Skip to main content

Exploitation of Phytohormone-Producing PGPR in Development of Multispecies Bioinoculant Formulation

  • Chapter
  • First Online:
Bacterial Metabolites in Sustainable Agroecosystem

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 12))

Abstract

Bacterial communities constitute an excellent plant-specific micro-ecosystem in the rhizosphere. Microbes establish a sophisticated relationship in the rhizosphere with plants to enhance productivity through the production of an array of metabolites, especially phytohormones. Plant growth and development is substantially influenced by plant hormones; it is well known that plant hormones regulate the growth and development of plants. PGPR bioinoculant not only exerts a positive effect on growth and yield but also triggers biocontrol against a broad spectrum of pathogens. It is important to use selective PGPR as consortia, which are individually able to produce certain phytohormone in dexterity against monospecies bioinoculant with multifarious activity. Understanding the application of bioinoculant having biocoenotic consortia of bacteria capable of producing phytohormone will serve as the basis for future research to elucidate the role of bacterial communities in crop productivity and sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul Jaleel C, Manivannan P, Sankar B, Kishorekumar A, Gopi R, Somasundaram R, Panneerselvam R (2007) Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water defi cit stress. Colloids Surf B Biointerfaces 60:7–11

    Article  PubMed  Google Scholar 

  • Aeron A, Pandey P, Maheshwari DK (2010) Differential response of sesame under influence of indigenous and non-indigenous rhizospheric competent fluorescent Pseudomonads. Curr Sci 99(2):166–168

    Google Scholar 

  • Ahmad M, Zahir ZA, Asghar HN, Arshad M (2012) The combined application of rhizobial strains and plant growth promoting rhizobacteria improves growth and productivity of mung bean (Vigna radiata L.) under salt-stressed conditions. Ann Microbiol 62(3):1321–1330

    Article  CAS  Google Scholar 

  • Ali B, Sabri AN, Hasnain S (2010) Rhizobacterial potential to alter auxin content and growth of Vigna radiata (L.). World J Microbiol Biotechnol 26:1379–1384

    Article  CAS  Google Scholar 

  • Ali B, Sabri AN, Ljung K, Hasnain S (2009) Auxin production by plant associated bacteria: impact on endogenous IAA content and growth of Triticum aestivum L. Lett Appl Microbiol 48(5):542–547

    Article  CAS  PubMed  Google Scholar 

  • Annapurna K, Ramadoss D, Vithal L, Bose P, Reddy MS, Wang Q, Yellareddygari SKR (2011) PGPR bioinoculants for ameliorating biotic and abiotic stresses in crop production. In: Proceedings of the 2nd Asian PGPR conference Plant growth-promoting rhizobacteria (PGPR) for sustainable agriculture. Beijing, China, 21–24 August, 2011 Asian PGPR Society, pp 67–72

    Google Scholar 

  • Apine OA, Jadhav JP (2011) Optimization of medium for indole-3-acetic acid production using Pantoea agglomerans strain PVM. J Appl Microbiol 110:1235–1244

    Article  CAS  PubMed  Google Scholar 

  • Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292(1–2):305–315

    Article  CAS  Google Scholar 

  • Arora NK, Khare E, Maheshwari DK (2010) Plant growth promoting rhizobacteia: constraints in bioformulation, commercialization and future strategy. In: Maheshwari DK (ed) Plant Growth and Health Promoting Bacteria. Microbiology Monographs, Heidelberg, Germany, pp 99–116

    Google Scholar 

  • Arshad M, Frankenberger WT (1997) Plant growth-regulating substances in the rhizosphere: microbial production and functions. Adv Agro 62:45–151

    Article  Google Scholar 

  • Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere 18(5):611–620

    Article  Google Scholar 

  • Asghar H, Zahir Z, Arshad M, Khaliq A (2002) Relationship between in vitro production of auxins by rhizobacteria and their growth-promoting activities in Brassica juncea L. Biol Fertil Soil 35(4):231–237

    Article  CAS  Google Scholar 

  • Aslantas R, Cakmakci R, Sahin F (2007) Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Sci Hortic 111:371–377

    Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (2004) Mycorrhizal fungi and plant growth promoting rhizobacteria. In: Varma A et al. (eds.) Plant surface microbiology, Springer, Heidelberg, 351–371

    Google Scholar 

  • Barua S, Tripathi S, Chakraborty A, Ghosh S, Chakrabarti K (2012) Characterization and crop production efficiency of diazotrophic bacterial isolates from coastal saline soils. Microbiol Res 167:95–102

    Article  PubMed  Google Scholar 

  • Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378(1–2):1–33

    Article  CAS  Google Scholar 

  • Beneduzia A, Peresa D, Vargasb LK, Bodanese-Zanettinia MH, Passaglia LMP (2008) Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing bacilli isolated from rice fields in South Brazil. Appl Soil Ecol 39:311–320

    Article  Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Ann Rev Cell Dev Biol 16(1):1–18

    Article  CAS  Google Scholar 

  • Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65(5):497–503

    Article  CAS  PubMed  Google Scholar 

  • Bowen GD, Pierson AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–102

    Google Scholar 

  • Broekaert WF, Delauré SL, De Bolle MF, Cammue BP (2006) The role of ethylene in host-pathogen interactions. Annu Rev Phytopathol 44:393–416

    Article  CAS  PubMed  Google Scholar 

  • Catroux G, Hartmann A, Revellin C (2001) Trends in rhizobial inoculant production and use. Plant Soil 230(1):21–30

    Article  CAS  Google Scholar 

  • Chaiharn M, Lumyong S (2011) Screening and optimization of indole-3-acetic acid production and phosphate solubilization from rhizobacteria aimed at improving plant growth. Curr Microbiol 62:173–181

    Article  CAS  PubMed  Google Scholar 

  • Dastager SG, Deepa CK, Pandey A (2011) Growth enhancement of black pepper (Piper nigrum) by a newly isolated Bacillus tequilensis NII-0943. Biologia 66:801–806

    Article  CAS  Google Scholar 

  • Davies PJ (2010) The plant hormones: their nature, occurrence, and functions. In: Davis PJ (ed) plant hormones. Springer, Netherlands, pp 1–15

    Chapter  Google Scholar 

  • de Garcia Salamone IE, Hynes RK, Nelson LM (2006) Role of cytokinins in plant growth promotion by rhizosphere bacteria. PGPR: biocontrol and biofertilization. Springer, Netherlands, pp 173–195

    Google Scholar 

  • Deshwal VK, Kumar T, Dubey RC, Maheshwari DK (2006) Long term effect of Pseudomonas aeruginosa GRC1 on yield of subsequent crops of paddy after mustard seed bacterization. Curr Sci 91:423–424

    Google Scholar 

  • Erturk Y, Ercisli S, Cakmakci R (2012) Yield and growth response of strawberry to plant growth- promoting rhizobacteria inoculation. J Plant Nutr 35:817–826

    Article  CAS  Google Scholar 

  • Farina R, Beneduzi A, Ambrosini A, de Campos SB, Lisboa BB, Wendisch V, Vargas LK, Passaglia LMP (2012) Diversity of plant growth-promoting rhizobacteria communities associated with the stages of canola growth. Appl Soil Ecol 55:44–52

    Article  Google Scholar 

  • Fasciglione G, Casanovas EM, Yommi A, Sueldo RJ, Barassi CA (2012) Azospirillum improves lettuce growth and transplant under saline conditions. J Sci Food Agric 92:2518–2523

    Article  CAS  PubMed  Google Scholar 

  • Frankenberger Jr WT, Arshad M (1995) Phytohormones in soils: microbial production and function. Marcel Dekker Inc

    Google Scholar 

  • Frugier F, Kosuta S, Murray JD, Crespi M, Szczyglowski K (2008) Cytokinin: secret agent of symbiosis. Trends Plant Sci 13(3):115–120

    Article  CAS  PubMed  Google Scholar 

  • Fulchieri M, Lucangeli C, Bottini R (1993) Inoculation with Azospirillum lipoferum affects growth and gibberellin status of corn seedling roots. Plant Cell Physiol 34(8):1305–1309

    CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41(2):109–117

    Article  CAS  Google Scholar 

  • Glick BR (2015) Beneficial Plant-bacterial Interactions. Springer

    Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. In: Bakker et al. (eds.) New perspectives and approaches in plant growth-promoting rhizobacteria research, Springer Netherlands, pp 329–339

    Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theoret Biol 190(1):63–68

    Article  CAS  Google Scholar 

  • Grunewald W, Van Noorden G, Van Isterdael G, Beeckman T, Gheysen G, Mathesius U (2009) Manipulation of auxin transport in plant roots during Rhizobium symbiosis and nematode parasitism. Plant Cell 21(9):2553–2562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Tang S, Ju X, Ding Y, Liao S, Song N (2011) Effects of inoculation of a plant growth promoting rhizobacterium Burkholderia sp. D54 on plant growth and metal uptake by a hyperaccumulator Sedum alfredii Hance grown on multiple metal contaminated soil. World J Microbiol Biotechnol 27:2835–2844

    Article  CAS  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7:096–102

    Google Scholar 

  • Gutiérrez-Mañero FJ, Ramos-Solano B, Probanza A, Mehouachi JR, Tadeo F, Talon M (2001) The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111(2):206–211

    Article  Google Scholar 

  • Hartmann A, Singh M, Klingmüller W (1983) Isolation and characterization of Azospirillum mutants excreting high amounts of indoleacetic acid. Canadian J Microbiol 29(8):916–923

    Article  CAS  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–598

    Article  Google Scholar 

  • Hussain A, Hassain S (2011) Interactions of bacterial cytokinins and IAA in the rhizosphere may alter phytostimulatory efficiency of rhizobacteria. World J Microbiol Biotechnol 27:2645–2654

    Article  CAS  Google Scholar 

  • Ibiene AA, Agogbua JU, Okonko IO, Nwachi GN (2012) Plant growth promoting rhizobacteria (PGPR) as biofertilizer: Effect on growth of Lycopersicum esculentus. J Am Sci 8(2):318–324

    Google Scholar 

  • Ishibashi Y, Koda Y, Zheng SH, Yuasa T, Iwaya-Inoue M (2012) Regulation of soybean seed germination through ethylene production in response to reactive oxygen species. Ann Bot mcs 240

    Google Scholar 

  • Jha CK, Saraf M (2012) Evaluation of multispecies plant-growth-promoting consortia for the growth promotion of Jatropha curcas L. J Plant Growth Regul 31(4):588–598

    Article  CAS  Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96(3):473–480

    Article  CAS  PubMed  Google Scholar 

  • Kumar H, Bajpai VK, Dubey RC, Maheshwari DK, Kang SC (2010) Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Protec 29(6):591–598

    Google Scholar 

  • Lambrecht M, Okon Y, Broek AV, Vanderleyden J (2000) Indole-3-acetic acid: a reciprocal signalling molecule in bacteria–plant interactions. Trends Microbiol 8(7):298–300

    Article  CAS  PubMed  Google Scholar 

  • Lenin G, Jayanthi M (2012) Efficiency of plant growth promoting rhizobacteria (PGPR) on enhancement of growth, yield and nutrient content of Catharanthus roseus. Int J Res Pure Appl Microbiol 2(4):37–42

    Google Scholar 

  • Li K, Ramakrishna W (2011) Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth. J Hazard Mater 189:531–539

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Xing S, Ma H, Du Z, Ma B (2013) Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl Microbial Biotechnol 97(20):9155–9164

    Article  CAS  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86(1):1–25

    Article  CAS  PubMed  Google Scholar 

  • Luo S, Xu T, Chen L, Chen J, Rao C, Xiao X, Wan Y, Zeng G, Long F, Liu C, Liu Y (2012) Endophyteassisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plantgrowth-promoting endophyte Bacillus sp. SLS18. Appl Microbiol Biotechnol 93:1745–1753

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manage 90:831–837

    Article  PubMed  Google Scholar 

  • Maheshwari DK (2011) Bacteria in Agrobiology: Plant Growth Responses. Springer, Heidelberg, Germany, p 377

    Book  Google Scholar 

  • Maheshwari DK (2012) Bacteria in Agrobiology: Plant Probiotics. Springer, Heidelberg, Germany, p 375

    Book  Google Scholar 

  • Maheshwari DK, Dubey RC, Agarwal M, Dheeman S, Aeron A, Bajpai VK (2015) Carrier based formulations of biocoenotic consortia of disease suppressive Pseudomonas aeruginosa KRP1 and Bacillus licheniformis KRB1. Ecol Eng 81:272–277

    Article  Google Scholar 

  • Malhotra M, Srivastava S (2009) Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM and its ability to modulate plant growth. Eur J Soil Biol 45:73–80

    Article  CAS  Google Scholar 

  • Marulanda A, Barea JM, Azcon R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (am fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124

    Article  CAS  Google Scholar 

  • Melnykova N, Gryshchuk O, Mykhalkiv L, Mamenko P, Sergii KOTS (2013) Plant growth promoting properties of bacteria isolated from the rhizosphere of soybean and pea. Natura Montenegrina 12(3–4):915–923

    Google Scholar 

  • Mishra PK, Bisht SC, Ruwari P, Selvakumar G, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2011) Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with psychrotolerant Pseudomonads from NW Himalayas. Arch Microbiol 193:497–513

    Article  CAS  PubMed  Google Scholar 

  • Moënne-Loccoz Y, Naughton M, Higgins P, Powell J, O’Connor B, O’Gara F (1999) Effect of inoculum preparation and formulation on survival and biocontrol efficacy of Pseudomonas fluorescens F113. J Applied Microbiol 86(1):108–116

    Article  Google Scholar 

  • Morrone D, Chambers J, Lowry L, Kim G, Anterola A, Bender K, Peters RJ (2009) Gibberellin biosynthesis in bacteria: separate ent-copalyl diphosphate and ent-kaurene synthases in Bradyrhizobium japonicum. FEBS Lett 583(2):475–480

    Article  CAS  PubMed  Google Scholar 

  • Moutia JY, Spaepen SSS, Vanderleyden J (2010) Plant growth promotion by Azospirillum sp. in sugarcane is infl uenced by genotype and drought stress. Plant Soil 337:233–242

    Article  CAS  Google Scholar 

  • Oberhänsli T, Défago G, Haas D (1991) Indole-3-acetic acid (IAA) synthesis in the biocontrol strain CHA0 of Pseudomonas fluorescens: role of tryptophan side chain oxidase. J Gen Microbiol 137(10):2273–2279

    Article  PubMed  Google Scholar 

  • Pandey P, Kang SC, Maheshwari DK (2005) Isolation of endophytic plant growth-promoting Burkholderia sp. MSSP from root nodules of Mimosa pudica. Curr Sci 89:(1)177–180

    Google Scholar 

  • Pandey P, Maheshwari DK (2007a) Bioformulation of Burkholderia sp. MSSP with a multi-species consortium for growth promotion of Cajanus cajan. Can J Microbiol 53:213–222

    Article  CAS  PubMed  Google Scholar 

  • Pandey P, Maheshwari DK (2007b) Two-species microbial consortium for growth promotion of Cajanus cajan. Curr Sci 92:1137–1142

    CAS  Google Scholar 

  • Patel D, Jha CK, Tank N, Saraf M (2012) Growth enhancement of chickpea in saline soils using plant growth-promoting rhizobacteria. J Plant Growth Regul 31:53–62

    Article  CAS  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42(3):207–220

    Article  CAS  PubMed  Google Scholar 

  • Perley JE, Stowe BB (1966) The production of tryptamine from tryptophan by Bacillus cereus (KVT). Biochem J 100:169–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierson EA, Weller DM (1994) Use of mixtures of fluorescent pseudomonads to suppress take-all and improve the growth of wheat. Phytopathol 84:940–947

    Google Scholar 

  • Podile AR, Kishore GK (2006) Plant growth-promoting rhizobacteria. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Netherlands, pp 195–230

    Chapter  Google Scholar 

  • Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Egamberdieva et al. (eds.) Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants, Springer International Publishing, pp 247–260

    Google Scholar 

  • Prinsen E, Costacurta A, Michiels K, Vanderleyden J, Van Onckelen H (1993) Azospirillum brasilense indole-3-acetic acid biosynthesis: evidence for a non-tryptophan dependent pathway. MPMI 6:609

    Article  CAS  Google Scholar 

  • Rajasekar S, Elango R (2011) Effect of microbial consortium on plant growth and improvement of alkaloid content in Withania somnifera (Ashwagandha). Curr Bot 2(8)

    Google Scholar 

  • Reetha S, Bhuvaneswari G, Thamizhiniyan P, Mycin TR (2014) Isolation of indole acetic acid (IAA) producing rhizobacteria of Pseudomonas fluorescens and Bacillus subtilis and enhance growth of onion (Allim cepa. L). Int J Curr Microbiol Appl Sci 3(2):568–574

    Google Scholar 

  • Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, Obando M, Rivera D, Bonilla R (2012) Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol 61:264–272

    Article  Google Scholar 

  • Roy M, Saha S, Das J, Srivastava RC (2015) Technologies of microbial inoculation in rice-A Review. Agric Rev 36(2):125–132

    Article  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. PNAS 100(8):4927–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadeghi A, Karimi E, Dahaji PA, Javid MG, Dalvand Y, Askari H (2012) Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World J Microbiol Biotechnol 28:1503–1509

    Article  CAS  PubMed  Google Scholar 

  • Sagar S, Dwivedi A, Yadav S, Tripathi M, Kaistha SD (2012) Hexavalent chromium reduction and plant growth promotion by Staphylococcus arlettae strain Cr11. Chemosphere 86:847–852

    Article  CAS  PubMed  Google Scholar 

  • Sarwar M, Kremer RJ (1995) Enhanced suppression of plant growth through production of L-tryptophan-derived compounds by deleterious rhizobacteria. Plant Soil 172(2):261–269

    Article  CAS  Google Scholar 

  • Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2011) Pseudomonas lurida M2RH3 (MTCC 9245), a psychrotolerant bacterium from the Uttarakhand Himalayas, solubilizes phosphate and promotes wheat seedling growth. World J Microbiol Biotechnol 27:1129–1135

    Article  CAS  Google Scholar 

  • Selvakumar G, Kundu S, Joshi P, Nazim S, Gupta AD, Gupta HS (2010) Growth promotion of wheat seedlings by Exiguobacterium acetylicum 1P (MTCC 8707) a cold tolerant bacterial strain from the Uttarakhand Himalayas. Ind J Microbiol 50:50–56

    Article  CAS  Google Scholar 

  • Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Nazim S, Gupta HS (2007) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46:171–175

    Article  PubMed  Google Scholar 

  • Shankar M, Ponraj P, Ilakkiam D, Gunasekaran P (2011) Root colonization of a rice growth promoting strain of Enterobacter cloacae. J Basic Microbiol 51:523–530

    Article  CAS  PubMed  Google Scholar 

  • Shenoy VV, Kalagudi GM (2003) Meta-bug and near-isogenic strain consortia concepts for plant growth promoting rhizobacteria. In: 6th International PGPR workshop, India, section VII—mechanism of biocontrol. p 108

    Google Scholar 

  • Shi Y, Lou K, Li C (2011) Growth promotion effects of the endophyte Acinetobacter johnsonii strain 3–1 on sugar beet. Symbiosis 54:159–166

    Article  CAS  Google Scholar 

  • Shilev S, Sancho ED, Benlloch-González M (2012) Rhizospheric bacteria alleviate salt-produced stress in sunfl ower. J Environ Manage 95:S37–S41

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31(4):425–448

    Article  CAS  PubMed  Google Scholar 

  • Tan S, Jiang Y, Song S, Huang J, Ling N, Xu Y, Shen Q (2013) Two Bacillus amyloliquefaciens strains isolated using the competitive tomato root enrichment method and their effects on suppressing Ralstonia solanacearum and promoting tomato plant growth. Crop Prot 43:134–140

    Article  Google Scholar 

  • Thakkar A, Saraf M (2014) Development of microbial consortia as a biocontrol agent for effective management of fungal diseases in Glycine max L. Arch Phytopathol Plant Protec 1–16

    Google Scholar 

  • Tiwari S, Singh P, Tiwari R, Meena KK, Yandigeri M, Singh DP, Arora DK (2010) Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol Fertil Soils 47:907–916

    Article  Google Scholar 

  • Valverde C, Ramírez C, Kloepper JW, Cassán F (2014) Current research on plant-growth promoting rhizobacteria in Latin America: Meeting report from the 2nd Latin American PGPR Workshop. J Plant Growth Regul 34(1):215–219

    Article  Google Scholar 

  • Verma VC, Singh SK, Prakash S (2011) Bio-control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss. J Basic Microbiol 51:550–556

    Article  CAS  PubMed  Google Scholar 

  • Werner T, Motyka V, Strnad M, Schmülling T (2001) Regulation of plant growth by cytokinin. PNAS 98(18):10487–10492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Yue H, Lu J, Li C (2012) Characterization of rhizobacterial strain Rs-2 with ACC deaminase activity and its performance in promoting cotton growth under salinity stress. World J Microbiol Biotechnol 28:2383–2393

    Article  CAS  PubMed  Google Scholar 

  • Xavier IJ, Holloway G, Leggett M (2004) Development of rhizobial inoculant formulations. Crop Manag 3(1) doi:10.1094/CM-2004-0301-06-RV

  • Yang R, Luo C, Chen Y, Wang G, Xu Y, Shen Z (2013) Copper-resistant bacteria enhance plant growth and copper phytoextraction. Int J Phytoremediation 15:573–584

    Article  CAS  PubMed  Google Scholar 

  • Yao L, Wu Z, Zheng Y, Kaleem I, Li C (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46:49–54

    Article  CAS  Google Scholar 

  • Zafar M, Abbasi MK, Khan MA, Khaliq A, Sultan T, Aslam M (2012) Effect of plant growth promoting rhizobacteria on growth, nodulation and nutrient accumulation of lentil under controlled conditions. Pedosphere 22:848–859

    Article  CAS  Google Scholar 

  • Zahir ZA, Arshad M, Azam M, Hussain A (1997) Effect of an auxin precursor tryptophan and Azotobacter inoculation on yield and chemical composition of potato under fertilized conditions. J Plant Nut 20(6):745–752

    Article  CAS  Google Scholar 

  • Zahir ZA, Arshad M, Frankenberger WT (2003) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agro 81:97–168

    Article  Google Scholar 

  • Zahir ZA, Asghar HN, Akhtar MJ, Arshad M (2005) Precursor (L-tryptophan)-inoculum (Azotobacter) interaction for improving yields and nitrogen uptake of maize. J Plant Nut 28(5):805–817

    Article  CAS  Google Scholar 

  • Zhao Q, Shen Q, Ran W, Xiao T, Xu D, Xu Y (2011) Inoculation of soil by Bacillus subtilis Y-IVI improves plant growth and colonization of the rhizosphere and interior tissues of muskmelon (Cucumis melo L.). Biol Fertil Soils 47:507–514

    Article  CAS  Google Scholar 

  • Zhao L, Teng S, Liu Y (2012) Characterization of a versatile rhizospheric organism from cucumber identifi ed as Ochrobactrum haematophilum. J Basic Microbiol 52:232–244

    Google Scholar 

Download references

Acknowledgements

We express our thanks to UCOST, Dehradun, India and University Grant Commission (UGC), New Delhi, India for providing financial support in the form of research project to DKM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Kumar Maheshwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumar, S., Agarwal, M., Dheeman, S., Maheshwari, D.K. (2015). Exploitation of Phytohormone-Producing PGPR in Development of Multispecies Bioinoculant Formulation. In: Maheshwari, D. (eds) Bacterial Metabolites in Sustainable Agroecosystem. Sustainable Development and Biodiversity, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-24654-3_11

Download citation

Publish with us

Policies and ethics