Skip to main content
Log in

Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Medicinal and aromatic plants are known to produce secondary metabolites that find uses as flavoring agents, fragrances, insecticides, dyes and drugs. Biotechnology offers several choices through which secondary metabolism in medicinal plants can be altered in innovative ways, to overproduce phytochemicals of interest, to reduce the content of toxic compounds or even to produce novel chemicals. Detailed investigation of chromatin organization and microRNAs affecting biosynthesis of secondary metabolites as well as exploring cryptic biosynthetic clusters and synthetic biology options, may provide additional ways to harness this resource.

Plant secondary metabolites are a fascinating class of phytochemicals exhibiting immense chemical diversity. Considerable enigma regarding their natural biological functions and the vast array of pharmacological activities, amongst other uses, make secondary metabolites interesting and important candidates for research. Here, we present an update on changing trends in the biotechnological approaches that are used to understand and exploit the secondary metabolism in medicinal and aromatic plants. Bioprocessing in the form of suspension culture, organ culture or transformed hairy roots has been successful in scaling up secondary metabolite production in many cases. Pathway elucidation and metabolic engineering have been useful to get enhanced yield of the metabolite of interest; or, for producing novel metabolites. Heterologous expression of putative plant secondary metabolite biosynthesis genes in a microbe is useful to validate their functions, and in some cases, also, to produce plant metabolites in microbes. Endophytes, the microbes that normally colonize plant tissues, may also produce the phytochemicals produced by the host plant. The review also provides perspectives on future research in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

4CL:

4-Coumaroyl:CoA ligase

CHI:

Chalcone isomerase

CUS:

Curcuminoid synthase

CYPs:

Cytochrome P450 enzymes

DMAPP:

Dimethylallyl pyrophosphate

EST:

Expressed sequenced tag

IPP:

Isopentenyl pyrophosphate

mA:

Milli ampere (electric current)

MAP:

Medicinal and aromatic plants

MEP:

Methylerythritolphosphate pathway

MEV:

Mevalonate pathway

ORF:

Open reading frame

PAL:

Phenylalanine ammonia-lyase

PLR:

Pinoresinol/lariciresinol reductase

STS:

Stilbene synthase

T DNA:

Transfer deoxyribose nucleic acid

TIA:

Terpenoid indole alkaloid pathway

US-FDA:

United States Food and Drug Administration

UV:

Ultra violet

VIGS:

Virus induced gene silencing

References

  • Afendi FM, Okada T, Yamazaki M et al (2012) KNApSAcK family databases: integrated metabolite-plant species databases for multifaceted plant research. Plant Cell Physiol 53:e1. doi:10.1093/pcp/pcr165

    CAS  PubMed  Google Scholar 

  • Allen RS, Millgate AG, Chitty JA et al (2004) RNAi-mediated replacement of morphine with the nonnarcotic alkaloid reticuline in opium poppy. Nat Biotechnol 22:1559–1566. doi:10.1038/nbt1033

    CAS  PubMed  Google Scholar 

  • Alonso JM, Ecker JR (2006) Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis. Nat Rev Genet 7:524–536. doi:10.1038/nrg1893

    CAS  PubMed  Google Scholar 

  • Antognoni F, Zheng S, Pagnucco C et al (2007) Induction of flavonoid production by UV-B radiation in Passiflora quadrangularis callus cultures. Fitoterapia 78:345–352. doi:10.1016/j.fitote.2007.02.001

    CAS  PubMed  Google Scholar 

  • Bak S, Olsen CE, Petersen BL et al (1999) Metabolic engineering of p-hydroxybenzylglucosinolate in Arabidopsis by expression of the cyanogenic CYP79A1 from Sorghum bicolor. Plant J 20:663–671. doi:10.1046/j.1365-313X.1999.00642.x

    CAS  PubMed  Google Scholar 

  • Bartley GE, Scolnik PA, Beyer P (1999) Two Arabidopsis thaliana carotene desaturases, phytoene desaturase and zeta-carotene desaturase, expressed in Escherichia coli, catalyze a poly-cis pathway to yield pro-lycopene. Eur J Biochem 259:396–403

    CAS  PubMed  Google Scholar 

  • Bashyal B, Li YJ, Strobel G et al (1999) Seimatoantlerium nepalense, an endophytic taxol producing coelomycete from Himalayan yew (Taxus wallachiana). Mycotaxon 72:33–42

    Google Scholar 

  • Berlin J (1997) Secondary products from plant cell cultures. In: Rehm H-J, Reed G (eds) Biotechnology: products of secondary metabolism, vol 7. Wiley, New York, pp 593–640

    Google Scholar 

  • Bouwmeester HJ, Bertea CM, Kraker JW, Franssen MCR (2006) Research to improve artemisinin production for use in the preparation of anti-malarial drugs. In: Bogers RJ, Craker LE, Langer D (eds) Medicinal and aromatic plants. Springer Netherlands, Amsterdam, pp 275–290

    Google Scholar 

  • Brodelius P, Pedersen H (1993) Increasing secondary metabolite production in plant-cell culture by redirecting transport. Trends Biotechnol 11:30–36. doi:10.1016/0167-7799(93)90072-H

    CAS  PubMed  Google Scholar 

  • Cai Y, Jia J-W, Crock J et al (2002) A cDNA clone for beta-caryophyllene synthase from Artemisia annua. Phytochemistry 61:523–529

    CAS  PubMed  Google Scholar 

  • Cankar K, Jongedijk E, Klompmaker M et al (2014) (+)-Valencene production in Nicotiana benthamiana is increased by down-regulation of competing pathways. Biotechnol J. doi:10.1002/biot.201400288

    PubMed  Google Scholar 

  • Cazzonelli CI, Roberts AC, Carmody ME, Pogson BJ (2010) Transcriptional control of SET domain group 8 and carotenoid isomerase during Arabidopsis development. Mol Plant 3:174–191. doi:10.1093/mp/ssp092

    CAS  PubMed  Google Scholar 

  • Chattopadhyay S, Farkya S, Srivastava AK, Bisaria VS (2002) Bioprocess considerations for production of secondary metabolites by plant cell suspension cultures. Biotechnol Bioprocess Eng 7:138–149. doi:10.1007/BF02932911

    CAS  Google Scholar 

  • Chemler JA, Koffas MAG (2008) Metabolic engineering for plant natural product biosynthesis in microbes. Curr Opin Biotechnol 19:597–605. doi:10.1016/j.copbio.2008.10.011

    CAS  PubMed  Google Scholar 

  • Chen D-H, Ye H-C, Li G-F (2000) Expression of a chimeric farnesyl diphosphate synthase gene in Artemisia annua L. transgenic plants via Agrobacterium tumefaciens-mediated transformation. Plant Sci 155:179–185. doi:10.1016/S0168-9452(00)00217-X

    CAS  PubMed  Google Scholar 

  • Chiang L, Abdullah MA (2007) Enhanced anthraquinones production from adsorbent-treated Morinda elliptica cell suspension cultures in production medium strategy. Process Biochem 42:757–763. doi:10.1016/j.procbio.2007.01.005

    CAS  Google Scholar 

  • Cho H-Y, Son SY, Rhee HS et al (2008) Synergistic effects of sequential treatment with methyl jasmonate, salicylic acid and yeast extract on benzophenanthridine alkaloid accumulation and protein expression in Eschscholtzia californica suspension cultures. J Biotechnol 135:117–122. doi:10.1016/j.jbiotec.2008.02.020

    CAS  PubMed  Google Scholar 

  • Corey EJ, Jardine P da S, Rohloff JC (1988) Total synthesis of (+/−)-forskolin. J Am Chem Soc 110:3672–3673. doi:10.1021/ja00219a059

  • Craney A, Ozimok C, Pimentel-Elardo SM et al (2012) Chemical perturbation of secondary metabolism demonstrates important links to primary metabolism. Chem Biol 19:1020–1027. doi:10.1016/j.chembiol.2012.06.013

    CAS  PubMed  Google Scholar 

  • Croteau R, Ketchum REB, Long RM et al (2006) Taxol biosynthesis and molecular genetics. Phytochem Rev 5:75–97. doi:10.1007/s11101-005-3748-2

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crozier A, Jaganath IB, Clifford MN (2006) Phenols, Polyphenols and Tannins: An overview. In: Crozier A, Clifford MN, Ashihara H (eds) Plant Second Metab. Occur. Struct. Role Hum. Diet. Blackwell Publishing Ltd., Oxford, pp 1–24

    Google Scholar 

  • Davis KR, Darvill AG, Albersheim P (1986) Several biotic and abiotic elicitors act synergistically in the induction of phytoalexin accumulation in soybean. Plant Mol Biol 6:23–32. doi:10.1007/BF00021303

    CAS  PubMed  Google Scholar 

  • Davuluri GR, van Tuinen A, Fraser PD et al (2005) Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 23:890–895. doi:10.1038/nbt1108

    CAS  PubMed  Google Scholar 

  • Dejong JM, Liu Y, Bollon AP et al (2006) Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol Bioeng 93:212–224. doi:10.1002/bit.20694

    CAS  PubMed  Google Scholar 

  • Demain AL (1998) Induction of microbial secondary metabolism. Int Microbiol 1:259–264

    CAS  PubMed  Google Scholar 

  • Desai PN, Shrivastava N, Padh H (2010) Production of heterologous proteins in plants: strategies for optimal expression. Biotechnol Adv 28:427–435. doi:10.1016/j.biotechadv.2010.01.005

    CAS  PubMed  Google Scholar 

  • Dudareva N, Andersson S, Orlova I et al (2005) The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc Natl Acad Sci USA 102:933–938. doi:10.1073/pnas.0407360102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Endo T, Goodbody A, Misawa M (1987) Alkaloid production in root and shoot cultures of Catharanthus roseus. Planta Med 53:479–482. doi:10.1055/s-2006-962777

    CAS  PubMed  Google Scholar 

  • Engels B, Dahm P, Jennewein S (2008) Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards taxol (paclitaxel) production. Metab Eng 10:201–206. doi:10.1016/j.ymben.2008.03.001

    CAS  PubMed  Google Scholar 

  • Engprasert S, Taura F, Kawamukai M, Shoyama Y (2004) Molecular cloning and functional expression of geranylgeranyl pyrophosphate synthase from Coleus forskohlii Briq. BMC Plant Biol 4:18. doi:10.1186/1471-2229-4-18

    PubMed Central  PubMed  Google Scholar 

  • Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121–1124. doi:10.1021/np060174f

    CAS  PubMed  Google Scholar 

  • Fang L, Hou Y, Wang L et al (2014) Myb14, a direct activator of STS, is associated with resveratrol content variation in berry skin in two grape cultivars. Plant Cell Rep 33:1629–1640. doi:10.1007/s00299-014-1642-3

    CAS  PubMed  Google Scholar 

  • Farnsworth N, Soejartto D (1991) Global importance of medicinal plants. In: Akerele O, Heywood V, Synge H (eds) Conservation of medicinal plants. Cambridge University Press, Cambridge, pp 25–51

    Google Scholar 

  • Floss DS, Hause B, Lange PR et al (2008) Knock-down of the MEP pathway isogene 1-deoxy-D-xylulose 5-phosphate synthase 2 inhibits formation of arbuscular mycorrhiza-induced apocarotenoids, and abolishes normal expression of mycorrhiza-specific plant marker genes. Plant J 56:86–100. doi:10.1111/j.1365-313X.2008.03575.x

    CAS  PubMed  Google Scholar 

  • Fujii N, Inui T, Iwasa K et al (2007) Knockdown of berberine bridge enzyme by RNAi accumulates (S)-reticuline and activates a silent pathway in cultured California poppy cells. Transgenic Res 16:363–375. doi:10.1007/s11248-006-9040-4

    CAS  PubMed  Google Scholar 

  • Gavilano LB, Coleman NP, Burnley L-E et al (2006) Genetic engineering of Nicotiana tabacum for reduced nornicotine content. J Agric Food Chem 54:9071–9078. doi:10.1021/jf0610458

    CAS  PubMed  Google Scholar 

  • Giri A, Narasu ML (2000) Transgenic hairy roots. Recent trends and applications. Biotechnol Adv 18:1–22

    CAS  PubMed  Google Scholar 

  • González-Teuber M, Heil M (2009) Nectar chemistry is tailored for both attraction of mutualists and protection from exploiters. Plant Signal Behav 4:809–813

    PubMed Central  PubMed  Google Scholar 

  • Grotewold E, Chamberlin M, Snook M et al (1998) Engineering secondary metabolism in maize cells by ectopic expression of transcription factors. Plant Cell 10:721–740

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gu X-C, Chen J-F, Xiao Y et al (2012) Overexpression of allene oxide cyclase promoted tanshinone/phenolic acid production in Salvia miltiorrhiza. Plant Cell Rep 31:2247–2259. doi:10.1007/s00299-012-1334-9

    CAS  PubMed  Google Scholar 

  • Hashimoto T, Kohno J, Yamada Y (1987) Epoxidation in vivo of hyoscyamine to scopolamine does not involve a dehydration step. Plant Physiol 84:144–147

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hashimoto S, Sakata S, Sonegawa M, Ikegami S (1988) A total synthesis of (±)-forskolin. J Am Chem Soc 110:3670–3672. doi:10.1021/ja00219a058

    CAS  Google Scholar 

  • He S, Sheng N (1997) Utilization and conservation of medicinal plants in China with special reference to Atractylodes lancea. In: Bodeker G, Bhat KKS, Burley J, Vantomme P (eds) Medicinal plants for forest conservation and health care. Non-wood forest products 11. FAO, Rome, pp 109–115

  • Heinstein PF, Chang CJ (1994) Taxol. Annu Rev Plant Physiol Plant Mol Biol 45:663–674. doi:10.1146/annurev.pp.45.060194.003311

  • Huang C, Qian Y, Li Z, Zhou X (2012) Virus-induced gene silencing and its application in plant functional genomics. Sci China Life Sci 55:99–108. doi:10.1007/s11427-012-4280-4

    CAS  PubMed  Google Scholar 

  • Hwang EI, Kaneko M, Ohnishi Y, Horinouchi S (2003) Production of plant-specific flavanones by Escherichia coli containing an artificial gene cluster. Appl Environ Microbiol 69:2699–2706. doi:10.1128/AEM.69.5.2699-2706.2003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kadomura-Ishikawa Y, Miyawaki K, Noji S, Takahashi A (2013) Phototropin 2 is involved in blue light-induced anthocyanin accumulation in Fragaria × ananassa fruits. J Plant Res 126:847–857. doi:10.1007/s10265-013-0582-2

    CAS  PubMed  Google Scholar 

  • Kaimoyo E, Farag MA, Sumner LW et al (2008) Sub-lethal levels of electric current elicit the biosynthesis of plant secondary metabolites. Biotechnol Prog 24:377–384. doi:10.1021/bp0703329

    CAS  PubMed  Google Scholar 

  • Karuppusamy S (2010) A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J Med Plants Res 3:1222–1239

    Google Scholar 

  • Kessler D, Baldwin IT (2007) Making sense of nectar scents: the effects of nectar secondary metabolites on floral visitors of Nicotiana attenuata. Plant J 49:840–854. doi:10.1111/j.1365-313X.2006.02995.x

    CAS  PubMed  Google Scholar 

  • Kim HJ, Ono E, Morimoto K et al (2009) Metabolic engineering of lignan biosynthesis in Forsythia cell culture. Plant Cell Physiol 50:2200–2209. doi:10.1093/pcp/pcp156

    CAS  PubMed  Google Scholar 

  • Kusari S, Zühlke S, Spiteller M (2009) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72:2–7. doi:10.1021/np800455b

    CAS  PubMed  Google Scholar 

  • Lee JC, Strobel GA, Lobkovsky E, Clardy J (1996) Torreyanic acid: a selectively cytotoxic quinone dimer from the endophytic fungus Pestalotiopsis microspora. J Org Chem 61:3232–3233. doi:10.1021/jo960471x

    CAS  Google Scholar 

  • Lee J, Bae H, Jeong J et al (2003) Functional expression of a bacterial heavy metal transporter in Arabidopsis enhances resistance to and decreases uptake of heavy metals. Plant Physiol 133:589–596. doi:10.1104/pp.103.021972

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lewis RS, Jack AM, Morris JW et al (2008) RNA interference (RNAi)-induced suppression of nicotine demethylase activity reduces levels of a key carcinogen in cured tobacco leaves. Plant Biotechnol J 6:346–354. doi:10.1111/j.1467-7652.2008.00324.x

    CAS  PubMed  Google Scholar 

  • Li JY, Sidhu RS, Ford EJ et al (1998) The induction of taxol production in the endophytic fungus- Periconia sp from Torreya grandifolia. J Ind Microbiol Biotechnol 20:259–264. doi:10.1038/sj.jim.2900521

    CAS  Google Scholar 

  • Li H, Flachowsky H, Fischer TC et al (2007) Maize Lc transcription factor enhances biosynthesis of anthocyanins, distinct proanthocyanidins and phenylpropanoids in apple (Malus domestica Borkh.). Planta 226:1243–1254. doi:10.1007/s00425-007-0573-4

    CAS  PubMed  Google Scholar 

  • Li W, Wang B, Wang M et al (2014) Cloning and characterization of a potato StAN11 gene involved in anthocyanin biosynthesis regulation. J Integr Plant Biol 56:364–372. doi:10.1111/jipb.12136

    CAS  PubMed  Google Scholar 

  • Liu C-Z, Guo C, Wang Y, Ouyang F (2003) Factors influencing artemisinin production from shoot cultures of Artemisia annua L. World J Microbiol Biotechnol 19:535–538. doi:10.1023/A:1025158416832

    CAS  Google Scholar 

  • Lloyd AM, Walbot V, Davis RW (1992) Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1. Science 258:1773–1775

    CAS  PubMed  Google Scholar 

  • Lommen WJM, Schenk E, Bouwmeester HJ, Verstappen FWA (2006) Trichome dynamics and artemisinin accumulation during development and senescence of Artemisia annua leaves. Planta Med 72:336–345. doi:10.1055/s-2005-916202

    CAS  PubMed  Google Scholar 

  • Long DM, Smidansky ED, Archer AJ, Strobel GA (1998) In vivo addition of telomeric repeats to foreign DNA generates extrachromosomal DNAs in the taxol-producing fungus Pestalotiopsis microspora. Fungal Genet Biol 24:335–344. doi:10.1006/fgbi.1998.1065

    CAS  PubMed  Google Scholar 

  • Mahajan V, Mahajan A, Pagoch SS et al (2011) microRNA mediated regulation of plant secondary metabolism: an in silico analysis. J Nat Sci Biol Med 2:44

    Google Scholar 

  • Mahajan V, Sharma N, Kumar S et al (2014) Production of rohitukine in leaves and seeds of Dysoxylum binectariferum: an alternate renewable resource. Pharm Biol 4:1–5. doi:10.3109/13880209.2014.923006

    Google Scholar 

  • Mahajan V, Rather IA, Awasthi P et al (2015) Development of chemical and EST-SSR markers for Ocimum genus. Ind Crops Prod 63:65–70

    CAS  Google Scholar 

  • Mahmoud SS, Croteau RB (2001) Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Proc Natl Acad Sci USA 98:8915–8920. doi:10.1073/pnas.141237298

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miettinen K, Dong L, Navrot N et al (2014) The seco-iridoid pathway from Catharanthus roseus. Nat Commun 5:3606. doi:10.1038/ncomms4606

    PubMed Central  PubMed  Google Scholar 

  • Mohana Kumara P, Zuehlke S, Priti V et al (2012) Fusarium proliferatum, an endophytic fungus from Dysoxylum binectariferum Hook.f, produces rohitukine, a chromane alkaloid possessing anti-cancer activity. Antonie Van Leeuwenhoek 101:323–329. doi:10.1007/s10482-011-9638-2

    PubMed  Google Scholar 

  • Muir SR, Collins GJ, Robinson S et al (2001) Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotechnol 19:470–474. doi:10.1038/88150

    CAS  PubMed  Google Scholar 

  • Naoumkina MA, He X, Dixon RA (2008) Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula. BMC Plant Biol 8:132. doi:10.1186/1471-2229-8-132

    PubMed Central  PubMed  Google Scholar 

  • Ogita S, Uefuji H, Yamaguchi Y et al (2003) Producing decaffeinated coffee plants. Nature 423:823. doi:10.1038/423823a

    CAS  PubMed  Google Scholar 

  • Olano C, García I, González A et al (2014) Activation and identification of five clusters for secondary metabolites in Streptomyces albus J1074. Microb Biotechnol 7:242–256. doi:10.1111/1751-7915.12116

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paddon CJ, Westfall PJ, Pitera DJ et al (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532. doi:10.1038/nature12051

    CAS  PubMed  Google Scholar 

  • Palozza P, Simone RE, Catalano A, Mele MC (2011) Tomato lycopene and lung cancer prevention: from experimental to human studies. Cancers (Basel) 3:2333–2357. doi:10.3390/cancers3022333

    CAS  Google Scholar 

  • Patra B, Schluttenhofer C, Wu Y et al (2013) Transcriptional regulation of secondary metabolite biosynthesis in plants. Biochim Biophys Acta Gene Regul Mech 1829:1236–1247. doi:10.1016/j.bbagrm.2013.09.006

    CAS  Google Scholar 

  • Poulter CD, Wiggins PL, Le AT (1981) Farnesylpyrophosphate synthetase. A stepwise mechanism for the 1′-4 condensation reaction. J Am Chem Soc 103:3926–3927. doi:10.1021/ja00403a054

    CAS  Google Scholar 

  • Prather KLJ, Martin CH (2008) De novo biosynthetic pathways: rational design of microbial chemical factories. Curr Opin Biotechnol 19:468–474. doi:10.1016/j.copbio.2008.07.009

    PubMed  Google Scholar 

  • Pulici M, Sugawara F, Koshino H et al (1996) Pestalotiopsins A and B: new caryophyllenes from an endophytic fungus of Taxus brevifolia. J Org Chem 61:2122–2124. doi:10.1021/jo951736v

    CAS  Google Scholar 

  • Ramani S, Chelliah J (2007) UV-B-induced signaling events leading to enhanced-production of catharanthine in Catharanthus roseus cell suspension cultures. BMC Plant Biol 7:61. doi:10.1186/1471-2229-7-61

    PubMed Central  PubMed  Google Scholar 

  • Rischer H, Oresic M, Seppänen-Laakso T et al (2006) Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proc Natl Acad Sci USA 103:5614–5619. doi:10.1073/pnas.0601027103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rizvi Z (2012) Application of artificial neural networks for predicting maximum in vitro shoot biomass production of safed musli (Chlorophytum borivilianum). J Med Diagn Methods 01:1–6. doi:10.4172/scientificreports.464

    Google Scholar 

  • Ro D-K, Paradise EM, Ouellet M et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943. doi:10.1038/nature04640

    CAS  PubMed  Google Scholar 

  • Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16:565–574. doi:10.1039/a709175c

    CAS  PubMed  Google Scholar 

  • Ronen G, Carmel-Goren L, Zamir D, Hirschberg J (2000) An alternative pathway to beta -carotene formation in plant chromoplasts discovered by map-based cloning of beta and old-gold color mutations in tomato. Proc Natl Acad Sci USA 97:11102–11107. doi:10.1073/pnas.190177497

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roytrakul S, Verpoorte R (2007) Role of vacuolar transporter proteins in plant secondary metabolism: Catharanthus roseus cell culture. Phytochem Rev 6:383–396. doi:10.1007/s11101-006-9022-4

    CAS  Google Scholar 

  • Saito K, Mizukami H (2002) Plant cell cultures as producers of secondary compounds. In: Oksman-Caldentey K-M, Barz WH (eds) Plant biotechnology and transgenic plants. CRC Press, New York, pp 66–91

    Google Scholar 

  • Sakuta M, Takagi T, Komamine A (1987) Effects of nitrogen source on betacyanin accumulation and growth in suspension cultures of Phytolacca americana. Physiol Plant 71:459–463. doi:10.1111/j.1399-3054.1987.tb02884.x

    CAS  Google Scholar 

  • Schoendorf A, Rithner CD, Williams RM, Croteau RB (2001) Molecular cloning of a cytochrome P450 taxane 10 beta-hydroxylase cDNA from Taxus and functional expression in yeast. Proc Natl Acad Sci USA 98:1501–1506. doi:10.1073/pnas.98.4.1501

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schwekendiek A, Spring O, Heyerick A et al (2007) Constitutive expression of a grapevine stilbene synthase gene in transgenic hop (Humulus lupulus L.) yields resveratrol and its derivatives in substantial quantities. J Agric Food Chem 55:7002–7009. doi:10.1021/jf070509e

    CAS  PubMed  Google Scholar 

  • Sergeant MJ, Li J-J, Fox C et al (2009) Selective inhibition of carotenoid cleavage dioxygenases: phenotypic effects on shoot branching. J Biol Chem 284:5257–5264. doi:10.1074/jbc.M805453200

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seyedsayamdost MR (2014) High-throughput platform for the discovery of elicitors of silent bacterial gene clusters. Proc Natl Acad Sci USA 111:7266–7271. doi:10.1073/pnas.1400019111

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shankar D, Majumdar B (1997) Beyond the biodiversity convention: the challenges facing the biocultural heritage of India’s medicinal plants. In: Bodeker G, Bhat KKS, Burley J, Vantomme P (eds) Medicinal plants for forest conservation and health care. Non-wood forest products 11. FAO, Rome, pp 87–99

  • Sharafi A, Sohi HH, Mousavi A et al (2013) Metabolic engineering of morphinan alkaloids by over-expression of codeinone reductase in transgenic hairy roots of Papaver bracteatum, the Iranian poppy. Biotechnol Lett 35:445–453. doi:10.1007/s10529-012-1080-7

    CAS  PubMed  Google Scholar 

  • Shkryl YN, Veremeichik GN, Bulgakov VP, Zhuravlev YN (2011) Induction of anthraquinone biosynthesis in Rubia cordifolia cells by heterologous expression of a calcium-dependent protein kinase gene. Biotechnol Bioeng 108:1734–1738. doi:10.1002/bit.23077

    CAS  PubMed  Google Scholar 

  • Siatka T, Kasparová M (2007) Effect of vanadium compounds on the growth and production of coumarins in the suspension culture of Angelica archangelica L. Ceska Slov Farm 56:230–234

    CAS  PubMed  Google Scholar 

  • Smetanska I (2008) Production of secondary metabolites using plant cell cultures. Adv Biochem Eng Biotechnol 111:187–228. doi:10.1007/10_2008_103

    CAS  PubMed  Google Scholar 

  • Soetaert SSA, Van Neste CMF, Vandewoestyne ML et al (2013) Differential transcriptome analysis of glandular and filamentous trichomes in Artemisia annua. BMC Plant Biol 13:220. doi:10.1186/1471-2229-13-220

    PubMed Central  PubMed  Google Scholar 

  • Song J, Wang Z (2011) RNAi-mediated suppression of the phenylalanine ammonia-lyase gene in Salvia miltiorrhiza causes abnormal phenotypes and a reduction in rosmarinic acid biosynthesis. J Plant Res 124:183–192. doi:10.1007/s10265-010-0350-5

    CAS  PubMed  Google Scholar 

  • Souret FF, Kim Y, Wyslouzil BE et al (2003) Scale-up of Artemisia annua L. hairy root cultures produces complex patterns of terpenoid gene expression. Biotechnol Bioeng 83:653–667. doi:10.1002/bit.10711

    CAS  PubMed  Google Scholar 

  • Srinivasan V, Ryu DD (1993) Improvement of shikonin productivity in Lithospermum erythrorhizon cell culture by alternating carbon and nitrogen feeding strategy. Biotechnol Bioeng 42:793–799. doi:10.1002/bit.260420702

    CAS  PubMed  Google Scholar 

  • Srivastava S, Srivastava AK (2007) Hairy root culture for mass-production of high-value secondary metabolites. Crit Rev Biotechnol 27:29–43. doi:10.1080/07388550601173918

    CAS  PubMed  Google Scholar 

  • Steele CL, Chen Y, Dougherty BA et al (2005) Purification, cloning, and functional expression of phenylalanine aminomutase: the first committed step in taxol side-chain biosynthesis. Arch Biochem Biophys 438:1–10. doi:10.1016/j.abb.2005.04.012

    CAS  PubMed  Google Scholar 

  • Strobel G, Stierle A, Stierle D, Hess WM (1993) Taxomyces andreanae, a proposed new taxon for a bulbilliferous hyphomycete associated with Pacific yew (Taxus brevifolia). Mycotaxon 47:71–80

    Google Scholar 

  • Strobel G, Yang X, Sears J et al (1996) Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology 142:435–440

    CAS  PubMed  Google Scholar 

  • Takeshima M, Ono M, Higuchi T et al (2014) Anti-proliferative and apoptosis-inducing activity of lycopene against three subtypes of human breast cancer cell lines. Cancer Sci 105:252–257. doi:10.1111/cas.12349

    CAS  PubMed  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites (1987 to 2000). Nat Prod Rep 18:448–459. doi:10.1039/b100918o

    CAS  PubMed  Google Scholar 

  • Thomas J, Raj Kumar R, Mandal AKA (2006) Metabolite profiling and characterization of somaclonal variants in tea (Camellia spp.) for identifying productive and quality accession. Phytochemistry 67:1136–1142. doi:10.1016/j.phytochem.2006.03.020

    CAS  PubMed  Google Scholar 

  • Tian Q, Wang X, Li C et al (2013) Functional characterization of the poplar R2R3-MYB transcription factor PtoMYB216 involved in the regulation of lignin biosynthesis during wood formation. PLoS ONE 8:e76369. doi:10.1371/journal.pone.0076369

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tisserat B, Berhow M (2009) Production of pharmaceuticals from papaver cultivars in vitro. Eng Life Sci 9:190–196. doi:10.1002/elsc.200800100

    CAS  Google Scholar 

  • Tzfira T, Citovsky V (2008) Agrobacterium: from biology to biotechnology. Springer, New York, p 750

    Google Scholar 

  • Van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297

    PubMed  Google Scholar 

  • Verpoorte R, van der Heijden R, ten Hoopen HJG, Memelink J (1999) Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals. Biotechnol Lett 21:467–479. doi:10.1023/A:1005502632053

    CAS  Google Scholar 

  • Vuorelaa P, Leinonenb M, Saikkuc P et al (2004) Natural products in the process of finding new drug candidates. Curr Med Chem 11:1375–1389

    CAS  PubMed  Google Scholar 

  • Wang H, Ye HC, Li GF, Liu BYZK (2000a) Effect of fungal elicitors on cell growth and artemisinin accumulation in hairy root cultures of Artemisia annua. Acta Bot Sin 42:905–909

    CAS  Google Scholar 

  • Wang J, Li G, Lu H et al (2000b) Taxol from Tubercularia sp. strain TF5, an endophytic fungus of Taxus mairei. FEMS Microbiol Lett 193:249–253

    CAS  PubMed  Google Scholar 

  • Wang Q, Luo W, Gu Q-Y et al (2013) Enhanced lycopene content in Blakeslea trispora by effective mutation-screening method. Appl Biochem Biotechnol 171:1692–1700. doi:10.1007/s12010-013-0468-8

    CAS  PubMed  Google Scholar 

  • Watts KT, Lee PC, Schmidt-Dannert C (2006) Biosynthesis of plant-specific stilbene polyketides in metabolically engineered Escherichia coli. BMC Biotechnol 6:22. doi:10.1186/1472-6750-6-22

    PubMed Central  PubMed  Google Scholar 

  • Whetten RW, Sederoff RR (1992) Phenylalanine ammonia-lyase from loblolly pine: purification of the enzyme and isolation of complementary DNA clones. Plant Physiol 98:380–386

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whitmer S, Canel C, Hallard D et al (1998) Influence of precursor availability on alkaloid accumulation by transgenic cell Line of Catharanthus roseus. Plant Physiol 116:853–857

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson G, Balague C (1985) Biosynthesis of anthraquinone by cells of Galium mollugo L. grown in a chemostat with limiting sucrose or phosphate. J Exp Bot 36:485–493. doi:10.1093/jxb/36.3.485

    CAS  Google Scholar 

  • Xu C, Sullivan JH, Garrett WM et al (2008) Impact of solar ultraviolet-B on the proteome in soybean lines differing in flavonoid contents. Phytochemistry 69:38–48. doi:10.1016/j.phytochem.2007.06.010

    CAS  PubMed  Google Scholar 

  • Xu M, Dong J, Wang H, Huang L (2009) Complementary action of jasmonic acid on salicylic acid in mediating fungal elicitor-induced flavonol glycoside accumulation of Ginkgo biloba cells. Plant Cell Environ 32:960–967. doi:10.1111/j.1365-3040.2009.01976.x

    CAS  PubMed  Google Scholar 

  • Xu K, Liu J, Fan M et al (2012) A genome-wide transcriptome profiling reveals the early molecular events during callus initiation in Arabidopsis multiple organs. Genomics 100:116–124. doi:10.1016/j.ygeno.2012.05.013

    CAS  PubMed  Google Scholar 

  • Yan P, Keji J, Juan L et al (2012) Effects of over-expression of allene oxide cyclase on camptothecin production by cell cultures of Camptotheca acuminata. Afr J Biotechnol 11:6535–6541

    Google Scholar 

  • Yang D, Du X, Yang Z et al (2014) Transcriptomics, proteomics, and metabolomics to reveal mechanisms underlying plant secondary metabolism. Eng Life Sci. doi:10.1002/elsc.201300075

    Google Scholar 

  • Yuan Y, Wu C, Liu Y et al (2013) The Scutellaria baicalensis R2R3-MYB transcription factors modulate flavonoid biosynthesis by regulating GA metabolism in transgenic tobacco plants. PLoS ONE 8:e77275. doi:10.1371/journal.pone.0077275

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang L, Ding R, Chai Y et al (2004) Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc Natl Acad Sci USA 101:6786–6791. doi:10.1073/pnas.0401391101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang P, Zhou P-P, Yu L-J (2009) An endophytic taxol-producing fungus from Taxus media, Cladosporium cladosporioides MD2. Curr Microbiol 59:227–232. doi:10.1007/s00284-008-9270-1

    CAS  PubMed  Google Scholar 

  • Zhang S, Ma P, Yang D et al (2013) Cloning and characterization of a putative R2R3 MYB transcriptional repressor of the rosmarinic acid biosynthetic pathway from Salvia miltiorrhiza. PLoS ONE 8:e73259. doi:10.1371/journal.pone.0073259

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

SGG acknowledges the financial support for this work from CSIR 12th FYP project ‘PMSI’ (BSC0117) of Council of Scientific and Industrial Research (CSIR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit G. Gandhi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 249 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandhi, S.G., Mahajan, V. & Bedi, Y.S. Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants. Planta 241, 303–317 (2015). https://doi.org/10.1007/s00425-014-2232-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2232-x

Keywords

Navigation