Skip to main content
Log in

Systemically suppressed isoflavonoids and their stimulating effects on nodulation and mycorrhization in alfalfa split-root systems

  • Original Paper
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

In split-root systems of alfalfa (Medicago sativa L.), already existing nodules or arbuscular mycorrhizal roots suppress further establishment of symbiosis in other root parts, a phenomenon named autoregulation. Roots treated with rhizobial nodulation signals (Nod factors) induce a similar systemic suppression of symbiosis.

In order to test the hypothesis that flavonoids play a role in this systemic suppression, split-root systems of alfalfa plants were inoculated on one side of the split-root system with Sinorhizobium meliloti or Glomus mosseae or were treated with Nod factor. HPLC-analysis of alfalfa root extracts from both sides of the split-root system revealed a persistent local and systemic accumulation pattern of some flavonoids associated with the different treatments. The two flavonoids, formononetin and ononin, could be identified to be similarily altered after rhizobial or mycorrhizal inoculation or when treated with Nod factor.

Exogenous application of formononetin and ononin partially restored nodulation and mycorrhization pointing towards the involvement of these two secondary compounds in the autoregulation of both symbioses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMF :

Arbuscular mycorrhizal fungi

NFs :

Nod factors

References

  • Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198

    PubMed  CAS  Google Scholar 

  • Boot KJM, van Brussel AA, Tak T, Spaink H, Kijne JW (1999) Lipochitin oligosacchrides from Rhizobium leguminosarum bv. viciae reduce auxin transport capacity in Vicia sativa subsp. nigra roots. Mol Plant-Microbe Interact 12:839–844

    CAS  Google Scholar 

  • Caba JM, Centeno ML, Fernandez B, Gresshoff PM, Ligero F (2000) Inoculation and nitrate alter phytohormone levels in soybean roots: differences between a supernodulating mutant and the wild type. Planta 211:98–104

    Article  PubMed  CAS  Google Scholar 

  • Caetano-Anollés G, Gresshoff PM (1991) Plant genetic control of nodulation. Annu Rev Microbiol 45:345–382

    Article  PubMed  Google Scholar 

  • Catford JG, Staehelin C, Lerat S, Piché Y, Vierheilig H (2003) Suppression of arbuscular mycorrhizal colonization and nodulation in split-root systems of alfalfa after pre-inoculation and treatment with Nod factors. J Exp Bot 54:1481–1487

    Article  PubMed  CAS  Google Scholar 

  • Cunningham S, Kollmeyer WD, Stacey G (1991) Chemical control of interstrain competition for soybean nodulation by Bradyrhizobium japonicum. Appl Environ Microbiol 57:1886–1892

    PubMed  CAS  Google Scholar 

  • Duc G, Trouvelot A, Gianinazzi-Pearson V, Gianinazzi S (1989) First report of non-mycorrhizal plant mutants (Myc-) obtained in pea (Pisum sativum L.) and fababean (Vicia faba L.). Plant Sci 60:215–222

    Article  Google Scholar 

  • Edwards R, Kessmann H (1992) Isoflavonoid phytoalexins and their biosynthetic enzymes. In: Gurr SJ, McPherson MJ, Bowles DJ (eds) Molecular plant pathology: A practical approach. Oxford University Press, Oxford, pp 45–62

    Google Scholar 

  • Guinel FC, Geil RD (2002) A model for the development of the rhizobial and arbuscular mycorrhizal symbioses in legumes and its use to understand the roles of ethylene in the establishment of these two symbioses. Can J Bot 80:695–720

    Article  CAS  Google Scholar 

  • Hirsch AM, Bhuvaneswari TV, Torrey JG, Bisseling T (1989) Early nodulin genes are induced in alfalfa root outgrowths elicted by auxin transport inhibitors. Proc Natl Acad Sci USA 86:1244–1248

    Article  PubMed  CAS  ADS  Google Scholar 

  • Hirsch AM, Kapulnik Y (1998) Signal transduction pathways in mycorrhizal associations: comparisons with the Rhizobium–legume symbiosis. Fung Gen Biol 23:205–212

    Article  CAS  Google Scholar 

  • Hungria M, Phillips DA (1993) Effects of a seed color mutation on rhizobial nod-gene-inducing flavonoids and nodulation in common bean. Mol Plant-Microbe Interact 6:418–422

    CAS  Google Scholar 

  • Jacobs M, Rubery PH (1988) Naturally occurring auxin transport regulators. Science 241:346–349

    CAS  ADS  PubMed  Google Scholar 

  • Jain V, Garg N, Nainawatee HS (1990) Naringenin enhanced efficiency of Rhizobium meliloti–alfalfa symbiosis. World J Microbiol Biotechnol 6:434–436

    Article  CAS  Google Scholar 

  • Kapulnik Y, Joseph CM, Phillips DA (1987) Flavone limitations to root nodulation and symbiotic nitrogen fixation in alfalfa. Plant Physiol 84:1193–1196

    PubMed  CAS  Google Scholar 

  • Kosslak RM, Joshi RS, Bowen BA, Paaren HE, Appelbaum ER (1990) Strain-specific inhibition of nod gene induction in Bradyrhizobium japonicum by flavonoid compounds. Appl Environ Microbiol 56:1333–1341

    PubMed  CAS  Google Scholar 

  • Larose G, Chenevert R, Moutoglis P, Gagne S, Piche Y, Vierheilig H (2002) Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. J Plant Physiol 159:1329–39

    Article  CAS  Google Scholar 

  • Liu CJ, Dixon RA (2001) Elicitor-induced association of isoflavone O-methyltransferase with endomembranes prevents the formation and 7-O-methylation of daidzein during isoflavonoid phytoalexin biosynthesis. Plant Cell 13:2643–2658

    Article  PubMed  CAS  Google Scholar 

  • Lohar DP, Sharopova N, Endre G, Penuela S, Samac D, Town C, Silverstein KAT, VandenBosch KA (2006) Transcript analysis of early nodulation events in Medicago truncatula. Plant Physiol 140:221–234

    Article  PubMed  CAS  Google Scholar 

  • Mathesius U, Schlaman HRM, Spaink HP, Sautter C, Rolfe BG, Djordjevic MA (1998) Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J 14:23–34

    Article  PubMed  CAS  Google Scholar 

  • Meixner C, Ludwig-Müller J, Miersch O, Gresshoff P, Staehelin C, Vierheilig H (2005) Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts1007. Planta 222:709–715

    Article  PubMed  CAS  Google Scholar 

  • Nair MG, Safir GR, Siqueira JO (1991) Isolation and identification of vesicular-arbuscular mycorrhiza-stimulatory compounds from clover (Trifolium repens) roots. Appl Environ Microbiol 57:434–439

    PubMed  CAS  Google Scholar 

  • Newman EI (1966) A method of estimating the total length of root in a sample. J Appl Ecol 3:139–145

    Article  Google Scholar 

  • Novák K, Chovanec P, Škrdleta V, Kropáčová M, Lisá L, Němcová M (2002) Effect of exogenous flavonoids on nodulation of pea (Pisum sativum L.). J Exp Bot 53:1735–1745

    Article  PubMed  CAS  Google Scholar 

  • Riely BK, Ané JM , Varma Penmetsa R, Cook DG (2004) Genetic and genomic analysis in model legumes bring Nod-factor signaling to center stage. Curr Opin Plant Biol 7:408–413

    Article  PubMed  CAS  Google Scholar 

  • Scervino JM, Ponce MA, Erra-Bassels R, Vierheilig H, Ocampo JA, Godeas A (2005) Arbuscular mycorrhizal colonization of tomato by Gigaspora and Glomus species in presence of roots flavonoids. J Plant Physiol 162:625–633

    Article  PubMed  CAS  Google Scholar 

  • Schlaman HRM, Horvath B, Vijgenboom E, Okker RJH, Lugtenberg BJJ (1991) Suppression of nodulation gene expression in bacteroids of Rhizobium leguminosarum biovar viciae. J Bacteriol 173:4277–4287

    PubMed  CAS  Google Scholar 

  • Schultze M, Quiclet-Sire B, Kondorosi E, Virelizier H, Glushka JN, Endre G, Géro SD, Kondorosi A (1992) Rhizobium meliloti produces a family of sulfated lipooligosaccharides exhibiting different degrees of plant host specificity. Proc Natl Acad Sci USA 89:192–196

    Article  PubMed  CAS  ADS  Google Scholar 

  • Searle IR, Men AE, Laniya TS, Buzas DM, Iturbe-Ormaetxe I, Carroll BJ, Gresshoff PM (2003) Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science 299:109–112

    Article  PubMed  CAS  ADS  Google Scholar 

  • Siqueira JO, Safir GR, Nair MG (1991) Stimulation of vesicular-arbuscular mycorrhiza formation and growth of white clover by flavonoid compounds. New Phytol 118:87–93

    Article  CAS  Google Scholar 

  • Staehelin C, Charon C, Crespi M, Boller T, Kondorosi A (2001) Medicago truncatula plants overexpressing the early nodulin gene enod40 exhibit accelerated mycorrhizal colonization and enhanced formation of arbuscules. Proc Natl Acad Sci USA 98:15366–15371

    Article  PubMed  CAS  ADS  Google Scholar 

  • Staehelin C, Schultze M, Tokuyasu K, Poinsot V, Promé JC, Kondorosi E, Kondorosi A (2000) N-deacetylation of Sinorhizobium meliloti Nod factors increases their stability in the Medicago sativa rhizosphere and decreases their biological activity. Mol Plant-Microbe Interact 13:72–79

    PubMed  CAS  Google Scholar 

  • Vierheilig H (2004a) Regulatory mechanisms during the plant-arbuscular mycorrhizal fungus interaction. Can J Bot 82:1166–1176

    Article  CAS  Google Scholar 

  • Vierheilig H (2004b) Further root colonization by arbuscular mycorrhizal fungi in already mycorrhizal plants is suppressed after a critical level of root colonization. J Plant Physiol 161:339–341

    Article  CAS  Google Scholar 

  • Vierheilig H, Bago B, Albrecht C, Poulin MJ, Piche Y (1998a) Flavonoids and arbuscular-mycorrhizal fungi. In: Manthey JA, Buslig BS (eds) Flavonoids in the living system. Plenum Press, New York, USA, pp 9–33

    Google Scholar 

  • Vierheilig H, Coughlan AP, Wyss U, Piché Y (1998b) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007

    CAS  Google Scholar 

  • Vierheilig H, Garcia-Garrido JM, Wyss U, Piché Y (2000a) Systemic suppression of mycorrhizal colonization of barley roots already colonized by AM fungi. Soil Biol Biochem 32:589–595

    Article  CAS  Google Scholar 

  • Vierheilig H, Maier W, Wyss U, Samson J, Strack D, Piché Y (2000b) Cyclohexenone derivative- and phosphate-levels in split-root systems and their role in the systemic suppression of mycorrhization in precolonized barley plants. J Plant Physiol 157:593–599

    CAS  Google Scholar 

  • Vierheilig H, Piché Y (2002) Signalling in arbuscular mycorrhiza, facts and hypotheses. In: Buslig B, Manthey J (eds) Flavonoids in cell functions. Kluwer Academic/Plenum Publishers, New York, pp 23–39

    Google Scholar 

  • Xie ZP (1996) Effects of Nod factors and phytohormones on the symbiotic interaction of legumes with rhizobia and arbuscular mycorrhizal fungi. PhD thesis. University of Basel, Switzerland

  • Xie ZP, Müller J, Wiemken A, Broughton WJ, Boller T (1998) Nod factors and tri-iodobenzoic acid stimulate mycorrhizal colonization and affect carbohydrate partitioning in mycorrhizal roots of Lablab purpureus. New Phytol 139:361–366

    Article  CAS  Google Scholar 

  • Xie ZP, Staehelin C, Vierheilig H, Wiemken A, Jabbouri S, Broughton WJ, Vögeli-Lange R, Boller T (1995) Rhizobial nodulation factors stimulate mycorrhizal colonization of nodulating and nonnodulating soybeans. Plant Physiol 108:1519–1525

    PubMed  CAS  Google Scholar 

  • Zaat SAJ, Wijffelman CA, Mulders IHM, Van Brussel AAN, Lugtenberg BJJ (1988) Root exudates of various host plants of Rhizobium leguminosarum contain different sets of inducers of Rhizobium nodulation genes. Plant Physiol 86:1298–1303

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Smith DL (1995) Preincubation of Bradyrhizobium japonicum with genistein accelerates nodule development of soybean at suboptimal root zone temperatures. Plant Physiol 108:961–968

    Article  PubMed  CAS  Google Scholar 

  • Zuanazzi JAS, Clergeot PH, Quirion JC, Husson HP, Kondorosi A, Ratet P (1998) Production of Sinorhizobium meliloti nod gene activator and repressor flavonoids from Medicago sativa Roots. Mol Plant-Microbe Interact 11:784–794

    CAS  Google Scholar 

Download references

Acknowledgements

This work was partially funded by a OECD grant to H.V.C.S. was supported by the Science and Technology Department of Guangdong and by the Guangdong Natural Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Vierheilig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catford, J.G., Staehelin, C., Larose, G. et al. Systemically suppressed isoflavonoids and their stimulating effects on nodulation and mycorrhization in alfalfa split-root systems. Plant Soil 285, 257–266 (2006). https://doi.org/10.1007/s11104-006-9012-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-006-9012-8

Keywords

Navigation