Skip to main content

Fungal Biotechnology for Industrial Enzyme Production: Focus on (Hemi)cellulase Production Strategies, Advances and Challenges

  • Chapter
  • First Online:
Gene Expression Systems in Fungi: Advancements and Applications

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Microbial enzymes catalyzing a variety of different chemical reactions contribute significantly in modern industry by improving existing processes. In addition, the use of enzymes in replacement of traditional chemical or mechanical processes helps to reduce energy demands and environmental pollution. However, enzymes must compete commercially with relatively inexpensive traditional industrial technologies. Meeting economical and commercial feasibility criteria depends on a number of enzymatic properties including the specificity to the substrate, stability in industrial enzymatic reaction conditions and catalytic efficiency. The microorganism used as an enzyme production host should be suitable for industrial scale fermentation. Filamentous fungi are being developed as one of the best enzyme production systems due to their ability to secrete high quantities of enzymes suitable for industrial applications. The industrial importance of filamentous fungi also includes the development and commercialization of new products derived from genetically engineered fungal strains expressing modified homologous and/or heterologous enzymes. In this chapter we will discuss the challenges and biotechnological approaches used in development of novel or improved enzymes for industrial applications as well as fungal strains with increased enzyme production and secretion capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adney WS, Decker SR, Lantz-McCarter S, Baker JO, Nieves R, Himmel ME, Vinzant TB. Cellobiohydrolase reduced glycosylation variants: CBH1-N45A, CBH1-N270A, and CBH1-N384A. WO 2001/004284; 2001.

    Google Scholar 

  • Aehle W, Caldwell RM, Dankmeyer L, Goedegebuur F, Kelemen BR, Mitchinson C, Neefe P, Teunissen P. Novel variant hypocrea jecorina CBH2 cellulases. WO 2006/074005; 2006.

    Google Scholar 

  • Aehle W, Bott RR, Bower B, Caspi J, Estell DA, Goedegebuur F, Hommes RWJ, Kaper R, Keleman B, Kralj S, Van Lieshout J, Van Stigi Thans S, Wallace L, Vogtentanz G, Sandgrem M. Cellulase variants with improved expression, activity and/or stability, and use thereof. WO 2010/14179; 2010.

    Google Scholar 

  • Ang EL, Eberhard E, Zhang X, Zhang W, Tian J, Smith D, Mitchell V. Endoglucanase 1B (EG1B) Variants. WO 2013/096244; 2013.

    Google Scholar 

  • Aquino ACMM, Jorge JA, Terenzi HF, Polizeli MLTM. Studies on a thermostable α-amylase from the thermophilic fungus Scytalidium thermophilum. Appl Microbiol Biotechnol. 2003;61:323–8.

    Article  CAS  Google Scholar 

  • Aro N, Saloheimo A, Ilmén M, Penttilä M. ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. J Biol Chem. 2001;276(26):24309–14.

    Article  CAS  Google Scholar 

  • Arvas M, Pakula T, Lanthaler K, Saloheimo M, Valkonen M, Suortti T, Robson G, Penttilä M. Common features and interesting differences in transcriptional responses to secretion stress in the fungi Trichoderma reesei and Saccharomyces cerevisiae. BMC Genomics. 2006;7:32–50.

    Article  CAS  Google Scholar 

  • van Attikum H, Hooykaas PJJ. Genetic requirements for the targeted integration of Agrobacterium T-DNA in Saccharomyces cerevisiae. Nucleic Acids Res. 2003;31(3):826–32.

    Article  CAS  Google Scholar 

  • Bailey SM, Meyne J, Chen DJ, Kurimasa A, Li GC, Lehnert BE, Goodwin EH. DNA double-strand break repair proteins are required to cap the ends of mammalian chromosomes. Proc Natl Acad Sci U S A. 1999;96:14899–904.

    Article  CAS  Google Scholar 

  • Baker JO, Ehrman CI, Adney WS, Thomas SR, Himmel ME. Hydrolysis of cellulose using ternary mixtures of purified cellulases. Appl Biochem Biotechnol. 1998;70–72:395–403.

    Article  Google Scholar 

  • Bao L, Huang Q, Chang L, Sun Q, Zhou J, Lu H. Cloning and characterization of two beta-glucosidase/xylosidase enzymes from yak rumen metagenome. Appl Biochem Biotechnol. 2012;166:72–86.

    Article  CAS  Google Scholar 

  • Bartoszewski R, Rab A, Twitty G, Stevenson L, Fortenberry J, Piotrowski A, Dumanski JP, Bebök Z. The mechanism of cystic fibrosis transmembrane conductance regulator transcriptional repression during the unfolded protein response. J Biol Chem. 2008;283(18):12154–65.

    Article  CAS  Google Scholar 

  • Bedford MR, Morgan AJ, Fowler T, Clarkson KA, Ward M, Collier K, Larenas E. An enzyme feed additive and animal feed including it. WO 1995/016360; 1995.

    Google Scholar 

  • Bedford MR, Morgan AJ, Fowler T, Clarkson KA, Ward M, Collier K, Larenas E. An enzyme feed additive and animal feed including it. U.S. Patent Application 2006/0193897; 2006.

    Google Scholar 

  • Berdichevsky M, d’Anjoub M, Mallemb MR, Shaikhb SS, Potgieter TI. Improved production of monoclonal antibodies through oxygen-limited cultivation of glycoengineered yeast. J Biotechnol. 2011;155(2):217–24.

    Article  CAS  Google Scholar 

  • Berlin A, Balakshin M, Gilkes N, Kadla J, Maximenko V, Kubo S, Saddler J. Inhibition of cellulase, xylanase and β-glucosidaseactivities by softwood lignin preparations. J Biotechnol. 2006;125:198–209.

    Article  CAS  Google Scholar 

  • Bhat MK. Cellulases and related enzymes in biotechnology. Biotechnol Adv. 2000;18:355–83.

    Article  CAS  Google Scholar 

  • Bhatia Y, Mishra S, Bisaria VS. Microbial beta-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol. 2002;22:375–407.

    Article  CAS  Google Scholar 

  • Billmyre RB, Calo S, Feretzaki M, Wang X, Heitman J. RNAi function, diversity, and loss in the fungal kingdom. Chromosome Res. 2013;21(6-7):561–72.

    Article  CAS  Google Scholar 

  • Bok JW, Keller NP. LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell. 2004;4:1547–82.

    Google Scholar 

  • Bonasio R, Tu S, Reinberg D. Molecular signals of epigenetic states. Science. 2010;29:612–6.

    Article  CAS  Google Scholar 

  • Boonvitthya N, Bozonnet S, Burapatana V, O’Donohue MJ, Chulalaksananukul W. Comparison of the heterologous expression of Trichoderma reesei endoglucanase II and Cellobiohydrolase II in the Yeast Pichia pastoris and Yarrowia lipolytica. Mol Biotechnol. 2013;54:158–69.

    Article  CAS  Google Scholar 

  • Bothast RJ, Schlicher MA. Biotechnological processes for conversion of corn into ethanol. Appl Microbiol Biotechnol. 2005;67:19–25.

    Article  CAS  Google Scholar 

  • Bott RR, Foukaraki M, Hommes R, Kaper T, Kelemen BR, Kralj S, Nikolaev I, Sandgren M, Van Lieshout J, Van Stigi Thans S. Variants of Cellobiohydrolases. WO 2014/093287; 2014.

    Google Scholar 

  • Boulton SJ, Jackson SP. Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res. 1996;24:4639–48.

    Article  CAS  Google Scholar 

  • Brakhage AA, Schroeckh V. Fungal secondary metabolites—strategies to activate silent gene clusters. Fungal Genet Biol. 2011;48:15–22.

    Article  CAS  Google Scholar 

  • Bundock P, van Attikum H, Hooykasas P. Increased telomere length and hypersensitivity to DNA damaging agents in an Arabidopsis Ku70 mutant. Nucleic Acids Res. 2002;30:3395–400.

    Article  CAS  Google Scholar 

  • Busk PK, Lange L. Cellulolytic potential of thermophilic species from four fungal orders. AMB Express. 2013;3:47–57.

    Article  CAS  Google Scholar 

  • Boyce M, Yuan J. Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ. 2006;13(3):363–73.

    Article  CAS  Google Scholar 

  • Calixte S, Gudynaite-Savitch L, Hill C, Therrien G, Tomashek JJ. Cellulase enzyme mixtures for depilling and uses thereof. WO2012106824 A1; 2012.

    Google Scholar 

  • Cascao-Pereira LG, Kaper T, Kelemen B, Liu A. Compositions and methods comprising cellulase variants with reduced affinity to non-cellulosic materials. US 2010/0041104; 2009.

    Google Scholar 

  • Castellanos F, Schmoll M, Martínez P, Tisch D, Kubicek CP, Herrera-Estrella A, Esquivel-Naranjo EU. Crucial factors of the light perception machinery and their impact on growth and cellulase gene transcription in Trichoderma reesei. Fungal Genet Biol. 2010;47(5):468–76.

    Article  CAS  Google Scholar 

  • Chang S-S, Zhang Z, Liu Y. RNA interference pathways in fungi: mechanisms and functions. Annu Rev Microbiol. 2012;66:305–23.

    Article  CAS  Google Scholar 

  • Cheng JC, Matsen CB, Gonzales FA, Ye W, Greer S, Marquez VE, Jones PA, Selker EU. Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J Natl Cancer Inst. 2003;95:399–409.

    Article  CAS  Google Scholar 

  • Chica RA, Doucet N, Pelletier JN. Semi-rational approaches to engineering enzyme activity: combining the benefits of directed evolution and rational design. Curr Opin Biotechnol. 2005;16:378–84.

    Article  CAS  Google Scholar 

  • Clarkson KA, Dunn-Coleman N, Lantz SE, Pilgrim CE, Van Solingen P, Ward M. Acid fungal proteases. WO 2006/073839; 2006.

    Google Scholar 

  • Conlon H, Zadra I, Haas H, Arst Jr HN, Jones MG, Caddick MX. The Aspergillus nidulans GATA transcription factor gene areB encodes at least three proteins and features three classes of mutation. Mol Microbiol. 2001;40:361–75.

    Article  CAS  Google Scholar 

  • Connolly LR, Smith KM, Freitag M. The Fusarium graminearum histone H3 K27 methyltransferase KMT6 regulates development and expression of secondary metabolite gene clusters. PLoS Genet. 2013;9(10):e1003916.

    Article  CAS  Google Scholar 

  • Dashtban M, Qin W. Overexpression of an exotic thermotolerant β-glucosidase in trichoderma reesei and its significant increase in cellulolytic activity and saccharification of barley straw. Microb Cell Factories. 2012;11:63. doi:10.1186/1475-2859-11-63.

    Article  CAS  Google Scholar 

  • Davis BG, Boyer V. Biocatalysis and enzymes in organic synthesis. Nat Prod Rep. 2001;18:618–40.

    Article  CAS  Google Scholar 

  • Day AG, Boedebebuur G, Gualfetti P, Mitchinson C, Meefe P, Sandgren M, Shaw A, Stahlbert J, Az D. Novel variant Hypocrea jecorina VBH1 cellulases. WO2004/016760; 2004.

    Google Scholar 

  • Demuner BJ, Pereira Junior N, Antunes AMS. Technology prospecting on enzymes for the pulp and paper industry. J Technol Manag Innov. 2011;6(3):48–58.

    Article  Google Scholar 

  • De Pourcq K, De Schutter K, Callewaert N. Engineering of glycosylation in yeast and other fungi: current state and perspectives. Appl Microbiol Biotechnol. 2010;87:1617–31.

    Article  CAS  Google Scholar 

  • Derntl C, Gudynaite-Savitch L, Calixte S, White T, Mach RL, Mach-Aigner AR. A single point mutation in the Gal4-like Xylanase regulator 1 causes a glucose blind hydrolase expressing phenotype in Trichoderma reesei (Hypocrea jecorina). Biotechnol Biofuels. 2013;6:62–73.

    Article  CAS  Google Scholar 

  • Dhawan IK and Segraves E. Variant CBH2 cellulases and related polypeptides. WO 2011/028708; 2011.

    Google Scholar 

  • Donati G, Imbriano C, Mantovani R. Dynamic recruitment of transcription factors and epigenetic changes on the ER stress response gene promoters. Nucleic Acids Res. 2006;34(10):3116–27.

    Article  CAS  Google Scholar 

  • Dufresne PJ, Colville A, Fryzuk B, Gudynaite-Savitch L, Hindle C, Plosch B, Tomashek JJ. Fungal cells and fermentation processes. US 61/570,545; 2011.

    Google Scholar 

  • Eijsink VGH, GÃ¥seidnes S, Borchert TV, van den Burg B. Directed evolution of enzyme stability. Biomol Eng. 2005;22:21–30.

    Article  CAS  Google Scholar 

  • Enari TM, Niku-Paavola ML. Enzymatic hydrolysis of cellulose: is the current theory of the mechanisms of hydrolysis valid? Crit Rev Biotechnol. 1987;5(1):67–87.

    Article  CAS  Google Scholar 

  • Eneyskaya EV, et al. Acid protease from Trichoderma reesei: limited proteolysis of fungal carbohydrases. Appl Microbiol Biotechnol. 1999;52:226–31.

    Article  CAS  Google Scholar 

  • Fincham JR. Transformation in fungi. Microbiol Rev. 1989;53:148–70.

    CAS  Google Scholar 

  • Foody BE, Tolan JS. Method and enzyme mixture for improve depilling of cotton goods. US 5,866,407; 1999.

    Google Scholar 

  • Furukawa T, Shida Y, Kitagami N, Ota Y, Adachi M, Nakagawa S, Shimada R, Kato M, Kobayashi T, Okada H, Ogasawara W, Morikawa Y. Identification of the cis-acting elements involved in regulation of xylanase III gene expression in Trichoderma reesei PC-3-7. Fungal Genet Biol. 2008;45:1094–102.

    Article  CAS  Google Scholar 

  • Gellissen G. Heterologous protein production in methylotrophic yeasts. Appl Microbiol Biotechnol. 2000;54:741–50.

    Article  CAS  Google Scholar 

  • Hollenberg CP, Gellissen G. Application of yeasts in gene expression studies: a comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis—a review. Gene. 1997;190:87–97.

    Article  Google Scholar 

  • Gielkens MM, Dekkers E, Visser J, de Graaff LH. Two cellobiohydrolase-encoding genes from aspergillus niger require D-xylose and the xylanolytic transcriptional activator XlnR for their expression. Appl Environ Microbiol. 1999;65(10):4340–5.

    CAS  Google Scholar 

  • Giga-Hama Y, Kumagai H. Expression system for foreign genes using the fission yeast: Schizosaccharomyces pombe. Biotechnol Appl Biochem. 1999;30:235–44.

    CAS  Google Scholar 

  • Goedebeguur F, Gualfetti P, Mitchinson C, Neefe P. Novel cbh1 homologs and variant cbh1 cellulases. WO 2005/028636; 2005.

    Google Scholar 

  • Gorsche R, Jovanovic B, Gudynaite-Savitch L, Mach RL, Mach-Aigner AR. A highly sensitive in vivo footprinting technique for condition-dependent identification of cis elements. Nucleic Acids Res. 2014;42(1):e1. doi:10.1093/nar/gkt883.

    Article  CAS  Google Scholar 

  • Grassin C, Coutel Y. Enzymes in fruit and vegetable processing and juice extraction. In: Whitehurst RJ, van Oort M, editors. Enzymes in food technology. Oxford: Blackwell; 2010. p. 236–63.

    Google Scholar 

  • Gremel G, Dorrer M, Schmoll M. Sulphur metabolism and cellulase gene expression are connected processes in the filamentous fungus Hypocrea jecorina (anamorph Trichoderma reesei). BMC Microbiol. 2008;8:174–92.

    Article  CAS  Google Scholar 

  • Gudynaite-Savitch L, Hindle CD, White TC. Hosts and fermentation processes for cellulase production. US 8,323,931; 2009.

    Google Scholar 

  • Guillemette T, van Peij NNME, Goosen T, Lanthaler K, Robson GD, van den Hondel CAMJJ, Stam H, Archer DB. Genomic analysis of the secretion stress response in the enzyme producing cell factory Aspergillus niger. BMC Genomics. 2007;8:158–76.

    Article  CAS  Google Scholar 

  • Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B. Microbial α-amylases: a biotechnological perspective. Process Biochem. 2003;38:1599–616.

    Article  CAS  Google Scholar 

  • Gupta R, Kuhad RC, Singh A. Microbial cellulases and their industrial applications. Enzym Res. 2011;2011:280696. doi:10.4061/2011/280696.

    Google Scholar 

  • Gusakov AV, Salanovich TN, Antonov AI, Ustinov BB, Okunev ON, Burlingame R, Emalfarb M, Baez M, Sinitsyn AP. Construction of Highly efficient cellulase compositions for enzymatic hydrolysis of cellulose. WO 2008/008070; 2008.

    Google Scholar 

  • Gyalai-Korpos M, Nagy G, Mareczky Z, Schuster A, Réczey K, Schmoll M. Relevance of the light signaling machinery for cellulase expression in Trichoderma reesei (Hypocrea jecorina). BMC Res Notes. 2010;3:330–40.

    Article  CAS  Google Scholar 

  • Haab D, Hagspiel K, Szarkmary K, Kubicek CP. Formation of the extracellulase proteases from Trichoderma reesei QM 9414 involved in cellulose degradation. J Biotechnol. 2015;16:187–98.

    Article  Google Scholar 

  • Hahn W, Seitz A, Riegels M, koch R, Pirkotsch. Enzyme mixtures and processes for desizing textiles sized with starch. US 5,769,900; 1998.

    Google Scholar 

  • Han W, Li D, Liu M. Biomass hydrolysis process. US 2012/0270277 A1; 2012.

    Google Scholar 

  • Hardiman E, Gibbs M, Reeves R, Bergquist P. Directed evolution of a thermophilic β-glucosidase for cellulosic bioethanol production. Appl Biochem Biotechnol. 2010;161:301–12.

    Article  CAS  Google Scholar 

  • Harris PV, Welner D, McFarland KC, Re E, Navarro Poulsen JC, Brown K, Salbo R, Ding H, Vlasenko E, Merino S, Xu F, Cherry J, Larsen S, Lo Leggio L. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry. 2010;49:3305–16.

    Article  CAS  Google Scholar 

  • Hasper AA, Trindade LM, va der Veen D, van Ooyen AJJ, de Graaff LH. Functional analysis of the transcriptional activator XlnR from Aspergillus niger. Microbiology. 2004;150:1367–75.

    Article  CAS  Google Scholar 

  • Hazell BW, Te’O VSJ, Bradner JR, Bergquist PL, Nevalainen KMH. Rapid transformation of high cellulase-producing mutant strains of Trichoderma reesei by microprojectile bombardment. Lett Appl Microbiol. 2001;30(4):282–6.

    Article  Google Scholar 

  • Heinzelman P, Snow CD, Endelman JB, Hiraga K, Bloom JD, Arnold FH. A family of thermostable fungal celllulases created by structure-guided recombination. Proc Natl Acad Sci U S A. 2006;106(14):5610–5.

    Article  Google Scholar 

  • Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991;280:309–16.

    Article  CAS  Google Scholar 

  • Heyer W-D, Li X, Rolfsmeier M, Zhang X-P. Rad54: the swiss army knife of homologous recombination? Nucleic Acid Res. 2006;34(15):4115–25.

    Article  CAS  Google Scholar 

  • Hill C, Scott BR, Tomashek JJ. Process for the enzymatic hydrolysis of pretreated lignocellulosic feedstocks. WO 2008/025165; 2008.

    Google Scholar 

  • Hill CMD, Tomashek JJ, Gudynaite-Savitch L, Therrien G, Calixte S. Cellulase enzyme mixtures for depilling and uses thereof. WO 2012/10824; 2012.

    Google Scholar 

  • Hill CMD, Tomashek JJ, Lavigne JA, Mortimer S, Storms R, Tsang A, Butler G, Powlowski J. Cellulose-degrading enzyme composition comprising GH16. WO 2013/177714; 2013.

    Google Scholar 

  • Hokanson CA, Cappuccilli G, Odineca T, Bozic M, Behnke CA, Mendez M, Coleman WJ, Crea R. Engineering highly thermostable xylanase variants using an enhanced combinatorial library method. Protein Eng Des Sel. 2011;24:597–605.

    Article  CAS  Google Scholar 

  • Hollien J. Evolution of the unfolded protein response. Biochim Biophys Acta. 2013;1833:2458–63.

    Article  CAS  Google Scholar 

  • Huang TT, Mitchinson C, Sala RF. Swollenin compositions and method of increasing the efficiency of a cellulase. WO 2009/134878; 2009.

    Google Scholar 

  • Idiris A, Tohda H, Kumagai H, Takegawa K. Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol. 2010;86:403–17.

    Article  CAS  Google Scholar 

  • Ilgen C, Lin-Cereghino J, Cregg JM. Pichia pastoris. In: Gellisson G, editor. Production of recombinant proteins-novel microbial and eukaryotic expression systems. Weinheim: Wiley-VCH; 2005. p. 143–62.

    Chapter  Google Scholar 

  • Ilmberger N, Streit WR. Screening for cellulase-encoding clones in metagenomic libraries. Methods Mol Biol. 2010;668:177–88.

    Article  CAS  Google Scholar 

  • Ilmén M, Onnele ML, Klemsdal S, Keränen S, Penttilä M. Functional analysis of the cellobiohydrolase I promoter of the filamentous fungus Trichoderma reesei. Mol Gen Genet. 1996;235:303–14.

    Google Scholar 

  • Ishibashi K, Suzuki K, Ando Y, Takakura C, Inoue H. Nonhomologous chromosomal integration of foreign DNA is completely dependent on Mus-53 (human Lig4 homolog) in Neurospora. Proc Natl Acad Sci U S A. 2006;103(40):14871–6.

    Article  CAS  Google Scholar 

  • Iyer P, Gaspar AR, Croonenberghs J, Binder TP (2013) Cellulolytic Enzyme Compositions and Uses Thereof. WO 2013/043981

    Google Scholar 

  • Jegannathan KR, Nielsen PH. Environmental assessment of enzyme use in industrial production—a literature review. J Clean Prod. 2013;42:228–40.

    Article  CAS  Google Scholar 

  • Jacobs DI, Olsthoorn MM, Maillet I, Akeroyd M, Breestraat S, Donkers S, van der Hoeven RA, van den Hondel CA, Kooistra R, Lapointe T, Menke H, Meulenberg R, Misset M, Müller WH, van Peij NN, Ram A, Rodriguez S, Roelofs MS, Roubos JA, van Tilborg MW, Verkleij AJ, Pel HJ, Stam H, Sagt CM. Effective lead selection for improved protein production in aspergillus niger based on integrated genomics. Fungal Genet Biol. 2009;46 Suppl 1:S141–52.

    Article  CAS  Google Scholar 

  • Kautto L, Grinyer J, Paulsen I, Tetu S, Pillai A, Pardiwalla S, Sezerman U, Akcapinar GB, Bergquist P, Te’o J, Nevalainen H. Stress effects caused by the expression of a mutant cellobiohydrolase I and proteasome inhibition in Trichoderma reesei Rut-C30. N Biotechnol. 2013;30:183–91.

    Article  CAS  Google Scholar 

  • Kirk O, Borchert TV, Fuglsang CC. Industrial enzyme applications. Curr Opin Biotechnol. 2002;13:345–51.

    Article  CAS  Google Scholar 

  • Kottmeier K, Ostermann K, Bley T, Rödel G. Hydrophobin signal sequence mediates efficient secretion of recombinant proteins in Pichia pastoris. Appl Microbiol Biotechnol. 2011;91(1):133–41.

    Article  CAS  Google Scholar 

  • Krapmann S, Sasse C, Braus GH. Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end-joining-deficient genetic background. Eukaroyt Cell. 2006;5(1):212–5.

    Article  CAS  Google Scholar 

  • Kurasin M, Väljäme P. Processivity of cellobiohydrolases is limited by the substrate. J Biol Chem. 2011;286:169–77.

    Article  CAS  Google Scholar 

  • Lai E, Teodoro T, Volchuk A. Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology. 2007;22:193–201.

    Article  CAS  Google Scholar 

  • Lambertz C, Garvey M, Klinger J, Heesel D, Klose H, Fischer R, Commandeur U. Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. Biotechnol Biofuels. 2014;7:135.

    Article  CAS  Google Scholar 

  • Lammirato C, Miltner A, Wick LY, Kästner M. Hydrolysis of cellobiose by beta-glucosidase in the presence of soil minerals—interactions at solid–liquid interfaces and effects on enzyme activity levels. Soil Biol Biochem. 2010;42:2203–10.

    Article  CAS  Google Scholar 

  • Lassen SF, Breinholt J, Ostergaard PR, Brugger R, Bischoff A, Wyss M, Fuglsang CC. Expression, gene cloning and characterization of five novel phytases from four Basidiomycete fungi: Peniphora lycci, Agrocybe pediades, a Ceriposia sp. and Trametes pubescens. Appl Environ Microbiol. 2001;67:4701–7.

    Article  CAS  Google Scholar 

  • Lavigne JA, Hill CMD, Tremblay A, St-Pierre P, Tomashek JJ. Cellulase variants with reduced inhibition by glucose. WO 2009/089630; 2009.

    Google Scholar 

  • Lavigne J, Scott B, Whissel M, Tomashek J. Family 6 cellulase with decreased inactivation by lignin. WO2010/012102; 2010.

    Google Scholar 

  • Lee H-L, Chang C-K, Jeng W-J, Wang AHJ, Liang P-H. Mutations in the substrate entrance region of β-glucosidase from Trichoderma reesei improve enzyme activity and thermostability. Protein Eng Des Sel. 2012;25:733–40.

    Article  CAS  Google Scholar 

  • Lehman M, Kostrewa D, Wyss M, Brugger R, D’Arcy A, Pasamontes L, van Loon APGM. From DNA sequence to improved functionality: using protein sequence comparison to rapidly design a thermostable consensus phytase. Protein Eng. 2000;13:49–57.

    Article  Google Scholar 

  • Lehmbeck J. Alkaline protease deficient filamentous fungi. WO 1997/035956; 1997.

    Google Scholar 

  • Lei XG, Stahl CH. Nutritional benefits of phytase and dietary determinants of its efficacy. J Appl Anim Res. 2000;17:97–112.

    Article  CAS  Google Scholar 

  • Li D-C, Li A-N, Papageorgiou AC. Cellulases from thermophilic fungi: recent insights and biotechnological potential. Enzyme Res. 2011;2011:308370.

    Google Scholar 

  • Li S, Yang X, Yang S, Zhu M, Wang X. Technology prospecting on enzymes: application, marketing and engineering. Comput Struct Biotechnol J. 2012;2:e201209017. doi:10.5936/csbj.201209017.

    Google Scholar 

  • Ling M, Qin Y, Li N, Liang Z. Binding of two transcriptional factors, Xyr1 and ACEI, in the promoter region of cellulase cbh1 gene. Biotechnol Lett. 2009;31:227–31.

    Article  CAS  Google Scholar 

  • Liu W, Hong J, Bevan DR, Zhang YH. Fast identification of thermostable beta-glucosidase mutants on cellobiose by a novel combinatorial selection/screening approach. Biotechnol Bioeng. 2009;103:1087–94.

    Article  CAS  Google Scholar 

  • Lyon CS, Luginbuhi P, Stege JT. Variant CBH II polypeptides with improved specific activity. WO 2014/078546; 2014.

    Google Scholar 

  • Mach-Aigner AR, Pucher ME, Steiger MG, Bauer GE, Preis SJ, Mach RL. Transcriptional regulation of xyr1, encoding the main regulator of the xylanolytic and cellulolytic enzyme system in Hypocrea jecorina. Appl Environ Microbiol. 2008;74:6554–62.

    Article  CAS  Google Scholar 

  • Madzack C, Nicaud J-M, Gaillardin C. Yarrowia lipolytica. In: Gellisson G, editor. Production of recombinant proteins-novel microbial and eukaryotic expression systems. Weinheim: Wiley-VCH; 2005. p. 163–89.

    Chapter  Google Scholar 

  • Maheshwari R, Bharadwaj G, Bhat MK. Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev. 2000;64:461–88.

    Article  CAS  Google Scholar 

  • Maiyuran S, Jang A, Brown K, Merino S, Shasky J, Abbate E. Methods for producing polypeptides in protease-deficient mutants of Trichoderma. WO 2011/075677; 2011.

    Google Scholar 

  • Mäntylä A, Paloheimo M, Hakola S, Lindberg E, Leskinen S, Kallio J, Vehmaanperä J, Lantto R, Suominen P. Production in Trichoderma reesei of three xylanases from Chaetomium thermophilum: a recombinant thermoxylanase for biobleaching of kraft pulp. Appl Microbiol Biotechnol. 2007;76(2):377–86.

    Article  CAS  Google Scholar 

  • Masri N, St-Pierre P, Mortimer S, Hill C. Modified family 5 cellulases and uses thereof. WO 2011/109905; 2011.

    Google Scholar 

  • Mello-de-Sousa TM, Gorsche R, Rassinger A, Pocas-Fonseca MJ, Mach RL, Mach-Aigner AR. A truncated form of the Carbon catabolite repressor 1 increases cellulase production in Trichoderma reesei. Biotechnol Biofuels. 2014;7:129–41.

    Article  CAS  Google Scholar 

  • Merino ST, Cherry J. Progress and challenges in enzyme development for biomass utilization. Adv Biochem Eng Biotechnol. 2007;108:95–120.

    CAS  Google Scholar 

  • Meyer V. Genetic engineering of filamentous fungi—progress, obstacles and future trends. Biotechnol Adv. 2008;26:177–85.

    Article  CAS  Google Scholar 

  • Meyer V, Arentshorst M, El-Ghezal A, Drews AC, Kooistra R, van den Hondel CA, Ram AF. Highly efficient gene targeting in the Aspergillus niger kusA mutant. J Biotechnol. 2007;128:770–5.

    Article  CAS  Google Scholar 

  • Meyer V, Müller D, Strowig T, Stahl U. Comparison of different transformation methods for Aspergillus giganteus. Curr Genet. 2003;43:371–3377.

    Article  CAS  Google Scholar 

  • Michielse CB, Arentshorst M, Ram AF, van den Hondel CA. Agrobacterium-mediated transformation leads to improved gene replacement efficiency in Aspergillus awamori. Fungal Genet Biol. 2005a;42:9–19.

    Article  CAS  Google Scholar 

  • Michielse CB, Hooykaas PJ, van den Hondel CA, Ram AF. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet. 2005b;48:1–17.

    Article  CAS  Google Scholar 

  • Miettinen-Oinonen ASK, Elovainio MJ, Ojapalo PJ, Paloheimo MT, Suominen PL, Pere JJ, Oestman AM. Cellulase compositions for treatment of cellulose-containing textile materials. WO 1996/034945; 1996.

    Google Scholar 

  • Miettinen-Oinonen A, Paloheimo M, Lantto R, Suominen P. Enhanced production of cellobiohydrolases in Trichoderma reesei and evaluation of the new preparations in biofinishing of cotton. J Biotechnol. 2005;116(3):305–17.

    Article  CAS  Google Scholar 

  • Miyauchi S, Te’o Jr VS, Bergquist PL, Nevalainen KM. Expression of a bacterial xylanase in Trichoderma reesei under the egl2 and cbh2 glycosyl hydrolase gene promoters. N Biotechnol. 2013;30(5):523–30.

    Article  CAS  Google Scholar 

  • Montalibet J, Gudynaite-Savitch L, Hill C, Hindle CD, Lavigne JA, Masri N, Tahna F, Tomashek JJ. Novel cellobiohydrolase enzymes. WO 2013/029176; 2013.

    Google Scholar 

  • Montenecourt BS, Everleigh DE. Preparation of mutants of Trichoderma reesei with enhanced cellulose production. Appl Environ Microbiol. 1977;34(6):777–82.

    CAS  Google Scholar 

  • Mori K, Ogawa N, Kawahara T, Yanagi H, Yura T. mRNA splicing-mediated C-terminal replacement of transcription factor HAC1p is required for efficient activation of the unfolded protein response. Proc Natl Acad Sci U S A. 2000;97:4460–5.

    Article  Google Scholar 

  • Moore KA, Hollien J. The unfolded protein response in secretory cell function. Annu Rev Genet. 2012;46:165–83.

    Article  CAS  Google Scholar 

  • Murphy L, Bohlin C, Baumann MJ, Olsen SN, Sorensen TH, Anderson L, Borch K, Westh P. Product inhibition of five Hypocrea jecorina cellulases. Enzyme Microb Technol. 2013;52:163–9.

    Article  CAS  Google Scholar 

  • Nakari-Setälä T, Paloheimo M, Kallio J, Vehmaanperä J, Penttilä M, Saloheimo M. Genetic modification of carbon catabolite repression in Trichoderma reesei for improved protein production. Appl Environ Microbiol. 2009;75(14):4853–60.

    Article  CAS  Google Scholar 

  • Nakazawa H, Kawai T, Ida N, Shida Y, Kobayashi Y, Okada H, Tani S, Sumitani J, Kawaguchi T, Morikawa Y, Ogasawara W. Construction of a recombinant Trichoderma reesei strain expressing Aspergillus aculeatus betaglucosidase 1 for efficient biomass conversion. Biotechnol Bioeng. 2012;109:92–9.

    Article  CAS  Google Scholar 

  • Nayak T, Szewczyk E, Oakley CE, Osmani A, Ukil L, Murray SL, Hynes MJ, Osmani SA, Oakley BR. A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics. 2006;172:1557–66.

    Article  CAS  Google Scholar 

  • Ngiam C, Jeenes DJ, Punt PJ, Van Den Hondel CA, Archer DB. Characterization of a foldase, protein disulfide isomerase A, in the protein secretory pathway of Aspergillus niger. Appl Environ Microbiol. 2000;66(2):775–82.

    Article  CAS  Google Scholar 

  • Ninomiya Y, Suzuki K, Ishii C, Inoue H. Highly efficient gene replacement in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci U S A. 2004;101:12248–53.

    Article  CAS  Google Scholar 

  • Noguchi Y, Tanak H, Kanamaru K, Kato M, Kobayashi T. Xylose triggers reversible phosphorylation of XlnR, the fungal transcriptional activator of xylanolytic and cellulolytic genes in Aspergillus oryzae. Biosci Biotechnol Biochem. 2011;75(5):100923-1–7.

    Article  CAS  Google Scholar 

  • Noureddini H, Gao X, Philkana RS. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour Technol. 2005;96:769–77.

    Article  CAS  Google Scholar 

  • Ostafe R, Prodanovic R, Ung WL, Weitz DA, Fischer R. A high-throughput cellulase screening system based on droplet microfluidics. Biomicrofluidics. 2014;8:041102.

    Article  CAS  Google Scholar 

  • Pakula TM, Laxell M, Huuskonen A, Uusitalo J, Saloheimo M, Penttilä M. The effects of drugs inhibiting protein secretion in the filamentous fungus Trichoderma reesei. Evidence for down-regulation of genes that encode secreted proteins in the stressed cells. J Biol Chem. 2003;278:45011–20.

    Article  CAS  Google Scholar 

  • Paloheimo M, Mäntylä A, Kallio J, Puranen T, Suominen P. Increased production of xylanase by expression of a truncated version of the xyn11A gene from Nonomuraea flexuosa in Trichoderma reesei. Appl Environ Microbiol. 2007;73(10):3215–24.

    Article  CAS  Google Scholar 

  • Peterson R, Nevalainen H. Trichoderma reesei RUT-C30—thirty years of strain improvement. Microbiology. 2012;158:58–68.

    Article  CAS  Google Scholar 

  • Pei XQ, Yi ZL, Tang CG, Wu ZL. Three amino acid changes contribute markedly to the thermostability of β-glucosidase BglC from Thermobifida fusca. Bioresour Technol. 2011;102:3337–42.

    Article  CAS  Google Scholar 

  • Peixoto-Nogueira SC, Sandrim VC, Guimarães LHS, Jorge JA, Terenzi HF, Polizeli MLTM. Evidence of thermostable amylolytic activity from Rhizopus microsporus var. rhizopodiformis using wheat bran and corncob as alternative carbon source. Bioprocess Biosyst Eng. 2008;31:329–34.

    Article  CAS  Google Scholar 

  • Pel HJ, de Winde JH, Archer DB, et al. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol. 2007;25(2):221–31.

    Article  Google Scholar 

  • Potgieter TI, Kersey SD, Mallem MR, Nylen AC, d'Anjou M. Antibody expression kinetics in glycoengineered Pichia pastoris. Biotechnol Bioeng. 2010;106(6):918–27.

    Article  CAS  Google Scholar 

  • Punt PJ, VanZeijl C, van den Hondel C. High-throughput screening of expressed DNA libraries in filamentous fungi. WO 2001/079558; 2001.

    Google Scholar 

  • Rahman Z, Shida Y, Furukawa T, Suzuki Y, Okada H, Ogasawara W, Morikawa Y. Evaluation and characterization of Trichoderma reesei cellulase and xylanase promoters. Appl Microbiol Biotechnol. 2009a;82:899–908.

    Article  CAS  Google Scholar 

  • Rahman Z, Shida Y, Furukawa T, Suzuki Y, Okada H, Ogasawara W, Morikawa Y. Application of Trichoderma reesei cellulase and xylanase promoters through homologous recombination for enhanced production of extracellular beta-glucosidase I. Biosci Biotechnol Biochem. 2009b;73:1083–9.

    Article  CAS  Google Scholar 

  • Rauscher R, Würleitner E, Wacenovsky C, Aro N, Stricker AR, Zeilinger S, Kubicek CP, Penttilä M, Mach RL. Transcriptional regulation of xyn1, encoding xylanase I, in Hypocrea jecorina. Eukaryot Cell. 2006;5:447–56.

    Article  CAS  Google Scholar 

  • Raymond CK, Bukowski T, Holderman SD, Ching AF, Vanaja E, Stamm MR. Development of the methylotrophic yeast Pichia methanolica for the expression of the 65 kilodalton isoform of human glutamate decarboxylase. Yeast. 1998;14:11–23.

    Article  CAS  Google Scholar 

  • Ruiz-Diez B. Strategies for transformation of filamentous fungi. J Appl Microbiol. 2002;92:189–95.

    Article  CAS  Google Scholar 

  • Saloheimo M, Aro N, Ilmén M, Penttilä M. Isolation of the ace1 gene encoding a Cys(2)-His(2) transcription factor involved in regulation of activity of the cellulase promoter cbh1 of Trichoderma reesei. J Biol Chem. 2000;275(8):5817–25.

    Article  CAS  Google Scholar 

  • Saloheimo M, Kuja-Panula J, Ylösmäki E, Ward M, Penttilä M. Enzymatic properties and intracellular localization of the novel Trichoderma reesei β-glucosidase BGLII (Cel1A). Appl Environ Microbiol. 2002;68:4546.

    Article  CAS  Google Scholar 

  • Saloheimo M, Pakula TM. The cargo and the transport system: secreted proteins and protein secretion in Trichoderma reesei (Hypocrea jecorina). Microbiology. 2012;158(Pt 1):46–57.

    Article  CAS  Google Scholar 

  • Saloheimo M, Valkonen M, Penttilä M. Activation mechanisms of the HACI-mediated unfolded protein response in filamentous fungi. Mol Microbiol. 2003;47(4):1149–61.

    Article  CAS  Google Scholar 

  • Samanta S, Basu A, Halder UC, Sen SK. Characterization of Trichoderma reesei endoglucanase II expressed heterologously in Pichia pastoris for better biofinishing and biostoning. J Microbiol. 2012;50(3):518–25.

    Article  CAS  Google Scholar 

  • Santos AB, Cervantesc FJ, Lier JB. Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresour Technol. 2007;98:2369–85.

    Article  CAS  Google Scholar 

  • Schröder M, Clark R, Liu CY, Kaufman R. The unfolded protein response represses differentiation through the RPD3-SIN3 histone deacetylase. EMBO J. 2004;23:2281–92.

    Article  CAS  Google Scholar 

  • Schuster A, Bruno KS, Collett JR, Baker SE, Seiboth B, Kuybicek CP, Schmoll M. A versatile toolkit for high throughput functional genomics with Trichoderma reesei. Biotechnol Biofuels. 2012;5(1):1. doi:10.1186/1754-6834-5-1.

    Article  CAS  Google Scholar 

  • Scott BR, Hill C, Tomashek J, Lui C. Enzymatic hydrolysis of lignocellulose feedstocks using accessory enzymes. WO 2009/026772; 2009.

    Google Scholar 

  • Scott BR, Liu C, Lavingne J, Tomashek JJ. Beta-glucosidase enzymes. US 8,486,683 B2; 2010.

    Google Scholar 

  • Seiboth B, Karimi RA, Phatale PA, Linke R, Hartl L, Sauer DG, Smith KM, Baker SE, Freitag M, Kubicek CP. The putative protein methyltransferase LAE1 controls cellulase gene expression in Trichoderma reesei. Mol Microbiol. 2012;84(6):1150–64.

    Article  CAS  Google Scholar 

  • Seidl V, Gamauf C, Druzhinina IS, Seiboth B, Hartl L, Kubicek CP. The Hypocrea jecorina (Trichoderma reesei) hypercellulolytic mutant RUT-C30 lacks a 85 kb (29 gene-encoding) region of the wild-type genome. BMC Genomics. 2008;9:327–42.

    Article  CAS  Google Scholar 

  • Selker EU, Freitag M, Kothe GO, Margolin BS, Rountree MR, Allis CD, Tamaru H. Induction and maintenance of nonsymmetrical DNA methylation in Neurospora. Proc Natl Acad Sci U S A. 2002;99 Suppl 4:16485–90.

    Article  CAS  Google Scholar 

  • Sen S, Venakata Dasu V, Mandal B. Developments in directed evolution for improving enzyme functions. Appl Biochem Biotechnol. 2007;143:212–23.

    Article  CAS  Google Scholar 

  • Song L, Laguerre S, Dumon C, Bozonnet S, O’Donohue MJ. A high-throughput screening system for the evaluation of biomass-hydrolyzing glycoside hydrolases. Bioresour Technol. 2010;101:8237–43.

    Article  CAS  Google Scholar 

  • Song L, Siguier B, Dumon C, Bozonnet S, O’Donohue MJ. Engineering better biomass-degrading ability into a GH11 xylanase using a directed evolution strategy. Biotechnol Biofuels. 2012;8:3.

    Article  CAS  Google Scholar 

  • Sorensen A, Lübeck M, Lübeck PS, Ahring BK. Fungal beta-glucosidases: a bottleneck in industrial use of lignocellulosic materials. Biomolecules. 2013;3:612–63.

    Article  CAS  Google Scholar 

  • Stege JT, Varvak A, Poland J, Lyon CS, Healey S, Luginbuhi P. Variant CBH1 polypeptides. WO 2012/051055; 2012.

    Google Scholar 

  • St. John FJ, Gonzalez JM, Pozharski E. Consolidation of glycosyl hydrolase family 30: a dual domain 4/7 hydrolase family consisting of two structurally distinct groups. FEBS Lett. 2010;584:4435–41.

    Article  CAS  Google Scholar 

  • St-Pierre P, Masri N, Fournier M-C, White TC. Family 6 cellulases with increased thermostability, thermophilicity and alkalophilicity. WO 2008/025164; 2008.

    Google Scholar 

  • Stricker AR, Grosstessner-Hain K, Wurleitner E, Mach RL. Xyr1 (Xylanase regulator 1) regulates both the hydrolytic enzyme system and D-xylose metabolism in Hypocrea jecorina. Eukaryot Cell. 2006;5:2128–37.

    Article  CAS  Google Scholar 

  • Stricker AR, Mach RL, de Graaff LH. Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Appl Microbiol Biotechnol. 2008;78:211–20.

    Article  CAS  Google Scholar 

  • Studt L, Schmidt FJ, Jahn L, Sieber CMK, Connolly LR, Niehaus E-M, Freitag M, Humpf H-U, Tudzynski B. Two histone deacetylases, FfHda1 and FfHda2, are important for Fusarium fujikuroi secondary metabolism and virulence. Appl Environ Microbiol. 2013;79(24):7719–34.

    Article  CAS  Google Scholar 

  • Sung WL, Yaguchi M, Ishikawa K. Modification of xylanase to improve thermophilicity, alkalophilicity and thermostability. US 5,759,840; 1998.

    Google Scholar 

  • Sung WL, Tolan JS. Thermostable xylanases. WO 00/029587; 2000.

    Google Scholar 

  • Sung WL. Modified xylanases exhibiting increased thermophilicity and alkalophilicity. WO 2001/092487; 2001.

    Google Scholar 

  • Sung WL. Xylanases with enhanced thermophilicity and alkalophilicity. WO 2003/046169; 2003.

    Google Scholar 

  • Sung WL. Modification of xylanases to increase thermophilicity, thermostability and alkalophilicity. WO 2007115407; 2007.

    Google Scholar 

  • Sweeney M, Vlasenko E, Abbate E. Methods for increasing hydrolysis of cellulosic materials in the presence of cellobiose dehydrogenase. WO 2010/080532; 2010.

    Google Scholar 

  • Szabo L, Molnar Z, Nemeth AL. Fungal protease. WO 2013/048661; 2013.

    Google Scholar 

  • Tamayo EN, Villanueva A, Hasper AA, de Graaff LH, Ramon D, Orejas M. CreA mediates repression of the regulatory gene xlnR which controls the production of xylanolytic enzymes in Aspergillus nidulans. Fungal Genet Biol. 2008;45:984–93.

    Article  CAS  Google Scholar 

  • Teeri TT, Koivula A, Linder M, Wohlfahrt G, Divne C, Jones TA. Trichoderma reesei cellobiohydrolases: why so efficient on crystalline cellulose? Biochem Soc Trans. 1998;26:173–7.

    Article  CAS  Google Scholar 

  • Tiwari P, Misra BN, Sangwan NS. Glucosidases from the fungus trichoderma: an efficient cellulase machinery in biotechnological applications. Biomed Res Int. 2013. doi: 10.1155/2013/203735.

    Google Scholar 

  • Tolan J. Iogen’s process for producing ethanol from cellulosic biomass. Clean Techn Environ Policy. 2002;3:339–45.

    Article  Google Scholar 

  • Tomashek J, Tremblay A, St-Pierre P, Lavigne J. Modified family 6 glycosidases with altered substrate specificity. WO 2010/006446; 2010.

    Google Scholar 

  • Tomschy A, Tessier M, Wyss M, Broger C, Schnoebelen L, van Loon APGM, Pasamontes L. Optimization of the catalytic properties of Aspergillus fumigatus phytase based on the three-dimensional structure. Protein Sci. 2000;9:1304–11.

    Article  CAS  Google Scholar 

  • Tzanov T, Calafell M, Guebitz GM, Cavaco-Paulo A. Biopreparation of cotton fabrics. Enzyme Microb Technol. 2001;29:357–62.

    Article  CAS  Google Scholar 

  • Valkonen M, Ward M, Wang H, Penttilä M, Saloheimo M. Improvement of foreign-protein production in Aspergillus niger var. awamori by constitutive induction of the unfolded-protein response. Appl Environ Microbiol. 2003;69(12):6979–86.

    Article  CAS  Google Scholar 

  • Valkonen M, Penttilä M, Saloheimo M. The ire1 and ptc2 genes involved in the unfolded protein response pathway in the filamentous fungus Trichoderma reesei. Mol Genet Genomics. 2004;272(4):443–51.

    Article  CAS  Google Scholar 

  • Van den Berg MA, Gielesen B, Riemens AM. High throughput transfection of filamentous fungi. WO2008/000715; 2008.

    Google Scholar 

  • van den Hombergh JPTW, van de Vondervoort PJI, Fraissinet-Tachet L, Visser J. Aspergillus as a host for heterologous protein production: the problem of proteases. Trends Biotechnol. 1997;15:256–63.

    Article  Google Scholar 

  • van Oort M. Enzymes in bread making. In: Whitehurst RJ, van Oort M, editors. Enzymes in food technology. Oxford: Blackwell; 2010. p. 103–43.

    Google Scholar 

  • Van der Maarel MJ, van der Veen B, Uitdehaag JC, Leemhuis H, Dijkhuizen L. Properties and applications of starch-converting enzymes of the alpha-amylase family. J Biotechnol. 2002;94(2):137–55.

    Article  Google Scholar 

  • Van der Maarel MJEC. Starch processing enzymes. In: Whitehurst RJ, van Oort M, editors. Enzymes in food technology. Oxford: Blackwell; 2010. p. 320–31.

    Google Scholar 

  • van Peij NN, Visser J, de Graaff LH. Isolation and analysis of xlnR, encoding a transcriptional activator coordinating xylanolytic expression in Aspergillus niger. Mol Microbiol. 1998;27(1):131–42.

    Article  Google Scholar 

  • Vlasenko E, McBrayer B, Skovlund D, Landvik S. Polypeptides having xylanase activity and polynucleotides encoding same. WO 2011/057083; 2011.

    Google Scholar 

  • Voutilainen SP, Murray PG, Tuohy MG, Koivula A. Expression of Talaromyces emersonii cellobiohydrolase Cel7A in Saccharomyces cerevisiae and rational mutagenesis to improve its thermostability and activity. Protein Eng Des Sel. 2010;23:69–79.

    Article  CAS  Google Scholar 

  • Wakarchuk WW, Sung WL, Campbell RL, Cunningham A, Watson DC, Yaguchi M. Thermostabilization of the Bacillus circulans xylanase by the introduction of disulfide bonds. Protein Eng. 1994;7(11):1379–86.

    Article  CAS  Google Scholar 

  • Wang H. Gene inactivated mutants with altered protein production. WO 2006/110677; 2006.

    Google Scholar 

  • Wang S, Liu G, Wang J, Yu J, Huang B, Xing M. Enhancing cellulase production in Trichoderma reesei RUT C30 through combined manipulation of activating and repressing genes. J Ind Microbiol Biotechnol. 2013;40(6):633–41.

    Article  CAS  Google Scholar 

  • Ward OP. Production of recombinant proteins by filamentous fungi. Biotechnol Adv. 2012;30:1119–39.

    Article  CAS  Google Scholar 

  • White TC, Hindle CD. Genetic constructs and genetically modified microbes for enhanced production of beta-glucosidase. US 6,015,703; 2000.

    Google Scholar 

  • White TC, McHugh S, Hindle CD. Enhanced expression of proteins in genetically modified fungi. US 6939704 B1; 2005.

    Google Scholar 

  • Whitehurst RJ, van Oort M, editors. Enzymes in food technology. Oxford: Blackwell; 2010.

    Google Scholar 

  • Whyteside G, Nor RM, Alcocer MJ, Archer DB. Activation of the unfolded protein response in Pichia pastoris requires splicing of a HAC1 mRNA intron and retention of the C-terminal tail of Hac1p. FEBS Lett. 2011;585(7):1037–41.

    Article  CAS  Google Scholar 

  • Wildt S, Gerngross TU. The humanization of N-glycosylation pathways in yeast. Nat Rev. 2005;3:119–28.

    CAS  Google Scholar 

  • Wilson DB. Cellulase and biofuels. Curr Opin Biotechnol. 2009;20(3):295–9.

    Article  CAS  Google Scholar 

  • Würleitner E, Pera L, Wacenovsky C, Cziferszky A, Zeilinger S, Kubicek CP, Mach RL. Transcriptional regulation of xyn2 in Hypocrea jecorina. Eukaryot Cell. 2003;2:150–8.

    Article  CAS  Google Scholar 

  • Xiao ZZ, Zhang X, Gregg DJ, Saddler JN. Effects of sugar inhibition on cellulases and beta-glucosidase during enzymatic hydrolysis of softwood substrates. Appl Biochem Biotechnol. 2004;115:1115–26.

    Article  Google Scholar 

  • Ye J, Ly J, Watts K, Hsu A, Walker A, McLaughlin K, Berdichevsky M, Prinz B, Kersey SD, d'Anjou M, Pollard D, Potgieter T. Optimization of a glycoengineered Pichia pastoris cultivation process for commercial antibody production. Biotechnol Prog. 2011;27(6):1744–50.

    Article  CAS  Google Scholar 

  • Zeilinger S, Schmoll M, Pail M, Mach RL, Kubicek CP. Nucleosome transactions on the Hypocrea jecorina (Trichoderma reesei) cellulase promoter cbh2 associated with cellulase induction. Mol Genet Genomics. 2003;270:46–55.

    Article  CAS  Google Scholar 

  • Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response. Nature. 2008;454(7203):455–62.

    Article  CAS  Google Scholar 

  • Zhang B, Shahbazi A. Recent developments in pretreatment technologies for production of lignocellulosic biofuels. J Pet Environ Biotechnol. 2011;2:108. doi:10.4172/2157-7463.1000108.

    Article  Google Scholar 

  • Zhang G, Zhu Y, Wei D, Wang W. Enhanced production of heterologous proteins by the filamentous fungus Trichoderma reesei via disruption of the alkaline serine protease SPW combined with a pH control strategy. Plasmid. 2014a;71:16–22.

    Article  CAS  Google Scholar 

  • Zhang S, He Y, Yu H, Dong Z. Seven N-terminal residues of a thermophilic xylanase are sufficient to confer hyperthermostability on its mesophilic counterpart. PLoS One. 2014b;9(1):e87632.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loreta Gudynaite-Savitch Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gudynaite-Savitch, L., White, T.C. (2016). Fungal Biotechnology for Industrial Enzyme Production: Focus on (Hemi)cellulase Production Strategies, Advances and Challenges. In: Schmoll, M., Dattenböck, C. (eds) Gene Expression Systems in Fungi: Advancements and Applications. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-27951-0_19

Download citation

Publish with us

Policies and ethics