Skip to main content
Log in

Growth promotion of wheat seedlings by Exiguobacterium acetylicum 1P (MTCC 8707) a cold tolerant bacterial strain from the Uttarakhand Himalayas

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Exiguobacterium acetylicum strain 1P (MTCC 8707) is a gram-positive, rod-shaped, yellow pigmented bacterium isolated from soil on nutrient agar plates at 4°C. The identity of the bacterium was arrived on the basis of the biochemical characterization, BIOLOG sugar utilization pattern and sequencing of the 16S rRNA gene. It grew at temperatures ranging from 4 to 42°C, with temperature optima at 30°C. It expressed multiple plant growth promotion attributes such as phosphate solubilization, indole acetic acid (IAA), siderophore and hydrogen cyanide (HCN) production, differentially at suboptimal growth temperatures (15 and 4°C). At 15°C it solubilized phosphate (21.1 μg of P ml−1 day−1), and produced IAA (14.9 μg ml−1 day−1) in tryptophan amended media. Qualitative detection of siderophore production and HCN were possible at 15°C. At 4°C it retained all the plant growth promotion attributes. Seed bacterization with the isolate, positively influenced the growth and nutrient uptake parameters of wheat seedlings in glass house studies at suboptimal cold growing temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed S (1995) Agriculture—fertilization interface in Asia issue of growth and sustainability, Oxford and IBH publishing Co, New Delhi

    Google Scholar 

  2. Andrews JH and Harris RF (2003) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38:145–180

    Google Scholar 

  3. Han J, Sun L, Dong X, Cai Z, Yang H, Wang Y and Song W (2005) Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various pathogens. Syst Appl Microbiol 28:66–76

    Article  CAS  PubMed  Google Scholar 

  4. Rodriguez H and Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  CAS  PubMed  Google Scholar 

  5. Correa JD, Barrios ML and Galdona RP (2004) Screening for plant growth-promoting rhizobacteria in Chamaecytisus proliferus (tagasaste), a forage tree-shrub legume endemic to the Canary Islands. Plant Soil 266:75–84

    Google Scholar 

  6. Haggag WM (2002) Sustainable agricultural management of plant diseases. J Biol Sci 2:280–284

    Article  Google Scholar 

  7. Renwick AR, Campbell A and Coe S (1991) Assessment of in vivo screening systems for potential biocontrol agents of Gaeumannomyces graminis. Plant Physiol 40: 524–532

    Google Scholar 

  8. Pal KK, Tilak KVBR, Saxena AK, Dey R and Singh CS (2001) Suppression of maize root diseases caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium graminearum by plant growth promoting rhizobacteria. Microbiol Res 156:209–223

    Article  CAS  PubMed  Google Scholar 

  9. Kottmeier ST and Sullivan CW (1990) Bacterial biomass and production in pack ice of Antarctica marginal ice age zones. Deep Sea Res 37:1311–1330

    Article  Google Scholar 

  10. Rodrigues DF, Goris J, Vishnivetskaya T, Gilichinsky D, Thomashow MF and Tiedje JM (2006) Characterization of Exiguobacterium isolates from the Siberian permafrost. Description of Exiguobacterium sibiricum sp. nov. Extremophiles 10:285–294

    Article  CAS  PubMed  Google Scholar 

  11. Miteva VI, Sheridan PP and Brenchley JE (2004) Phylogenetic and physiological diversity of microorganisms isolated from the deep Greenland glacier ice core. Appl Environ Microbiol 70:202–213

    Article  CAS  PubMed  Google Scholar 

  12. Reiter B, Pfeifer U, Schwab H and Sessitsch A (2002) Response of endophytic bacterial communities in potato plant to infection with Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol:2261–2268

  13. Knudston KE, Haas EJ, Iwen PC, Ramaley WC and Ramaley RF (2001) Characterization of gram-positive, nonspore-forming Exiguobacterium like organism isolated from a West Colorado (USA) hot spring. Abstr Ann Meet Am Soc Microbiol I-92, p 30

    Google Scholar 

  14. Yumoto I, Narisawa MH, Hirota K, Shingyo T, Takebe F, Nodasaka Y, Matsuyama H and Hara I (2004) Exiguobacterium oxidotolerans sp. nov., a novel alkaliphile exhibiting high catalase activity. Int J Sys Evol Microbiol 54:2013–2017

    Article  CAS  Google Scholar 

  15. Pal SS (2000) Management of soil microbial population and crop yield with indigenous phosphate solubilizing bacterial culture in Garhwal Himalaya. J Indian Soc of Soil Sci 48: 184–188

    Google Scholar 

  16. Collins CH and Lyne PM (1980) Microbiological methods. Butterworth and Co. (Publishers) Ltd. London

    Google Scholar 

  17. Altschul SF, Gish W, Miller W, Myers EW and Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410

    CAS  PubMed  Google Scholar 

  18. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F and Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  19. Kumar S, Tamura K and Nei M (2004) MEGA3: Integrated Software for Molecular Evolutionary Genetics Analysis and Sequence Alignment. Brief Bioinform 5:150–163

    Article  CAS  PubMed  Google Scholar 

  20. Saitou N and Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  21. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  22. Mehta S and Nautiyal CS (2001) An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr Microbiol 43:51–56

    Article  CAS  PubMed  Google Scholar 

  23. Murphy JP and Riley JP (1962) A modified single solution method for the determination of the phosphate in natural waters. Anal Chem Acta 27:31–36

    Article  CAS  Google Scholar 

  24. Gordon AS and Weber RP (1951) Colorimetric estimation of indole acetic acid. Plant Physiol 26:192–195

    Article  CAS  PubMed  Google Scholar 

  25. Schwyn B and Neilands JB (1987) Universal chemical assay for the detection and determination of siderophore. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  26. Bakker AW and Schipper B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Biol Biochem 19:451–457

    Article  CAS  Google Scholar 

  27. Elliot LF and Lynch JM (1984) Pseudomonas as a factor in the growth of winter wheat (Triticum aestivum L.). Soil Biol Biochem 16:69–71

    Article  Google Scholar 

  28. Olsen SR and Sommers LE (1982) Phosphorus, in soil chemical and microbiological properties, part 2. (Page AL, Miuller RH, Keeney DR eds). Methods of soil analysis, Amer Soc Agron, Madison, Wisconsin, USA. 403–430

    Google Scholar 

  29. Jackson ML (1973) Soil chemical analysis. Prentice Hall of India Pvt Ltd., New Delhi, pp. 25–214

    Google Scholar 

  30. SAS Institute Inc (2001) SAS user’s guide, version 8.2, SAS Institute Inc, Cary, North Carolina, USA

    Google Scholar 

  31. Shivaji S, Chaturvedi P, Reddy GSN and Suresh K (2005) Pedobacter himalayensis sp. nov., from Hamta glacier located in the Himalayan mountain range in India. Int J Syst Evol Microbiol:10830–1088

  32. Lifshitz R, Kloepper JW, Kozlowski M, Simonson C, Carlson J, Tipping EN and Zaleska I (1987) Growth promotion of canola (rape-seed) seedlings by a strain of Peudomonas putida under gnotobiotic conditions. Can J Microbiol 8: 102–106

    Google Scholar 

  33. Hameeda B, Rupela OP and Reddy G (2006) Application of plant growth-promoting bacteria associated with composts and macrofauna for growth promotion of pearl millet (Pennisetum glaucum L.). Biol Fertil Soils 43:221–227

    Article  Google Scholar 

  34. Khalid A, Arshad M and Zahir ZA (2004) Screening plant growth promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473

    Article  CAS  PubMed  Google Scholar 

  35. Kremer RJ and Souissi T (2001) Cyanide production by rhizobacteria and potential for suppression of wheat seedling growth. Curr Microbiol 43:182–186

    Article  CAS  PubMed  Google Scholar 

  36. Lambers H (1982) Cyanide-resistant respiration: A non phosphorylating electron transport pathway act as an energy overflow. Physiol Plant 55:478–485

    Article  CAS  Google Scholar 

  37. Sarniguet A, Lucas P, Lucas M and Samson R (1992) Soil conduciveness to take all of wheat: Influence of the nitrogen fertilizers on the structure of populations of fluorescent pseudomonads. Plant Soil 145:29–36

    Article  Google Scholar 

  38. Selvakumar G, Kundu S, Joshi Piyush, Nazim Sehar, Gupta AD, Mishra PK and Gupta HS (2008) Characterization of a cold tolerant plant growth promoting bacterium Pantoea dispersa 1A, isolated from a subalpine soil in the North Western Indian Himalaya. World J Microbiol Biotechnol 24:955–960

    Article  CAS  Google Scholar 

  39. Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Nazim S and Gupta HS (2007) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46:171–175

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Selvakumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selvakumar, G., Kundu, S., Joshi, P. et al. Growth promotion of wheat seedlings by Exiguobacterium acetylicum 1P (MTCC 8707) a cold tolerant bacterial strain from the Uttarakhand Himalayas. Indian J Microbiol 50, 50–56 (2010). https://doi.org/10.1007/s12088-009-0024-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-009-0024-y

Keywords

Navigation