.

The original version of this chapter was revised: The spelling of the second author’s name was corrected. The erratum to this chapter is available at 10.1007/978-3-319-29573-2_19

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhtar MS, Abdullah SNA (2014) Mass production techniques of arbuscular mycorrhizal fungi: major advantages and disadvantages. Biosci Biotechnol Res Asia 11:1199–1204

    Article  Google Scholar 

  • Akhtar MS, Azam T (2014) Effect of PGPR and antagonistic fungi on the growth, enzyme activity and fusarium root-rot of pea. Arch Phytopathol Plant Protect 47:138–148

    Article  CAS  Google Scholar 

  • Akhtar MS, Panwar J (2011) Arbuscular mycorrhizal fungi and opportunistic fungi: Efficient root symbionts for the management of plant parasitic nematodes. Adv Sci Eng Med 3:165–175

    Article  Google Scholar 

  • Akhtar MS, Panwar J (2013) Efficacy of root-associated fungi and the growth of Pisum sativum (Arkil) and reproduction of root-knot nematode Meloidogyne incognita. J Basic Microbiol 53:318–326

    Article  CAS  PubMed  Google Scholar 

  • Akhtar MS, Siddiqui ZA (2008a) Biocontrol of a root-rot disease complex of chickpea by Glomus intraradices, Rhizobium sp. and Pseudomonas straita. Crop Prot 27:410–417

    Article  Google Scholar 

  • Akhtar MS, Siddiqui ZA (2008b) Glomus intraradices, Pseudomonas alcaligenes. Bacillus pumilus as effective biocontrol agents for the root-rot disease complex of chickpea (Cicer arietinum L). J Gen Plant Pathol 74:53–60

    Article  Google Scholar 

  • Akhtar MS, Siddiqui ZA (2008c) Arbuscular mycorrhizal fungi as potential biprotectants against plant pathogens. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: Sustainable agriculture and forestry. Springer, Dordrecht, The Netherlands, pp 61–98

    Chapter  Google Scholar 

  • Akhtar MS, Siddiqui ZA (2010) Role of plant growth promoting rhizobacteria in biocontrol of plant diseases and sustainable agriculture. In: Maheshwari DK (ed) Plant growth and health promoting bacteria, vol 18, Microbiology monographs. Springer-Verlag, Berlin, pp 157–196

    Chapter  Google Scholar 

  • Akhtar MS, Shakeel U, Siddiqui ZA (2010) Biocontrol of Fusarium wilt by Bacillus pumilus, Pseudomonas alcaligenes and Rhizobium sp. on lentil. Turk J Biol 34:1–7

    Google Scholar 

  • Akhtar MS, Siddiqui ZA, Wiemken A (2011) Arbuscular Mycorrhizal fungi and Rhizobium to control plant fungal diseases. In: Lichtfouse E (ed) Alternative farming systems, biotechnology, drought stress and ecological fertilisation, vol 6, Sustainable agriculture reviews. Springer, Dordrecht, The Netherlands, pp 263–292

    Chapter  Google Scholar 

  • Akhtar MS, Birhanu G, Demisse S (2014) Antimicrobial activity of Piper nigrum L. and Cassia didymobotrya L. leaf extract on selected food borne pathogens. Asian Pac J Trop Dis 4:S911–S919

    Article  Google Scholar 

  • Akhtar MS, Panwar J, Abdullah SNA, Siddiqui Y, Swamy MK, Ashkani S (2015) Biocontrol of plant parasitic nematodes by fungi: efficacy and control strategies. In: Meghvanshi MK, Varma A (eds) Organic amendments and soil suppressiveness in plant disease management, vol 46, Soil biology. Springer International Publishing, Switzerland, pp 219–247

    Google Scholar 

  • Amujoyegbe BJ, Agbedahunsi JM, Amujoyegbe OO (2012) Cultivation of medicinal plants in developing nations: means of conservation and poverty alleviation. Int J Med Arom Plants 2:345–353

    Google Scholar 

  • Aneesh TP, Hisham M, Sekhar MS, Madhu M, Deepa TV (2009) International market scenario of traditional Indian herbal drugs-India declining. Int J Green Pharm 3:184–190

    Article  Google Scholar 

  • Antunes PM, Ade V, Zhang T, Goss MJ (2006) The tripartite symbiosis formed by indigenous arbuscular mycorrhizal fungi, Bradyrhizobium japonicum and soybean under field conditions. J Agron Crop Sci 19:373–378

    Article  Google Scholar 

  • Araim G, Saleem A, Arnason JT, Charest AC (2009) Root colonization by an arbuscular mycorrhizal (AM) fungus increases growth and secondary metabolism of purple coneflower. Echinacea purpurea L Moench. J Agric Food Chem 57:2255–2258

    Article  CAS  PubMed  Google Scholar 

  • Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81:673–677

    Google Scholar 

  • Arun B, Gopinath B, Sharma S (2012) Plant growth promoting potential of bacteria isolated on N free media from rhizosphere of Cassia occidentalis. World J Microbiol Biotechnol 28:2849–2857

    Article  CAS  PubMed  Google Scholar 

  • Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant–microbe interactions. Curr Opin Biotechnol 20:642–650

    Article  CAS  PubMed  Google Scholar 

  • Banchio E, Bogino PC, Zygadlo J, Giordano W (2008) Plant growth promoting rhizobacteria improve growth and essential oil yield in Origanum majorana L. Biochem Syst Ecol 36:766–771

    Article  CAS  Google Scholar 

  • Barriuso J, Solano BR, Lucas JA, Lobo AP, García-Villaraco A, Mañero FJG (2008) Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria (PGPR). Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  • Bharti N, Yadav D, Barnawal D, Maji D, Kalra A (2013) Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress. World J Microbiol Biotechnol 29:379–387

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya P, Jha D (2012) Plant growth promoting rhizobacteria (PGPR): Emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Borde M, Dudhane M, Jite PK (2009) Role of bioinoculant (AM fungi) increasing in growth, flavor content and yield in Allium sativum L. under field condition. Not Bot Horti Agrobo 37:124–128

    Google Scholar 

  • Canter PH (2005) Bringing medicinal plants into cultivation. Focus Alter Complement Therap 10:167–168

    Google Scholar 

  • Catford JG, Staehelin C, Larose G, Piche Y, Vierheilig H (2006) Systemically suppressed isoflavonoids and their stimulating effects on nodulation and mycorrhization in alfalfa split-root systems. Plant Soil 285:257–266

    Article  CAS  Google Scholar 

  • Ceccarelli N, Curadi M, Martelloni L, Sbrana C, Picciarelli P, Giovannetti M (2010) Mycorrhizal colonization impacts on phenolic content and antioxidant properties of artichoke leaves and flower heads two years after field transplant. Plant Soil 335:311–323

    Article  CAS  Google Scholar 

  • Chandarana H, Baluja S, Chand SV (2005) Comparison of antibacterial activities of selected species of Zingiberaceae family and some synthetic compounds. Turk J Biol 29:83–97

    CAS  Google Scholar 

  • Chandra KK, Kumar N, Chand G (2010) Studies on mycorrhizal inoculation on dry matter yield and root colonization of some medicinal plants grown in stress and forest soils. J Environ Biol 31:975–979

    CAS  PubMed  Google Scholar 

  • Charles P, Raj ADS, Kiruba S (2006) Arbuscular mycorrhizal fungi in the reclamation and restoration of soil fertility. Mycorrhiza News 18:13–14

    Google Scholar 

  • Cloete KJ, Valentine AJ, Stander MA, Blomerus LM, Botha A (2009) Evidence of symbiosis between the soil yeast Cryptococcus laurentii and a Sclerophyllous medicinal shrub, Agathosma betulina (Berg.) Pillans. Microb Ecol 57:624–632

    Article  PubMed  Google Scholar 

  • Cloete KJ, Przybylowicz WJ, Mesjasz-Przybylowicz J, Barnabas AD, Valentine AJ, Botha A (2010) Micro-particle-induced X-ray emission mapping of elemental distribution in roots of a Mediterranean type sclerophyll, Agathosma betulina (Berg.) Pillans, colonized by Cryptococcus laurentii. Plant Cell Environ 33:1005–1015

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16:485–494

    Article  CAS  PubMed  Google Scholar 

  • Djilani A, Dicko A (2012) The therapeutic benefits of essential Oils. In: Nutrition, well-being and health. InTech, Croatia, pp 155–178

    Google Scholar 

  • Efferth T, Greten HJ (2012) Medicinal and aromatic plant research in the 21st century. Med Arom Plants 1, e110

    Google Scholar 

  • Egamberdieva D, da Silva JAT (2015) Medicinal Plants and PGPR: A new frontier for phytochemicals. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant growth promoting rhizobacteria (PGPR) and medicinal plants. Springer International Publishing, Cham, Switzerland, pp 287–303

    Google Scholar 

  • El-Deeb B, Fayez K, Gherbawy Y (2013) Isolation and characterization of endophytic bacteria from Plectranthus tenuiflorus medicinal plant in Saudi Arabia desert and their antimicrobial activities. J Plant Interact 8:56–64

    Article  CAS  Google Scholar 

  • Gandhi SG, Mahajan V, Bedi YS (2015) Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants. Planta 241:303–317

    Article  CAS  PubMed  Google Scholar 

  • Geneva MP, Stancheva IV, Boychinova MM, Mincheva NH, Yonova PA (2010) Effects of foliar fertilization and arbuscular mycorrhizal colonization on Salvia officinalis L. growth, antioxidant capacity, and essential oil composition. J Sci Food Agric 90:696–702

    CAS  PubMed  Google Scholar 

  • Gezahegn Z, Akhtar MS, Woyessa D, Tariku Y (2015) Antibacterial potential of Thevetia peruviana leaf extracts against food associated pathogens. J Coastal Life Med 3:150–157

    Google Scholar 

  • Gharib FA, Moussa LA, Massoud ON (2008) Effect of compost and bio-fertilizers on growth, yield and essential oil of sweet Marjoram (Majorana hortensis) plant. Int J Agri Biol 10:381–387

    Google Scholar 

  • Ghorbanpour M, Hatami M, Khavazi K (2013) Role of plant growth promoting rhizobacteria on antioxidant enzyme activities and tropane alkaloid production of Hyoscyamus niger under water deficit stress. Turk J Biol 37:350–360

    CAS  Google Scholar 

  • Gianinazzi S, Gollotte A, Binet MN, Van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    Article  PubMed  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biol Fertil Soils 38:170–175

    Article  Google Scholar 

  • Gogoi P, Singh RK (2011) Differential effect of some arbuscular mycorrhizal fungi on growth of Piper longum L. (Piperaceae). Indian J Sci Technol 4:119–125

    Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35

    Article  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: Commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Guo LP, Wang HG, Huang LQ, Jiang YX, Zhu YG, Kong WD, Chen BD, Chen ML, Lin SF, Fang ZG (2006) Effects of Arbuscular mycorrhizae on growth and essential oil of Atractylodes lancea. China J Chin Mater Med 31:1491–1496

    Google Scholar 

  • Gupta ML, Prasad A, Ram M, Kuma S (2002) Effect of the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions. Bioresour Technol 81:77–79

    Article  CAS  PubMed  Google Scholar 

  • Gupta M, Bisht S, Singh B, Gulati A, Tewari R (2011) Enhanced biomass and steviol glycosides in Stevia rebaudiana treated with phosphate-solubilizing bacteria and rock phosphate. Plant Growth Regul 65:449–457

    Article  CAS  Google Scholar 

  • Heidari M, Mosavinik SM, Golpayegani A (2011) Plant growth promoting rhizobacteria (PGPR) effect on physiological parameters and mineral uptake in basil (Ociumum basilicm L.) under water stress. ARPN J Agric Biol Sci 6:6–11

    Google Scholar 

  • Hemashenpagam N, Selvaraj T (2011) Effect of arbuscular mycorrhizal (AM) fungus and plant growth promoting rhizomicroorganisms (PGPR’s) on medicinal plant Solanum viarum seedlings. J Environ Biol 32:579–583

    CAS  PubMed  Google Scholar 

  • Ipek M, Pirlak L, Esitken A, Figen Dönmez M, Turan M, Sahin F (2014) Plant growth promoting rhizobacteria (PGPR) increase yield, growth and nutrition of strawberry under high-calcareous soil conditions. J Plant Nutr 37:990–1001

    Article  CAS  Google Scholar 

  • Jahanian A, Chaichi MR, Rezaei K, Rezayazdi K, Khavazi K (2012) The effect of plant growth promoting rhizobacteria (PGPR) on germination and primary growth of artichoke (Cynara scolymus). Int J Agric Crop Sci 4:923–929

    Google Scholar 

  • Jaleel CA, Manivannan P, Sankar B, Kishorekumar A, Gopi R, Somasundaram R, Panneerselvam R (2007) Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Colloids Surf B 60:7–11

    Article  CAS  Google Scholar 

  • Jurkiewicz A, Ryszka P, Anielska T, Waligórski P, Białońska D, Góralska K, Tsimilli-Michael M, Turnau K (2010) Optimization of culture conditions of Arnica montana L.: Effects of mycorrhizal fungi and competing plants. Mycorrhiza 20:293–306

    Article  PubMed  Google Scholar 

  • Kala CP (2009) Medicinal plants conservation and enterprise development. Med Plants 1:79–95

    Google Scholar 

  • Kala CP, Dhyani PP, Sajwan BK (2006) Developing the medicinal plants sector in northern India: challenges and opportunities. J Ethnobiol Ethnomed 2:32

    Article  PubMed Central  Google Scholar 

  • Karagiannidisa N, Thomidisa T, Lazarib D, Panou-Filotheoua E, Karagiannidoua C (2011) Effect of three greek arbuscular mycorrhizal fungi in improving the growth, nutrient concentration and production of essential oils of oregano and mint plants. Sci Hort 129:329–334

    Article  CAS  Google Scholar 

  • Karthikeyan B, Joe MM, Jaleel CA, Deiveekasundaram M (2010) Effect of root inoculation with plant growth promoting rhizobacteria (PGPR) on plant growth, alkaloid content and nutrient control of Catharanthus roseus (L.) G. Don. Nat Croat 1:205–212

    Google Scholar 

  • Karthikeyan B, Sakthivel U, Narayanan JS (2013) Role of plant growth promoting rhizobacteria for commercially grown medicinal plants. In: Maheshwari DK, Saraf M, Aeron A (eds) Bacteria in agrobiology: crop productivity. Springer, Berlin, Heidelberg, pp 65–76

    Chapter  Google Scholar 

  • Kaushik PS, Swamy MK, Balasubramanya S, Anuradha M (2015) Rapid plant regeneration, analysis of genetic fidelity and camptothecin content of micropropagated plants of Ophiorrhiza mungos Linn.-a potent anticancer Plant. J Crop Sci Biotechnol 18:1–8

    Article  Google Scholar 

  • Khaosaad T, Vierheilig H, Nell M, Zitterl-Eglseer K, Novak J (2006) Arbuscular mycorrhiza alters the concentration of essential oils in Oregano (Origanum sp., Lamiaceae). Mycorrhiza 16:443–446

    Article  CAS  PubMed  Google Scholar 

  • Koeberl M, Schmidt R, Ramadan EM, Bauer R, Berg G (2013) The microbiome of medicinal plants: diversity and importance for plant growth, quality, and health. Front Microbiol 4:400

    Google Scholar 

  • Kosalge SB, Fursule RA (2009) Investigation on ethnomedicinal claims of some plants used by tribals of Satpuda Hills in India. J Ethanopharmacol 121:456–461

    Article  CAS  Google Scholar 

  • Kumar BM, Nair PR (2004) The enigma of tropical home gardens. Agroforest Syst 61:135–152

    Google Scholar 

  • Lingua G, Bona E, Manassero P, Marsano F, Todeschini V, Cantamessa S, Copetta A, D’Agostino G, Gamalero E, Berta G (2013) Arbuscular mycorrhizal fungi and plant growth-promoting Pseudomonads increases anthocyanin concentration in Strawberry fruits (Fragaria × ananassa var. selva) in conditions of reduced fertilization. Int J Mol Sci 14:16207–16225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL (2000) Acquisition of Cu, Zn, Mn, and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza 9:331–336

    Article  CAS  Google Scholar 

  • Liu J, Wu L, Wei S, Xiao X, Su C, Jiang P, Song J, Wang T, Yu Z (2007) Effects of arbuscular mycorrhizal fungi on the growth, nutrient uptake and glycyrrhizin production of licorice (Glycyrrhiza uralensis Fisch). Plant Growth Regul 52:29–39

    Article  CAS  Google Scholar 

  • Lubbe A, Verpoorte R (2011) Cultivation of medicinal and aromatic plants for specialty industrial materials. Ind Crop Prod 34:785–801

    Article  CAS  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25

    Article  CAS  PubMed  Google Scholar 

  • Malleswari D, Bagyanarayana G (2013) In vitro screening of rhizobacteria isolated from the rhizosphere of medicinal and aromatic plants for multiple plant growth promoting activities. J Microbiol Biotechol Res 3:84–91

    CAS  Google Scholar 

  • Malusa E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J 2012:491206

    Article  CAS  Google Scholar 

  • Meng JJ, He XL (2011) Effects of AM fungi on growth and nutritional contents of Salvia miltiorrhiza Bge. under drought stress. J Agric Univ Hebei 34:51–61

    CAS  Google Scholar 

  • Mia MAB, Shamsudin ZH, Wahab Z, Marziah M (2010) Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth and nitrogen incorporation of tissue-cultured musa plantlets under nitrogen-free hydroponics condition. Aust J Crop Sci 4:85–90

    Google Scholar 

  • Mishra M, Kumar U, Mishra PK, Prakash V (2010) Efficiency of plant growth promoting rhizobacteria for the enhancement of Cicer arietinum L. growth and germination under salinity. Adv Biol Res 4:92–96

    CAS  Google Scholar 

  • Mohanty SK, Mallappa K, Godavarthi A, Subbanarasiman B, Maniyam A (2014) Evaluation of antioxidant, in vitro cytotoxicity of micropropagated and naturally grown plants of Leptadenia reticulata (Retz.) Wight & Arn.-an endangered medicinal plant. Asian Pac J Trop Med 7:S267–S271

    Article  Google Scholar 

  • Mohanty SK, Swamy MK, Middha SK, Prakash L, Subbanarashiman B, Maniyam A (2015). Analgesic, anti-inflammatory, anti-lipoxygenase activity and characterization of three bioactive compounds in the most active fraction of Leptadenia reticulata (Retz.) Wight & Arn.–A valuable medicinal plant. Iran J Pharm Res 14(3):933–942

    Google Scholar 

  • Morone-Fortunato I, Avato P (2008) Plant development and synthesis of essential oils in micropropagated and mycorrhiza inoculated plants of Origanum vulgare L. ssp. Hirtum (Link) Ietswaart. Plant Cell Tiss Organ Cult 93:139–149

    Article  CAS  Google Scholar 

  • Mukerji KG, Manoharachary C, Singh J (2006) Microbial activity in the rhizosphere, vol 7, Soil Biology. Springer, Berlin

    Book  Google Scholar 

  • Murugappan RM, Begum SB, Roobia RR (2013) Symbiotic influence of endophytic Bacillus pumilus on growth promotion and probiotic potential of the medicinal plant Ocimum sanctum. Symbiosis 60:91–99

    Article  Google Scholar 

  • Nell M, Votsch M, Vierheilig H, Steinkellner S, Zitterl-Eglseer K, Franz C, Novak J (2009) Effect of phosphorus uptake on growth and secondary metabolites of garden (Salvia officinalis L.). J Sci Food Agric 89:1090–1096

    Article  CAS  Google Scholar 

  • Nell M, Wawrosch C, Steinkellner S, Vierheilig H, Kopp B, Lössl A, Franz C, Novak J, Zitterl-Eglseer K (2010) Root colonization by symbiotic arbuscular mycorrhizal fungi increases sesquiterpenic acid concentrations. Planta Med 76:393–398

    Article  CAS  PubMed  Google Scholar 

  • Nisha MC, Rajeshkumar S (2010) Effect of arbuscular mycorrhizal fungi on growth and nutrition of Wedilia chinensis (Osbeck) Merril. Ind J Sci Technol 3:676–678

    Google Scholar 

  • Okigbo RN, Anuagasi CL, Amadi JE (2009) Advances in selected medicinal and aromatic plants indigenous to Africa. J Med Plants Res 3:86–95

    Google Scholar 

  • Pan SY, Zhou SF, Gao SH, Yu ZL, Zhang SF, Tang MK, Sun JN, Ma DL, Han YF, Fong WF, Ko KM (2013) New perspectives on how to discover drugs from herbal medicines: CAM's outstanding contribution to modern therapeutics. J Evid Based Complement Alternat Med 2012:25

    Google Scholar 

  • Ponce MA, Scervino JM, Erra BR, Ocampo JA, Godeas A (2004) Flavonoids from shoots and roots of Trifolium repens (white clover) grown in presence or absence of the arbuscular mycorrhizal fungus Glomus intraradices. Phytochemistry 65:1925–1930

    Article  CAS  PubMed  Google Scholar 

  • Radhika KP, Rodrigues BF (2011) Influence of arbuscular mycorrhizal fungi on andrographolide concentration in Andrographis paniculata. Aust J Med Herbal 23:34–36

    Google Scholar 

  • Rajeshkumar S, Nisha MC, Selvaraj T (2008) Variability in growth, nutrition and phytochemical constituents of Plectranthus amboinicus (Lour) Spreng. as influenced by indigenous arbuscular mycorrhizal fungi. Mj Int J Sci Tech 2:431–439

    CAS  Google Scholar 

  • Raut JS, Karuppayil SM (2014) A status review on the medicinal properties of essential oils. Ind Crops Prod 62:250–264

    Article  CAS  Google Scholar 

  • Rodriguez-Navarro DN, Dardanelli MS, Ruiz-Sainz JE (2007) Attachment of bacteria to the roots of higher plants. FEMS Microbiol Lett 272:127–136

    Article  CAS  PubMed  Google Scholar 

  • Rosa-Mera CJDA, Ferrera-Cerrato R, Alarcon A, Sanchez-Colın MDJ, Munoz-Muniz OD (2011) Arbuscular mycorrhizal fungi and potassium bicarbonate enhance the foliar content of the vinblastine alkaloid in Catharanthus roseus. Plant Soil 349:367–376

    Article  CAS  Google Scholar 

  • Sailo GL, Bagyaraj DJ (2005) Influence of different AM-fungi on the growth, nutrition and forskolin content of Coleus forskohlii. Mycol Res 109:795–798

    Article  CAS  PubMed  Google Scholar 

  • Sakthivel U, Karthikeyan B (2012) Effect of plant growth promoting rhizobacteria for the growth and yield of Coleus forskohlii. Int J Curr Adv Res 1:39–43

    Google Scholar 

  • Santoro MV, Zygadlo J, Giordano W, Banchio E (2011) Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita). Plant Physiol Biochem 49:1177–1182

    Article  CAS  PubMed  Google Scholar 

  • Schippmann U, Leaman D, Cunningham AB (2006) A Comparison of cultivation and wild collection of medicinal and aromatic plants under sustainability aspects. In: Bogers RJ, Craker LE, Lange D (eds) Medicinal and aromatic plants: agricultural, commerical, ecological, legal, pharmacological and social aspects. Springer, Dordrecht, The Netherlands, pp 75–96

    Chapter  Google Scholar 

  • Singh R, Divya S, Awasthi A, Kalra A (2012) Technology for efficient and successful delivery of vermicompost colonized bioinoculants in Pogostemon cablin (Patchouli) Benth. World J Microbiol Biotechnol 28:323–333

    Article  PubMed  Google Scholar 

  • Singh R, Soni SK, Kalra A (2013) Synergy between Glomus fasciculatum and a beneficial Pseudomonas in reducing root diseases and improving yield and forskolin content in Coleus forskohlii Briq. under organic field conditions. Mycorrhiza 23:35–44

    Article  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier, New York

    Google Scholar 

  • Solaiman ZM, Anawar HM (2015) Rhizosphere microbes interactions in medicinal plants. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants. Springer International Publishing, Switzerland, pp 19–41

    Google Scholar 

  • Stefan M, Munteanu N, Dunca S (2012) Plant-microbial interactions in the rhizosphere–strategies for plant growth-promotion. Analele Stiintifice ale Universitatii “Alexandru Ioan Cuza” din Iasi Sec. II a. Genetica si Biologie Moleculara 13:87–96

    CAS  Google Scholar 

  • Sucher NJ, Carles MC (2008) Genome-based approaches to the authentication of medicinal plants. Planta Med 74:603–623

    Article  CAS  PubMed  Google Scholar 

  • Sudipta KM, Swamy MK, Balasubramanya S, Anuradha M (2011) Cost effective approach for in vitro propagation of (Leptadenia reticulata Wight & Arn.)-a threatened plant of medicinal importance. J Phytol 3:72–79

    Google Scholar 

  • Sudipta KM, Swamy MK, Ashok G, Balasubramanya S, Anuradha M (2014) Evaluation of antioxidant, in vitro cytotoxicity of micropropagated and naturally grown plants of Leptadenia reticulata (Retz.) Wight & Arn.-an endangered medicinal plant. Asian Pac J Trop Med 7S:267–271

    Google Scholar 

  • Swamy MK, Sinniah UR (2015) A comprehensive review on the phytochemical constituents and pharmacological activities of Pogostemon cablin Benth.: An aromatic medicinal plant of industrial importance. Molecules 20:8521–8547

    Article  CAS  PubMed  Google Scholar 

  • Swamy MK, Sinniah UR, Akhtar MS (2015). In vitro pharmacological activities and GC-MS analysis of different solvent extracts of Lantana camara leaves collected from tropical region of Malaysia. Evid-Based Compl Alt Med. 2015:1–9. doi: http://dx.doi.org/10.1155/2015/506413

    Google Scholar 

  • Swamy MK, Pokharen N, Dahal S, Anuradha M (2011) Phytochemical and antimicrobial studies of leaf extract of Euphorbia neriifolia. J Med Plants Res 5:5785–5788

    Google Scholar 

  • Swamy MK, Sudipta KM, Lokesh P, Neeki MA, Rashmi W, Bhaumik SH, Darshil SH, Vijay R, Kashyap SSN (2012) Phytochemical screening and in vitro antimicrobial activity of Bougainvillea spectabilis flower extracts. Int J Phytomed 4:375–379

    Google Scholar 

  • Toussaint JP, Kraml M, Nell M, Smith SE, Smith FA, Steinkellner S, Schmiderer C, Vierheilig H, Novak J (2008) Effect of Glomus mosseae on concentrations of rosmarinic and caffeic acids and essential oil compounds in basil inoculated with Fusarium oxysporum f. sp. basilici. Plant Pathol 57:1109–1116

    Article  Google Scholar 

  • Uniyal SK, Awasthi A, Rawat GS (2002) Current status and distribution of commercially exploited medicinal and aromatic plants in upper Gori valley, Kumaon Himalaya, Uttaranchal. Curr Sci 82:1246–1252

    Google Scholar 

  • Vafadar F, Amooaghaie R, Otroshy M (2014) Effects of plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana. J Plant Interact 9:128–136

    Article  CAS  Google Scholar 

  • Vasudha S, Shivesh S, Prasad SK (2013) Harnessing PGPR from rhizosphere of prevalent medicinal plants in tribal areas of Central India. Res J Biotechnol 8:76–85

    Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Yadav BK, Akhtar MS, Panwar J (2015) Rhizospheric plant microbe interactions: a key factor to soil fertility and plant nutrition. In: Arora NK (ed) Plant microbe symbiosis-applied facests. Springer, Dordrecht, The Netherlands, pp 127–145

    Google Scholar 

  • Zeng Y, Guo LP, Chen BD, Hao ZP, Wang JY, Huang LQ, Yang G, Cui XM, Yang L, Wu ZX, Chen ML, Zhang Y (2013) Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: current research status and prospectives. Mycorrhiza 23:253–265

    Article  CAS  PubMed  Google Scholar 

  • Zhang HY, Xue QH, Shen GH, Wang DS (2013) Effects of actinomycetes agent on ginseng growth and rhizosphere soil microflora. J Appl Ecol 24:2287–2293

    CAS  Google Scholar 

  • Zhao JL, He XL (2011) Effects of AM fungi on drought resistance and content of chemical components in Angelica dahurica. Acta Agric Bor Occi Sin 20:184–189

    CAS  Google Scholar 

  • Zhao X, Yan XF (2006) Effects of arbuscular mycorrhizal fungi on the growth and absorption of nitrogen and phosphorus in Camptotheca acuminata seedlings. J Plant Ecol 30:947–953

    Article  CAS  Google Scholar 

  • Zitterl-Eglseer K, Nell M, Lamien-Meda A, Steinkellner S, Wawrosch C, Kopp B, Zitterl W, Vierheilig H, Novak J (2015) Effects of root colonization by symbiotic arbuscular mycorrhizal fungi on the yield of pharmacologically active compounds in Angelica archangelica L. Acta Physiol Plant 37:1–11

    Article  CAS  Google Scholar 

  • Zubek S, Stojakowska A, Anielska T, Turnau K (2010) Arbuscular mycorrhizal fungi alter thymol derivative contents of Inula ensifolia L. Mycorrhiza 20:497–504

    Article  CAS  PubMed  Google Scholar 

  • Zubek S, Mielcarek S, Turnau K (2012) Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza 22:149–156

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mallappa Kumara Swamy , Mohd Sayeed Akhtar or Uma Rani Sinniah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Swamy, M.K., Akhtar, M.S., Sinniah, U.R. (2016). Response of PGPR and AM Fungi Toward Growth and Secondary Metabolite Production in Medicinal and Aromatic Plants. In: Hakeem, K., Akhtar, M. (eds) Plant, Soil and Microbes. Springer, Cham. https://doi.org/10.1007/978-3-319-29573-2_7

Download citation

Publish with us

Policies and ethics