Skip to main content

Nutritional and Physiological Regulation of Water Transport in the Conceptus

  • Chapter
  • First Online:
Recent Advances in Animal Nutrition and Metabolism

Abstract

Water transport during pregnancy is essential for maintaining normal growth and development of conceptuses (embryo/fetus and associated membranes). Aquaporins (AQPs) are a family of small integral plasma membrane proteins that primarily transport water across the plasma membrane. At least 11 isoforms of AQPs (AQPs 1–9, 11, and 12) are differentially expressed in the mammalian placenta (amnion, allantois, and chorion), and organs (kidney, lung, brain, heart, and skin) of embryos/fetuses during prenatal development. Available evidence suggests that the presence of AQPs in the conceptus mediates water movement across the placenta to support the placentation, the homeostasis of amniotic and allantoic fluid volumes, as well as embryonic and fetal survival, growth and development. Abundances of AQPs in the conceptus can be modulated by nutritional status and physiological factors affecting the pregnant female. Here, we summarize the effects of maternal dietary factors (such as intakes of protein, arginine, lipids, all-trans retinoic acid, copper, zinc, and mercury) on the expression of AQPs in the conceptus. We also discuss the physiological changes in hormones (e.g., progesterone and estrogen), oxygen supply, nitric oxide, pH, and osmotic pressure associated with the regulation of fluid exchange between mother and fetus. These findings may help to improve the survival, growth, and development of embryo/fetus in livestock species and other mammals (including humans).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AQP:

Aquaporin

CFTR:

Cystic fibrosis transmembrane conductance regulator

E2:

Estrogen

hCG:

Human chorionic gonadotropin

HIF:

Hypoxia inducible factor

NHE:

Na+/H+ exchanger

PI3K:

Phosphatidylinositol 3-kinase

P4:

Progesterone

pTr2:

Porcine trophectoderm cells

References

  • Agre P, Kozono D (2003) Aquaporin water channels: molecular mechanisms for human diseases. FEBS Lett 555:72–78

    Article  PubMed  CAS  Google Scholar 

  • Agren J, Sjors G, Sedin G (1998) Transepidermal water loss in infants born at 24 and 25 weeks of gestation. Acta Paediatr 87:1185–1190

    Article  PubMed  CAS  Google Scholar 

  • Agren J, Zelenin S, Hakansson M, Eklof AC, Aperia A, Nejsum LN, Nielsen S, Sedin G (2003) Transepidermal water loss in developing rats: role of aquaporins in the immature skin. Pediatr Res 53:558–565

    Article  PubMed  CAS  Google Scholar 

  • Alejandra R, Natalia S, Alicia ED (2018) The blocking of aquaporin-3 (AQP3) impairs extravillous trophoblast cell migration. Biochem Biophys Res Commun 499:227–232

    Article  PubMed  Google Scholar 

  • Aralla M, Mobasheri A, Groppetti D, Cremonesi F, Arrighi S (2012) Expression of aquaporin water channels in canine fetal adnexa in respect to the regulation of amniotic fluid production and absorption. Placenta 33:502–510

    Article  PubMed  CAS  Google Scholar 

  • Baum MA, Ruddy MK, Hosselet CA, Harris HW (1998) The perinatal expression of aquaporin-2 and aquaporin-3 in developing kidney. Pediatr Res 43:783–790

    Article  PubMed  CAS  Google Scholar 

  • Bazer FW (1989) Allantoic fluid: regulation of volume and composition. In: Brace RA (ed) Fetal and neonatal body fluids. Perinatology Press, Cornell, NY, pp 135–157

    Google Scholar 

  • Bazer FW, Spencer TE, Johnson GA, Burghardt RC, Wu G (2009) Comparative aspects of implantation. Reproduction 138:195–209

    Article  PubMed  CAS  Google Scholar 

  • Bazer FW, Johnson GA, Wu G (2015) Amino acids and conceptus development during the peri-implantation period of pregnancy. Adv Exp Med Biol 843:23–52

    Article  PubMed  CAS  Google Scholar 

  • Beall MH, Wang S, Yang B, Chaudhri N, Amidi F, Ross MG (2007) Placental and membrane aquaporin water channels: correlation with amniotic fluid volume and composition. Placenta 28:421–428

    Article  PubMed  CAS  Google Scholar 

  • Belkacemi L, Desai M, Beall MH, Liu Q, Lin JT, Nelson DM, Ross MG (2011) Early compensatory adaptations in maternal undernourished pregnancies in rats: role of the aquaporins. J Matern Fetal Neonatal Med 24:752–759

    Article  PubMed  CAS  Google Scholar 

  • Bouvier D, Rouzaire M, Marceau G, Prat C, Pereira B, Lemarié R, Deruelle P, Fajardy I, Gallot D, Blanchon L, Vambergue A, Sapin V (2015) Aquaporins and fetal Membranes from diabetic parturient women: expression abnormalities and regulation by insulin. J Clin Endocrinol Metab 100:E1270–1279

    Google Scholar 

  • Brañes MC, Morales B, Ríos M, Villalón MJ (2005) Regulation of the immunoexpression of aquaporin 9 by ovarian hormones in the rat oviductal epithelium. Am J Physiol 288:C1048–1057

    Google Scholar 

  • Breenan DM, Zarrow MX (1959) Water and electrolyte content of the uterus of the intact and adrenalectomized rat treated with relaxin and various steroid hormones. Endocrinology 64:907–913

    Article  PubMed  CAS  Google Scholar 

  • Butkus A, Alcorn D, Earnest L, Moritz K, Giles M, Wintour EM (1997) Expression of aquaporin-1 (AQP1) in the adult and developing sheep kidney. Biol Cell 89:313–320

    Article  PubMed  CAS  Google Scholar 

  • Butkus A, Earnest L, Jeyaseelan K, Moritz K, Johnston H, Tenis N, Wintour EM (1999) Ovine aquaporin-2: cDNA cloning, ontogeny and control of renal gene expression. Pediatr Nephrol 13:379–390

    Article  PubMed  CAS  Google Scholar 

  • Cao Z, Xu T, Tong X, Wang Y, Zhang D, Gao D, Zhang L, Ning W, Qi X, Ma Y, Yu T, Knott JG, Zhang Y (2019) Maternal yes-associated protein participates in porcine blastocyst development via modulation of trophectoderm epithelium barrier function. Cells 8:1606

    Article  PubMed Central  CAS  Google Scholar 

  • Castro Parodi M, Farina M, Dietrich V, Abán C, Szpilbarg N, Zotta E, Damiano AE (2011) Evidence for insulin-mediated control of AQP9 expression in human placenta. Placenta 32:1050–1056

    Article  PubMed  CAS  Google Scholar 

  • Castro-Parodi M, Farina M, Dietrich V, Levi LN, Ibarra C, Damiano AE (2008) Dose dependent insulin-mediated regulation of AQP9 in human placenta. Placenta 29:120

    Google Scholar 

  • Castro-Parodi M, Levi L, Dietrich V, Zotta E, Damiano AE (2009) CFTR may modulate AQP9 functionality in preeclamptic placentas. Placenta 30:642–648

    Article  PubMed  CAS  Google Scholar 

  • Castro-Parodi M, Szpilbarg N, Dietrich V, Sordelli M, Reca A, Abán C, Maskin B, Farina MG, Damiano AE (2013) Oxygen tension modulates AQP9 expression in human placenta. Placenta 34:690–698

    Article  PubMed  CAS  Google Scholar 

  • Cheung CY, Anderson DF, Brace RA (2016) Aquaporins in ovine amnion: responses to altered amniotic fluid volumes and intramembranous absorption rates. Physiol Rep 4:e12868

    Google Scholar 

  • Cheung CY, Roberts VHJ, Frias AE, Brace RA (2018) High-fat diet effects on amniotic fluid volume and amnion aquaporin expression in non-human primates. Physiol Rep 6:e13792

    Google Scholar 

  • Cheung CY, Anderson DF, Rouzaire M, Blanchon L, Sapin V, Brace RA (2019) Retinoic acid pathway regulation of vascular endothelial growth factor in ovine amnion. Reprod Sci 26:1351–1359

    Article  PubMed  CAS  Google Scholar 

  • Chinigarzadeh A, Muniandy S, Salleh N (2017) Combinatorial effect of genistein and female sex-steroids on uterine fluid volume and secretion rate and aquaporin (AQP)-1, 2, 5, and 7 expression in the uterus in rats. Environ Toxicol 32:832–844

    Article  PubMed  CAS  Google Scholar 

  • Cornock R, Langley-Evans SC, Mobasheri A, McMullen S (2010) The impact of maternal protein restriction during rat pregnancy upon renal expression of angiotensin receptors and vasopressin-related aquaporins. Reprod Biol Endocrinol 8:105

    Article  PubMed  PubMed Central  Google Scholar 

  • Damiano AE (2011) Review: water channel proteins in the human placenta and fetal membranes. Placenta 32(Suppl. 2):S207–S211

    Article  PubMed  Google Scholar 

  • Damiano AE (2020) Chapter fifteen—aquaporins during pregnancy. Vitam Horm 112:327–355

    Article  PubMed  CAS  Google Scholar 

  • Damiano AE, Zotta E, Ibarra C (2006) Functional and molecular expression of AQP9 channel and UT-A transporter in normal and preeclamptic human placentas. Placenta 27:1073–1081

    Article  PubMed  CAS  Google Scholar 

  • Damiano AE, Zotta E, Goldstein J, Reisin I, Ibarra C (2001) Water channel proteins AQP3 and AQP9 are present in syncytiotrophoblast of human term placenta. Placenta 22:776–781

    Article  PubMed  CAS  Google Scholar 

  • De Falco M, Cobellis L, Torella M, Acone G, Varano L, Sellitti A, Ragucci A, Coppola G, Cassandro R, Laforgia V, Varano L, De Luca A (2007) Down-regulation of aquaporin 4 in human placenta throughout pregnancy. In Vivo 21:813–817

    Google Scholar 

  • de Oliveira V, Schaefer J, Abu-Rafea B, Vilos GA, Vilos AG, Bhattacharya M, Radovick S, Babwah AV (2020) Uterine aquaporin expression is dynamically regulated by estradiol and progesterone and ovarian stimulation disrupts embryo implantation without affecting luminal closure. Mol Hum Reprod 26:154–166

    Article  PubMed  PubMed Central  Google Scholar 

  • Devuyst O, Burrow CR, Smith BL, Agre P, Knepper MA, Wilson PD (1996) Expression of aquaporins-1 and -2 during nephrogenesis and in autosomal dominant polycystic kidney disease. Am J Physiol 271:F169–F183

    CAS  Google Scholar 

  • Dietrich V, Damiano AE (2015) Activity of Na+/H+ exchangers alters aquaporin-mediated water transport in human placenta. Placenta 36:1487–1489

    Article  PubMed  CAS  Google Scholar 

  • Dillon EL, Wu G (2021) Cortisol enhances ctrulline synthesis from proline in enterocytes of suckling piglets. Amino Acids. http://doi.org/10.1007/s00726-021-03039-y

  • Ducza E, Csányi A, Gáspár R (2017) Aquaporins during pregnancy: their function and significance. Int J Mol Sci 18:2593

    Article  PubMed Central  Google Scholar 

  • Escobar J, Gormaz M, Arduini A, Gosens K, Martinez A, Perales A, Escrig R, Tormos E, Roselló M, Orellana C, Vento M (2012) Expression of aquaporins early in human pregnancy. Early Hum Dev 88:589–594

    Article  PubMed  CAS  Google Scholar 

  • Faber JJ, Anderson DF (2010) The placenta in the integrated physiology of fetal volume control. Int J Dev Biol 54:391–396

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao H (2020) Amino acids in reproductive nutrition and health. Adv Exp Med Biol 1265:111–131

    Article  PubMed  CAS  Google Scholar 

  • Gao K, Jiang Z, Lin Y, Zheng C, Zhou G, Chen F, Yang L, Wu G (2012) Dietary L-arginine supplementation enhances placental growth and reproductive performance in sows. Amino Acids 42:2207–2214

    Article  PubMed  CAS  Google Scholar 

  • Geisert RD, Thatcher WW, Roberts RM, Bazer FW (1982) Establishment of pregnancy in the pig: III. Endometrial secretory response to estradiol valerate administered on day 11 of the estrous cycle. Biol Reprod 27:957–965

    Article  PubMed  CAS  Google Scholar 

  • Gilbreath KR, Bazer FW, Satterfield MC, Wu G (2021) Amino acid nutrition and reproductive performance in ruminants. Adv Exp Med Biol 1285:43–61

    Article  PubMed  Google Scholar 

  • Gömöri E, Pál J, Abrahám H, Vajda Z, Sulyok E, Seress L, Dóczi T (2006) Fetal development of membrane water channel proteins aquaporin-1 and aquaporin-4 in the human brain. Int J Dev Neurosci 24:295–305

    Article  PubMed  Google Scholar 

  • Herring CM, Bazer FW, Johnson GA, Wu G (2018a) Impacts of maternal dietary protein intake on fetal survival, growth, and development. Exp Biol Med (Maywood) 243:525–533

    Google Scholar 

  • Herring CM, Hu S, Bazer FW, Johnson GA, Seo H, Kramer A, McLendon B, Elmetwally M, Wu G (2018b) Dietary supplementation of 0.4% L-arginine between days 14 and 30 of gestation stimulates placental transport of water in gilts. In: Society of the study of reproduction annual meeting, July 10–13, 2018. New Orleans, LA

    Google Scholar 

  • Hu SD, He WL, Wu G (2021) Hydroxyproline in animal metabolism, nutrition, and cell signaling. Amino Acids. http://doi.org/10.1007/s00726-021-03056-x

  • Hung TH, Burton GJ (2006) Hypoxia and reoxygenation: a possible mechanism for placental oxidative stress in preeclampsia. Taiwan J Obstet Gynecol 45:189–200

    Article  PubMed  Google Scholar 

  • Ishibashi K (2009) New members of mammalian aquaporins: AQP10-AQP12. Handbook Exp Pharmacol 190:251–262

    Article  CAS  Google Scholar 

  • Ishibashi K, Hara S, Kondo S (2009) Aquaporin water channels in mammals. Clin Exp Nephrol 13:107–117

    Article  PubMed  CAS  Google Scholar 

  • Jablonski EM, McConnell NA, Hughes FM Jr, Huet-Hudson YM (2003) Estrogen regulation of aquaporins in the mouse uterus: potential roles in uterine water movement. Biol Reprod 69:1481–1487

    Article  PubMed  CAS  Google Scholar 

  • Jauniaux E, Johnson MR, Jurkovic D, Ramsay B, Campbell S, Meuris S (1994) The role of relaxin in the development of the uteroplacental circulation in early pregnancy. Obstetr Gynecol 84:338–342

    CAS  Google Scholar 

  • Jiang SS, Zhu XJ, Ding SD, Wang JJ, Jiang LL, Jiang WX, Zhu XQ (2012) Expression and localization of aquaporins 8 and 9 in term placenta with oligohydramnios. Reprod Sci 19:1276–1284

    Article  PubMed  CAS  Google Scholar 

  • Jiang XX, Wei FX, Zhao L, Ye XL, Xin LB, Qu Y, Wu RJ, Lin J (2015) Aquaporin 5 plays a role in estrogen-induced ectopic implantation of endometrial stromal cells in endometriosis. PLoS One 10:e0145290

    Google Scholar 

  • Johansson M, Glazier JD, Sibley CP, Jansson T, Powell TL (2002) Activity and protein expression of the Na+/H+ exchanger is reduced in syncytiotrophoblast microvillous plasma membranes isolated from preterm intrauterine growth restriction pregnancies. J Clin Endocrinol Metab 87:5686–5694

    Article  PubMed  CAS  Google Scholar 

  • Johnston H, Koukoulas I, Jeyaseelan K, Armugam A, Earnest L, Baird R, Dawson N, Ferraro T, Wintour EM (2000) Ontogeny of aquaporins 1 and 3 in ovine placenta and fetal membranes. Placenta 21:88–99

    Article  PubMed  CAS  Google Scholar 

  • King LS, Nielsen S, Agre P (1997) Aquaporins in complex tissues. I. developmental patterns in respiratory and glandular tissues of rat. Am J Phys 273:C1541–C1548

    Article  CAS  Google Scholar 

  • Kitchen P, Day RE, Salman MM, Conner MT, Bill RM, Conner AC (2015) Beyond water homeostasis: diverse functional roles of mammalian aquaporins. Biochim Biophys Acta 1850:2410–2421

    Article  PubMed  CAS  Google Scholar 

  • Knight JW, Bazer FW, Thatcher WW, Franke DE, Wallace HD (1977) Conceptus development in intact and unilaterally hysterectomized-ovariectomized gilts: interrelationships among hormonal status, placental development, fetal fluids and fetal growth. J Anim Sci 44:620–637

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Takahashi E, Miyagawa S, Watanabe H, Iguchi T (2006) Chromatin immunoprecipitation-mediated target identification proved aquaporin 5 is regulated directly by estrogen in the uterus. Genes Cells:1133–1143

    Google Scholar 

  • Kordowitzki P, Kranc W, Bryl R, Kempisty B, Skowronska A, Skowronski MT (2020) The relevance of aquaporins for the physiology, pathology, and aging of the female reproductive system in mammals. Cells 9:2570

    Article  PubMed Central  CAS  Google Scholar 

  • Li XL, Bazer FW, Johnson GA, Burghardt RC, Frank JW, Dai ZL, Wang JJ, Wu ZL, Shinzato I, Wu GY (2014) Dietary supplementation with L-arginine between days 14 and 25 of gestation enhances embryonic development and survival in gilts. Amino Acids 46:375–384

    Article  PubMed  CAS  Google Scholar 

  • Lindsay LA, Murphy C (2006) Redistribution of aquaporins 1 and 5 in the rat uterus is dependent on progesterone: a study with light and electron microscopy. Reproduction 131:369–378

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Morrisey EE, Whitsett JA (2002) GATA-6 is required for maturation of the lung in late gestation. Am J Physiol 283:L468–L475

    Article  CAS  Google Scholar 

  • Liu H, Hooper SB, Armugam A, Dawson N, Ferraro T, Jeyaseelan K, Thiel A, Koukoulas I, Wintour EM (2003) Aquaporin gene expression and regulation in the ovine fetal lung. J Physiol 551:503–514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu H, Koukoulas I, Ross MC, Wang S, Wintour EM (2004) Quantitative comparison of placental expression of three aquaporin genes. Placenta 25:475–478

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Zheng Z, Wintour EM (2008) Aquaporins and fetal fluid balance. Placenta 29:840–847

    Article  PubMed  CAS  Google Scholar 

  • Liu XM, Zhang D, Wang TT, Sheng JZ, Huang HF (2014) Ion/water channels for embryo implantation barrier. Physiology (Bethesda) 29:186–195

    Google Scholar 

  • Luo H, Xie A, Hua Y, Wang J, Liu Y, Zhu X (2018) Aquaporin 1 gene deletion affects the amniotic fluid volume and composition as well as the expression of other aquaporin water channels in placenta and fetal membranes. Clin Chim Acta 482:161–165

    Article  PubMed  CAS  Google Scholar 

  • Ma T, Yang B, Verkman AS (1997) Cloning of a novel water and urea-permeable aquaporin from mouse expressed strongly in colon, placenta, liver, and heart. Biochem Biophys Res Commun 240:324–328

    Article  PubMed  CAS  Google Scholar 

  • Mann SE, Ricke EA, Yang BA, Verkman AS, Taylor RN (2002) Expression and localization of aquaporin 1 and 3 in human fetal membranes. Am J Obstet Gynecol 187:902–907

    Article  PubMed  CAS  Google Scholar 

  • Mann SE, Ricke EA, Torres EA, Taylor RN (2005) A novel model of polyhydramnios: amniotic fluid volume is increased in aquaporin 1 knockout mice. Am J Obstet Gynecol 192:2041–2046

    Article  PubMed  Google Scholar 

  • Marino G, Castro-Parodi M, Dietrich V, Damiano AE (2010) High levels of human chorionic gonadotropin (HCG) may increase aquaporin-9 (AQP9) expression in human preeclamptic placenta. Reprod Sci 17:444–453

    Article  PubMed  CAS  Google Scholar 

  • Martínez N, Damiano AE (2017) Aquaporins in fetal development. Adv Exp Med Biol 969:199–212

    Article  PubMed  Google Scholar 

  • Meli R, Pirozzi C, Pelagalli A (2018) New perspectives on the potential role of aquaporins (AQPs) in the physiology of inflammation. Front Physiol 16(9):101

    Article  Google Scholar 

  • Millar LK, Reiny R, Yamamoto SY, Okazaki K, Webster L, Bryant-Greenwood GD (2003) Relaxin causes proliferation of human amniotic epithelium by stimulation of insulin-like growth factor-II. Am J Obstetr Gynecol 188:234–241

    Article  CAS  Google Scholar 

  • Modena AB, Fieni S (2004) Amniotic fluid dynamics. Acta Biomed 75(Suppl 1):11–13

    PubMed  Google Scholar 

  • Moen V, Brudin L, Tjernberg I, Rundgren M, Irestedt L (2018) Feto-maternal osmotic balance at term. A prospective observational study. J Perinat Med 46:183–189

    Article  PubMed  CAS  Google Scholar 

  • Németh-Cahalan KL, Kalman K, Froger A, Hall JE (2007) Zinc modulation of water permeability reveals that aquaporin 0 functions as a cooperative tetramer. J Gen Physiol 130:457–464

    Article  PubMed  PubMed Central  Google Scholar 

  • Nico B, Frigeri A, Nicchia GP, Quondamatteo F, Herken R, Errede M, Ribatti D, Svelto M, Roncali L (2001) Role of aquaporin-4 water channel in the development and integrity of the blood-brain barrier. J Cell Sci 114:1297–1307

    Article  PubMed  CAS  Google Scholar 

  • Offenberg H, Barcroft LC, Caveney A, Viuff D, Thomsen PD, Watson AJ (2000) mRNAs encoding aquaporins are present during murine preimplantation development. Mol Reprod Dev 57:323–330

    Article  PubMed  CAS  Google Scholar 

  • Parry LJ, Vodstrcil LA (2007) Relaxin physiology in the female reproductive tract during pregnancy. Adv Exp Med Biol 612:34–48

    Article  PubMed  Google Scholar 

  • Pérez-Pérez A, Maymó JL, Gambino YP, Guadix P, Dueñas JL, Varone CL, Sánchez-Margalet V (2013) Activated translation signaling in placenta from pregnant women with gestational diabetes mellitus: possible role of leptin. Horm Metab Res 45:436–442

    Article  PubMed  Google Scholar 

  • Pérez-Pérez A, Vilariño-García T, Guadix P, Dueñas JL, Sánchez-Margalet V (2020a) Leptin and nutrition in gestational diabetes. Nutrients 12:1970

    Google Scholar 

  • Pérez-Péreza A, Vilariño-Garcíaa T, Dietrich V, Guadixc P, Dueñasc JL, Varone CL, Damiano AE, Sánchez-Margalet V (2020b) Aquaporins and placenta. Vitam Horm 112:311–326

    Google Scholar 

  • Prat C, Blanchon L, Borel V, Gallot D, Herbet A, Bouvier D, Marceau G, Sapin V (2012) Ontogeny of aquaporins in human fetal membranes. Biol Reprod 86:48

    Article  PubMed  Google Scholar 

  • Prat C, Bouvier D, Comptour A, Marceau G, Belville C, Clairefond G, Blanc P, Gallot D, Blanchon L, Sapin V (2015) All-trans-retinoic acid regulates aquaporin-3 expression and related cellular membrane permeability in the human amniotic environment. Placenta 36:881–887

    Article  PubMed  CAS  Google Scholar 

  • Qi HB, Li L, Zong WJ, Hyer BJ, Huang J (2009) Expression of aquaporin 8 is diversely regulated by osmotic stress in amnion epithelial cells. J Obstet Gynaecol 35:1019–1025

    Article  CAS  Google Scholar 

  • Reppetti J, Reca A, Seyahian E, Medina Y, Martínez N, Szpilbarg N, Damiano AE (2020) Intact caveolae are required for proper extravillous trophoblast migration and differentiation. J Cell Physiol 235:3382–3392

    Article  PubMed  CAS  Google Scholar 

  • Richard C, Gao J, Brown N, Reese J (2013) Aquaporin water channel genes are differentially expressed and regulated by ovarian steroids during the periimplantation period in the mouse. Endocrinology 144:1533–1541

    Article  Google Scholar 

  • Schneider H (1991) Placental transport function. Reprod Fertil Dev 3:345–353

    Article  PubMed  CAS  Google Scholar 

  • Seo MJ, Lim JH, Kim DH, Bae HR (2018) Loss of aquaporin-3 in placenta and fetal membranes induces growth restriction in mice. Dev Reprod 22:263–273

    Article  PubMed  PubMed Central  Google Scholar 

  • Seo H, Li XL, Wu G, Bazer FW, Burghardt RC, Bayless KJ, Johnson GA (2020) Mechanotransduction drives morphogenesis to develop folding during placental development in pigs. Placenta 90:62–70

    Article  PubMed  CAS  Google Scholar 

  • Sha XY, Xiong ZF, Liu HS, Di XD, Ma TH (2011a) Maternal-fetal fluid balance and aquaporins: from molecule to physiology. Acta Pharmacol Sin 32:716–720

    Google Scholar 

  • Sha XY, Xiong ZF, Liu HS (2011b) Pregnant phenotype in aquaporin 8-deficient mice. Acta Pharmacol Sin 32:840–844

    Google Scholar 

  • Sha XY, Liu HS, Ma TH (2015) Osmotic water permeability diversification in primary trophoblast cultures from aquaporin 1-deficient pregnant mice. J Obstet Gynaecol Res 41:1399–1405

    Article  PubMed  CAS  Google Scholar 

  • Shao H, Gao S, Ying X, Zhu X, Hua Y (2021) Expression and regulation of aquaporins in pregnancy complications and reproductive dysfunctions. DNA Cell Biol 40:116–125

    Article  PubMed  CAS  Google Scholar 

  • Sibley CP, Brownbill P, Glazier JD, Greenwood SL (2018) Knowledge needed about the exchange physiology of the placenta. Placenta 64(Suppl 1):S9–S15

    Article  PubMed  Google Scholar 

  • Sibley CP, Glazier JD, Greenwood SL, Lacey H, Mynett K, Speake P, Jansson T, Johansson M, Powell TL (2002) Regulation of placental transfer: the Na+/H+ exchanger—a review. Placenta 23(Suppl A):S39–S46

    Google Scholar 

  • Soh YM, Tiwari A, Mahendroo M, Conrad KP, Parry LJ (2012) Relaxin regulates hyaluronan synthesis and aquaporins in the cervix of late pregnant mice. Endocrinology 153:6054–6064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spencer TE, Johnson GA, Burghardt RC, Bazer FW (2004) Progesterone and placental hormone actions on the uterus: insights from domestic animals. Biol Reprod 71:2–10

    Article  PubMed  CAS  Google Scholar 

  • Stenhouse C, Seo H, Wu G, Johnson GA, Bazer FW (2022) Insights into the regulation of implantation and placentation in humans, rodents, sheep, and pigs. Adv Exp Med Biol 1354:25–48

    Google Scholar 

  • Stulc J (1997) Placental transfer of inorganic ions and water. Physiol Rev 77:805–836

    Article  PubMed  CAS  Google Scholar 

  • Su WH, Qiao Y, Yi F, Guan XG, Zhang D (2010) Increased female fertility in aquaporin 8-deficient mice. IUBMB Life 62:852–857

    Article  PubMed  CAS  Google Scholar 

  • Sun XL, Zhang J, Fan Y, Ding JH (2009) Aquaporin-4 deficiency induces subfertility in female mice. Fertil Steril 92:1736–1743

    Article  PubMed  Google Scholar 

  • Szpilbarg N, Castro-Parodi M, Reppetti J, Repetto M, Maskin B, Martinez N, Damiano AE (2016) Placental programmed cell death: insights into the role of aquaporins. Mol Hum Reprod 22:46–56

    Article  PubMed  CAS  Google Scholar 

  • Szpilbarg N, Seyahian A, Di Paola M, Castro-Parodi M, Martinez N, Farina M, Damiano AE (2018) Oxygen regulation of aquaporin-4 in human placenta. Reprod BioMed Online 37:601–612

    Article  PubMed  CAS  Google Scholar 

  • Torday JS, Rehan VK (2003) Testing for fetal lung maturation: a biochemical “window” to the developing fetus. Clin Lab Med 23:361–383

    Article  PubMed  CAS  Google Scholar 

  • Vilariño-García T, Pérez-Pérez A, Dietrich V, Fernández-Sánchez M, Guadix P, Dueñas JL, Varone CL, Damiano AE, Sánchez-Margalet V (2016) Increased expression of aquaporin 9 in trophoblast from gestational diabetic patients. Horm Metab Res 48:535–539

    Article  PubMed  Google Scholar 

  • Vilariño-García T, Pérez-Pérez A, Dietrich V, Guadix P, Dueñas JL, Varone CL, Damiano AE, Sánchez-Margalet V (2018) Leptin up-regulates aquaporin 9 expression in human placenta in vitro. Gynecol Endocrinol 34:75–77

    Article  Google Scholar 

  • Wang S, Kallichanda N, Song W, Ramirez BA, Ross MG (2001) Expression of aquaporin-8 in human placenta and chorioamniotic membranes: evidence of molecular mechanism for intramembranous amniotic fluid resorption. Am J Obstet Gynecol 185:1226–1231

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Chen J, Beall M, Zhou W, Ross MG (2004) Expression of aquaporin 9 in human chorioamniotic membranes and placenta. Am J Obstet Gynecol 191:2160–2167

    Article  PubMed  CAS  Google Scholar 

  • Watson AJ (1992) The cell biology of blastocyst development. Mol Reprod Dev 33:492–504

    Article  PubMed  CAS  Google Scholar 

  • Wen H, Nagelhus EA, Amiry-Moghaddam M, Agre P, Ottersen OP, Nielsen S (1999) Ontogeny of water transport in rat brain: postnatal expression of the aquaporin-4 water channel. Eur J Neurosci 11:935–945

    Article  PubMed  CAS  Google Scholar 

  • Wilbur WJ, Power GG, Longo LD (1978) Water exchange in the placenta: a mathematical model. Am J Physiol 235:R181–199

    Google Scholar 

  • Wintour EM, Liu H, Dodic M, Moritz K (2004) Differential renal and cardiac gene expression in ovine fetuses programmed to become hypertersive adults by early glucocorticoid treatment. In: Proceedings of the 12th International Congress of Endocrinology, Lisbon, Portugal. pp 501–505

    Google Scholar 

  • Wooding FB, Wilsher S, Benirschke K, Jones CJ, Allen WR (2015) Immunocytochemistry of the placentas of giraffe (Giraffa cameleopardalis giraffa) and okapi (Okapi johnstoni): comparison with other ruminants. Placenta 36:77–87

    Article  PubMed  CAS  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  Google Scholar 

  • Wu G (2018) Principles of animal nutrition. CRC Press, Boca Raton, FL

    Google Scholar 

  • Wu G (2021) Amino Acids: biochemistry and nutrition, 2nd edition. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Wu G (2022) Nutrition and metabolism: foundations for animal growth, development, reproduction, and health. Adv Exp Med Biol 1354:1–24

    Google Scholar 

  • Wu G, Bazer FW, Wallace JM, Spencer TE (2006) BOARD-INVITED REVIEW: Intrauterine growth retardation: Implications for the animal sciences. J Anim Sci 84:2316–2337

    Google Scholar 

  • Wu G, Bazer FW, Satterfield MC, Li X, Wang X, Johnson GA, Burghardt RC, Dai Z, Wang J, Wu Z (2013) Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids 45:241–245

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Johnson GA, Herring C, Seo H, Dai ZL, Wang JJ, Wu ZL, Wang XL (2017) Functional amino acids in the development of the pig placenta. Mol Reprod Dev 84:879–882

    Article  Google Scholar 

  • Wu G, Bazer FW, Johnson GA, Knabe DA, Burghardt RC, Spencer TE, Li XL, Wang JJ (2011) TRIENNIAL GROWTH SYMPOSIUM: Important roles for L-glutamine in swine nutrition and production. J Anim Sci 89:2017–2030

    Google Scholar 

  • Wu G, Bazer FW, Johnson GA, Hou YQ (2018) Arginine nutrition and metabolism in growing, gestating and lactating swine. J Anim Sci 96:5035–5051

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu G, Bazer FW, Satterfield MC, Gilbreath KR, Posey EA, Sun YX (2022) L-Arginine nutrition and metabolism in ruminants. Adv Exp Med Biol 1354:177–206

    Google Scholar 

  • Wu G, Meininger CJ, McNeal CJ, Bazer FW, Rhoads JM (2021) Role of L-arginine in nitric oxide synthesis and health in humans. Adv Exp Med Biol 1332:167–188

    Article  PubMed  Google Scholar 

  • Xiong Y, Tan YJ, Xiong YM, Huang YT, Hu XL, Lu YC, Ye YH, Wang TT, Zhang D, Jin F, Huang HF, Sheng JZ (2013) Expression of aquaporins in human embryos and potential role of AQP3 and AQP7 in preimplantation mouse embryo development. Cell Physiol Biochem 31:649–658

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Sasaki S, Fushimi K, Ishibashi K, Yaoita E, Kawasaki K, Fujinaka H, Marumo F, Kihara I (1997) Expression of AQP family in rat kidneys during development and maturation. Am J Physiol 272:F198–F204

    CAS  Google Scholar 

  • Yang B, Song Y, Zhao D, Verkman AS (2005) Phenotype analysis of aquaporin-8 null mice. Am J Physiol 288:C1161–1170

    Google Scholar 

  • Yasui M, Hazama A, Kwon TH, Nielsen S, Guggino WB, Agre P (1999) Rapid gating and anion permeability of an intracellular aquaporin. Nature 402:184–187

    Article  PubMed  CAS  Google Scholar 

  • Zelenina M, Tritto S, Bondar AA, Zelenin S, Aperia A (2004) Copper inhibits the water and glycerol permeability of aquaporin-3. J Biol Chem 279:51939–51943

    Article  PubMed  CAS  Google Scholar 

  • Zhang JM, He WL, Yi D, Zhao D, Song Z, Hou YQ, Wu G (2019) Regulation of protein synthesis in porcine mammary epithelial cells by L-valine. Amino Acids 51:717–726

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Hou YQ, Bazer FW, He WL, Posey EA, Wu G (2021) Amino acids in swine nutrition and production. Adv Exp Med Biol 1285:81–107

    Article  PubMed  Google Scholar 

  • Zhao Y, Lin L, Lai A (2018) Expression and significance of aquaporin-2 and serum hormones in placenta of patients with preeclampsia. J Obstet Gynaecol 38:42–48

    Article  PubMed  CAS  Google Scholar 

  • Zheng Z, Liu H, Beall M, Ma T, Hao R, Ross MG (2014) Role of aquaporin 1 in fetal fluid homeostasis. J Matern Fetal Neonatal Med 27:505–510

    Article  PubMed  CAS  Google Scholar 

  • Zhu XQ, Jiang SS, Zhu XJ, Zou SW, Wang YH, Hu YC (2009) Expression of aquaporin 1 and aquaporin 3 in fetal membranes and placenta in human term pregnancies with oligohydramnios. Placenta 30:670–676

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Jiang S, Hu Y, Zheng X, Zou S, Wang Y, Zhu XJ (2010) The expression of aquaporin 8 and aquaporin 9 in fetal membranes and placenta in term pregnancies complicated by idiopathic polyhydramnios. Early Hum Dev 86:657–663

    Article  PubMed  CAS  Google Scholar 

  • Zhu C, Jiang Z, Bazer FW, Johnson GA, Burghardt RC, Wu G (2015) Aquaporins in the female reproductive system of mammals. Front Biosci 20:838–871

    Article  CAS  Google Scholar 

  • Zhu C, Ye J, Bazer F, Johnson G, Bai Y, Yang J, Chen Z, Jiang Z (2018a) L-Arginine upregulates aquaporin-3 expression and water transport by porcine trophectoderm cells through NO- and cAMP-dependent mechanisms. J Anim Sci 96(Suppl 3):303–304

    Google Scholar 

  • Zhu C, Jiang Z, Bazer F, Johnson G, Burghardt R, Wu G (2018b) Expression of AQP 1, 3, 5, and 9 in the porcine placenta and uterine endometrium during the estrous cycle and gestation. J Anim Sci 96(Suppl 3):482–483

    Google Scholar 

  • Zhu C, Li XL, Bazer FW, Johnson GA, Burghardt RC, Jiang ZY, Wu G (2016) Dietary L-arginine supplementation during Days 14 and 25 of gestation enhances placental aquaporin-1 expression and water transport by the pig placenta. The Society of the Study of Reproduction (SSR) Annual Meeting, July 16–20, 2016, San Diego, CA

    Google Scholar 

  • Zhu C, Li XL, Bazer FW, Johnson GA, Burghardt RC, Jiang ZY, Wu G (2021) Dietary L-arginine supplementation during days 14-25 of gestation enhances aquaporin expression in the placentae and endometria of gestating gilts. Amino Acids 53:1287–1295

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from the Guangdong Basic and Applied Basic Research Foundation (Grant Number 2020A1515010018 to CZ), and the Discipline Construction Program of Foshan University  (Grant Number CGZ0400162 to CZ), Agriculture and Food Research Initiative Competitive Grants Number 2015-67015-23276 (to GW, FWB, and GAJ) and Number 2018-67015-28093 (to FWB, GAJ, and GW) from the USDA National Institute of Food and Agriculture, and Texas A&M AgriLife Research H-8200 (to GW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, C., Jiang, Z., Johnson, G.A., Burghardt, R.C., Bazer, F.W., Wu, G. (2022). Nutritional and Physiological Regulation of Water Transport in the Conceptus. In: Wu, G. (eds) Recent Advances in Animal Nutrition and Metabolism. Advances in Experimental Medicine and Biology, vol 1354. Springer, Cham. https://doi.org/10.1007/978-3-030-85686-1_6

Download citation

Publish with us

Policies and ethics