Skip to main content

Advertisement

Log in

Aquaporin water channels in mammals

  • Review Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Water channels, aquaporins (AQPs), are a family of small integral plasma membrane proteins that primarily transport water across the plasma membrane. There are 13 members (AQP0–12) in humans. This number is final as the human genome project has been completed. They are divided into three subgroups based on the primary sequences: water selective AQPs (AQP0, 1, 2, 4, 5, 6, 8), aquaglyceroporins (AQP3, 7, 9, 10), and superaquaporins (AQP11, 12). Since no specific inhibitors are yet available, functional roles of AQPs are suggested by AQP null mice and humans. Abnormal water metabolism was shown with AQP1, 2, 3, 4, 5 null mice, especially with AQP2 null mice: fatal at neonate due to diabetes insipidus. Abnormal glycerol transport was shown with AQP3, 7, 9 null mice, although they appeared normal. AQP0 null mice suffer from cataracts, although the pathogenesis is not clear. Unexpectedly, AQP11 null mice die from uremia as a result of polycystic kidneys. Interestingly, AQP6, 8, 10, 12 null mice are almost normal. AQP null humans have been reported with AQP0, 1, 2, 3, 7: only AQP2 null humans show an outstanding phenotype, diabetes insipidus. This review summarizes the current knowledge on all mammalian AQPs and hopefully will stimulate future research in both clinical and basic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ishibashi K, Sasaki S. Aquaporin water channels in mammals. Clin Exp Nephrol. 1997;1:247–53.

    Article  Google Scholar 

  2. Nielsen S, Frøkiaer J, Marples D, Kwon TH, Agre P, Knepper MA. Aquaporins in the kidney: from molecules to medicine. Physiol Rev. 2002;82:205–44.

    Article  CAS  PubMed  Google Scholar 

  3. Nishino T, Devuyst O. Clinical application of aquaporin research: aquaporin-1 in the peritoneal membrane. Pflugers Arch. 2008;456:721–7.

    Article  CAS  PubMed  Google Scholar 

  4. Skowronski MT, Lebeck J, Rojek A, Praetorius J, Füchtbauer EM, Frøkiaer J, et al. AQP7 is localized in capillaries of adipose tissue, cardiac and striated muscle: implications in glycerol metabolism. Am J Physiol Renal Physiol. 2007;292:F956–65.

    Article  CAS  PubMed  Google Scholar 

  5. Calamita G, Ferri D, Gena P, Liquori GE, Cavalier A, Thomas D, et al. The inner mitochondrial membrane has aquaporin-8 water channels and is highly permeable to water. J Biol Chem. 2005;280:17149–53.

    Article  CAS  PubMed  Google Scholar 

  6. Yang B, Zhao D, Verkman AS. Evidence against functionally significant aquaporin expression in mitochondria. J Biol Chem. 2006;281:16202–6.

    Article  CAS  PubMed  Google Scholar 

  7. Okada S, Misaka T, Matsumoto I, Watanabe H, Abe K. Aquaporin-9 is expressed in a mucus-secreting goblet cell subset in the small intestine. FEBS Lett. 2003;540:157–62.

    Article  CAS  PubMed  Google Scholar 

  8. Rojek AM, Skowronski MT, Füchtbauer EM, Füchtbauer AC, Fenton RA, Agre P, et al. Defective glycerol metabolism in aquaporin 9 (AQP9) knockout mice. Proc Natl Acad Sci USA. 2007;104:3609–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mobasheri A, Shakibaei M, Marples D. Immunohistochemical localization of aquaporin 10 in the apical membranes of the human ileum: a potential pathway for luminal water and small solute absorption. Histochem Cell Biol. 2004;121:463–71.

    Article  CAS  PubMed  Google Scholar 

  10. Li H, Kamiie J, Morishita Y, Yoshida Y, Yaoita E, Ishibashi K, et al. Expression and localization of two isoforms of AQP10 in human small intestine. Biol Cell. 2005;97:823–9.

    Article  CAS  PubMed  Google Scholar 

  11. Ikeda M, Beitz E, Kozono D, Guggino WB, Agre P, Yasui M. Characterization of aquaporin-6 as a nitrate channel in mammalian cells. Requirement of pore-lining residue threonine 63. J Biol Chem. 2002;277:39873–9.

    Article  CAS  PubMed  Google Scholar 

  12. Bienert GP, Møller AL, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, et al. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem. 2007;282:1183–92.

    Article  CAS  PubMed  Google Scholar 

  13. Bienert GP, Schüssler MD, Jahn TP. Metalloids: essential, beneficial or toxic? Major intrinsic proteins sort it out. Trends Biochem Sci. 2008;33:20–6.

    Article  CAS  PubMed  Google Scholar 

  14. Ishibashi K. Aquaporin subfamily with unusual NPA boxes. Biochim Biophys Acta. 2006;1758:989–93.

    Article  CAS  PubMed  Google Scholar 

  15. Yakata K, Hiroaki Y, Ishibashi K, Sohara E, Sasaki S, Mitsuoka K, et al. Aquaporin-11 containing a divergent NPA motif has normal water channel activity. Biochim Biophys Acta. 2007;1768:688–93.

    Article  CAS  PubMed  Google Scholar 

  16. Gorelick DA, Praetorius J, Tsunenari T, Nielsen S, Agre P. Aquaporin-11: a channel protein lacking apparent transport function expressed in brain. BMC Biochem. 2006;7:1–14.

    Article  Google Scholar 

  17. Engel A, Fujiyoshi Y, Gonen T, Walz T. Junction-forming aquaporins. Curr Opin Struct Biol. 2008;18:229–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang H, Verkman AS. Evidence against involvement of aquaporin-4 in cell-cell adhesion. J Mol Biol. 2008;382:1136–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kalman K, Nemeth-Cahalan KL, Froger A, Hall JE. Phosphorylation determines the calmodulin-mediated CA2+ response and water permeability of AQP0. J Biol Chem. 2008;283:21278–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Farjo R, Peterson WM, Naash MI. Expression profiling after retinal detachment and reattachment: a possible role for aquaporin-0. Invest Ophthalmol Vis Sci. 2008;49:511–21.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Oshio K, Watanabe H, Yan D, Verkman AS, Manley GT. Impaired pain sensation in mice lacking aquaporin-1 water channels. Biochem Biophys Res Commun. 2006;341:1022–8.

    Article  CAS  PubMed  Google Scholar 

  22. Ma T, Jayaraman S, Wang KS, Song Y, Yang B, Li J, et al. Defective dietary fat processing in transgenic mice lacking aquaporin-1 water channels. Am J Physiol Cell Physiol. 2001;280:C126–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tietz PS, Marinelli RA, Chen XM, Huang B, Cohn J, Kole J, et al. Agonist-induced coordinated trafficking of functionally related transport proteins for water and ions in cholangiocytes. J Biol Chem. 2003;278:20413–9.

    Article  CAS  PubMed  Google Scholar 

  24. Cho SJ, Sattar AK, Jeong EH, Satchi M, Cho JA, Dash S, et al. Aquaporin 1 regulates GTP-induced rapid gating of water in secretory vesicles. Proc Natl Acad Sci USA. 2002;99:4720–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ripoche P, Goossens D, Devuyst O, Gane P, Colin Y, Verkman AS, et al. Role of RhAG and AQP1 in NH3 and CO2 gas transport in red cell ghosts: a stopped-flow analysis. Transfus Clin Biol. 2006;13:117–22.

    Article  CAS  PubMed  Google Scholar 

  26. Herrera M, Garvin JL. Novel role of AQP-1 in NO-dependent vasorelaxation. Am J Physiol Renal Physiol. 2007;292:F1443–51.

    Article  CAS  PubMed  Google Scholar 

  27. Echevarría M, Muñoz-Cabello AM, Sánchez-Silva R, Toledo-Aral JJ, López-Barneo J. Development of cytosolic hypoxia and hypoxia-inducible factor stabilization are facilitated by aquaporin-1 expression. J Biol Chem. 2007;282:30207–15.

    Article  PubMed  Google Scholar 

  28. Verkman AS, Hara-Chikuma M, Papadopoulos MC. Aquaporins—new players in cancer biology. J Mol Med. 2008;86:523–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ruiz-Ederra J, Verkman AS. Aquaporin-1 independent microvessel proliferation in a neonatal mouse model of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci. 2007;48:4802–10.

    Article  PubMed  Google Scholar 

  30. Lutz F, Mohr M, Grimmig M, Leidolf R, Linder D. Pseudomonas aeruginosa cytotoxin-binding protein in rabbit erythrocyte membranes. An oligomer of 28 kDa with similarity to transmembrane channel proteins. Eur J Biochem. 1993;217:1123–8.

    Article  CAS  PubMed  Google Scholar 

  31. Noda Y, Sasaki S. Regulation of aquaporin-2 trafficking and its binding protein complex. Biochim Biophys Acta. 2006;1758:1117–25.

    Article  CAS  PubMed  Google Scholar 

  32. Taguchi D, Takeda T, Kakigi A, Takumida M, Nishioka R, Kitano H. Expressions of aquaporin-2, vasopressin type 2 receptor, transient receptor potential channel vanilloid (TRPV)1, and TRPV4 in the human endolymphatic sac. Laryngoscope. 2007;117:695–8.

    Article  CAS  PubMed  Google Scholar 

  33. Domeniconi RF, Orsi AM, Justulin LA Jr, Leme Beu CC, Felisbino SL. Immunolocalization of aquaporins 1, 2 and 7 in rete testis, efferent ducts, epididymis and vas deferens of adult dog. Cell Tissue Res. 2008;332:329–35.

    Article  CAS  PubMed  Google Scholar 

  34. Roudier N, Ripoche P, Gane P, Le Pennec PY, Daniels G, Cartron JP, et al. AQP3 deficiency in humans and the molecular basis of a novel blood group system, GIL. J Biol Chem. 2002;277:45854–9.

    Article  CAS  PubMed  Google Scholar 

  35. Hara-Chikuma M, Verkman AS. Aquaporin-3 functions as a glycerol transporter in mammalian skin. Biol Cell. 2005;97:479–86.

    Article  CAS  PubMed  Google Scholar 

  36. Hara-Chikuma M, Verkman AS. Prevention of skin tumorigenesis and impairment of epidermal cell proliferation by targeted aquaporin-3 gene disruption. Mol Cell Biol. 2008;28:326–32.

    Article  CAS  PubMed  Google Scholar 

  37. Thiagarajah JR, Zhao D, Verkman AS. Impaired enterocyte proliferation in aquaporin-3 deficiency in mouse models of colitis. Gut. 2007;56:1529–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Laforenza U, Gastaldi G, Grazioli M, Cova E, Tritto S, Faelli A, et al. Expression and immunolocalization of aquaporin-7 in rat gastrointestinal tract. Biol Cell. 2005;97:605–13.

    Article  CAS  PubMed  Google Scholar 

  39. Okahira M, Kubota M, Iguchi K, Usui S, Hirano K. Regulation of aquaporin 3 expression by magnesium ion. Eur J Pharmacol. 2008;588:26–32.

    Article  CAS  PubMed  Google Scholar 

  40. Kanwar R, Fortini ME. The big brain aquaporin is required for endosome maturation and notch receptor trafficking. Cell. 2008;133:852–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lu DC, Zhang H, Zador Z, Verkman AS. Impaired olfaction in mice lacking aquaporin-4 water channels. FASEB J. 2008;22:3216–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Papadopoulos MC, Verkman AS. Aquaporin-4 and brain edema. Pediatr Nephrol. 2007;22:778–84.

    Article  PubMed  Google Scholar 

  43. Jarius S, Paul F, Franciotta D, Waters P, Zipp F, Hohlfeld R, et al. Mechanisms of disease: aquaporin-4 antibodies in neuromyelitis optica. Nat Clin Pract Neurol. 2008;4:202–14.

    Article  CAS  PubMed  Google Scholar 

  44. Towne JE, Krane CM, Bachurski CJ, Menon AG. Tumor necrosis factor-alpha inhibits aquaporin 5 expression in mouse lung epithelial cells. J Biol Chem. 2001;276:18657–64.

    Article  CAS  PubMed  Google Scholar 

  45. Ishikawa Y, Yuan Z, Inoue N, Skowronski MT, Nakae Y, Shono M, et al. Identification of AQP5 in lipid rafts and its translocation to apical membranes by activation of M3 mAChRs in interlobular ducts of rat parotid gland. Am J Physiol Cell Physiol. 2005;289:C1303–11.

    Article  CAS  PubMed  Google Scholar 

  46. Parvin MN, Kurabuchi S, Murdiastuti K, Yao C, Kosugi-Tanaka C, Akamatsu T, et al. Subcellular redistribution of AQP5 by vasoactive intestinal polypeptide in the Brunner’s gland of the rat duodenum. Am J Physiol Gastrointest Liver Physiol. 2005;288:G1283–91.

    Article  CAS  PubMed  Google Scholar 

  47. Kobayashi M, Takahashi E, Miyagawa S, Watanabe H, Iguchi T. Chromatin immunoprecipitation-mediated target identification proved aquaporin 5 is regulated directly by estrogen in the uterus. Genes Cells. 2006;11:1133–43.

    Article  CAS  PubMed  Google Scholar 

  48. Nagase H, Agren J, Saito A, Liu K, Agre P, Hazama A, et al. Molecular cloning and characterization of mouse aquaporin 6. Biochem Biophys Res Commun. 2007;352:12–16.

    Article  CAS  PubMed  Google Scholar 

  49. Jeremic A, Cho WJ, Jena BP. Involvement of water channels in synaptic vesicle swelling. Exp Biol Med (Maywood). 2005;230:674–80.

    Article  CAS  Google Scholar 

  50. Sohara E, Ueda O, Tachibe T, Hani T, Jishage K, Rai T, et al. Morphologic and functional analysis of sperm and testes in aquaporin 7 knockout mice. Fertil Steril. 2007;87:671–6.

    Article  CAS  PubMed  Google Scholar 

  51. Hara-Chikuma M, Sohara E, Rai T, Ikawa M, Okabe M, Sasaki S, et al. Progressive adipocyte hypertrophy in aquaporin-7-deficient mice: adipocyte glycerol permeability as a novel regulator of fat accumulation. J Biol Chem. 2005;280:15493–6.

    Article  CAS  PubMed  Google Scholar 

  52. Hibuse T, Maeda N, Funahashi T, Yamamoto K, Nagasawa A, Mizunoya W, et al. Aquaporin 7 deficiency is associated with development of obesity through activation of adipose glycerol kinase. Proc Natl Acad Sci USA. 2005;102:10993–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Matsumura K, Chang BH, Fujimiya M, Chen W, Kulkarni RN, Eguchi Y, et al. Aquaporin 7 is a beta-cell protein and regulator of intraislet glycerol content and glycerol kinase activity, beta-cell mass, and insulin production and secretion. Mol Cell Biol. 2007;27:6026–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kondo H, Shimomura I, Kishida K, Kuriyama H, Makino Y, Nishizawa H, et al. Human aquaporin adipose (AQPap) gene. Genomic structure, promoter analysis and functional mutation. Eur J Biochem. 2002;269:1814–26.

    Article  CAS  PubMed  Google Scholar 

  55. Sohara E, Rai T, Sasaki S, Uchida S. Physiological roles of AQP7 in the kidney: lessons from AQP7 knockout mice. Biochim Biophys Acta. 2006;1758:1106–10.

    Article  CAS  PubMed  Google Scholar 

  56. Dumas L, Kim YH, Karimpour-Fard A, Cox M, Hopkins J, Pollack JR, et al. Gene copy number variation spanning 60 million years of human and primate evolution. Genome Res. 2007;17:1266–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jablonski EM, Mattocks MA, Sokolov E, Koniaris LG, Hughes FM Jr, Fausto N, et al. Decreased aquaporin expression leads to increased resistance to apoptosis in hepatocellular carcinoma. Cancer Lett. 2007;250:36–46.

    Article  CAS  PubMed  Google Scholar 

  58. Te Velde AA, Pronk I, de Kort F, Stokkers PC. Glutathione peroxidase 2 and aquaporin 8 as new markers for colonic inflammation in experimental colitis and inflammatory bowel diseases: an important role for H2O2? Eur J Gastroenterol Hepatol. 2008;20:555–60.

    Article  CAS  PubMed  Google Scholar 

  59. Kutuzova GD, Deluca HF. Gene expression profiles in rat intestine identify pathways for 1, 25-dihydroxyvitamin D(3) stimulated calcium absorption and clarify its immunomodulatory properties. Arch Biochem Biophys. 2004;432:152–66.

    Article  CAS  PubMed  Google Scholar 

  60. Leung J, Pang A, Yuen WH, Kwong YL, Tse EW. Relationship of expression of aquaglyceroporin 9 with arsenic uptake and sensitivity in leukemia cells. Blood. 2007;109:740–6.

    Article  CAS  PubMed  Google Scholar 

  61. Amiry-Moghaddam M, Lindland H, Zelenin S, Roberg BA, Gundersen BB, Petersen P, et al. Brain mitochondria contain aquaporin water channels: evidence for the expression of a short AQP9 isoform in the inner mitochondrial membrane. FASEB J. 2005;19:1459–67.

    Article  CAS  PubMed  Google Scholar 

  62. Seda O, Sedová L, Oliyarnyk O, Kazdová L, Krenová D, Corbeil G, et al. Pharmacogenomics of metabolic effects of rosiglitazone. Pharmacogenomics. 2008;9:141–55.

    Article  CAS  PubMed  Google Scholar 

  63. Aharon R, Bar-Shavit Z. Involvement of aquaporin 9 in osteoclast differentiation. J Biol Chem. 2006;281:19305–9.

    Article  CAS  PubMed  Google Scholar 

  64. Liu Y, Song L, Wang Y, Rojek A, Nielsen S, Agre P, et al. Osteoclast differentiation and function in aquaglyceroporin AQP9 null mice. Biol Cell. in press.

  65. Hatakeyama S, Yoshida Y, Tani T, Koyama Y, Nihei K, Ohshiro K, et al. Cloning of a new aquaporin (AQP10) abundantly expressed in duodenum and jejunum. Biochem Biophys Res Commun. 2001;287:814–9.

    Article  CAS  PubMed  Google Scholar 

  66. Ishibashi K, Morinaga T, Kuwahara M, Sasaki S, Imai M. Cloning and identification of a new member of water channel (AQP10) as an aquaglyceroporin. Biochim Biophys Acta. 2002;1576:335–40.

    Article  CAS  PubMed  Google Scholar 

  67. Flach CF, Qadri F, Bhuiyan TR, Alam NH, Jennische E, Holmgren J, et al. Differential expression of intestinal membrane transporters in cholera patients. FEBS Lett. 2007;581:3183–8.

    Article  CAS  PubMed  Google Scholar 

  68. Morinaga T, Nakakoshi M, Hirao A, Imai M, Ishibashi K. Mouse aquaporin 10 gene (AQP10) is a pseudogene. Biochem Biophys Res Commun. 2002;294:630–4.

    Article  CAS  PubMed  Google Scholar 

  69. Wang W, Hart PS, Piesco NP, Lu X, Gorry MC, Hart TC. Aquaporin expression in developing human teeth and selected orofacial tissues. Calcif Tissue Int. 2003;72:222–7.

    Article  CAS  PubMed  Google Scholar 

  70. Ishibashi K, Kuwahara M, Kageyama Y, Sasaki S, Suzuki M, Imai M. Molecular cloning of a new aquaporin superfamily in mammals: AQPX1 and AQPX2. In: Hohmann S, Nielsen S, editors. Molecular biology and physiology of water and solute transport. New York: Kluwer Academic/Plenum Publishers; 2000. p. 123–6.

    Chapter  Google Scholar 

  71. Morishita Y, Matsuzaki T, Hara-Chikuma M, Andoo A, Shimono M, Matsuki A, et al. Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule. Mol Cell Biol. 2005;25:7770–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schwartz SL, Johnson CB. Pinocytosis as the cause of sucrose nephrosis. Nephron. 1971;8:246–54.

    Article  CAS  PubMed  Google Scholar 

  73. Zinszner H, Kuroda M, Wang XZ, Batchvarova N, Lightfoot RT, Remotti H, et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 1998;12:982–995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Itoh T, Rai T, Kawahara M, Ko SBH, Uchida S, Sasaki S, et al. Identification of a novel aquaporin, AQP12, expressed in pancreatic acinar cells. Biochem Biophys Res Commun. 2005;330:832–8.

    Article  CAS  PubMed  Google Scholar 

  75. Campbell EM, Ball A, Hoppler S, Bowman AS. Invertebrate aquaporins: a review. J Comp Physiol [B]. 2008;178:935–55.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Ishibashi.

About this article

Cite this article

Ishibashi, K., Hara, S. & Kondo, S. Aquaporin water channels in mammals. Clin Exp Nephrol 13, 107–117 (2009). https://doi.org/10.1007/s10157-008-0118-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-008-0118-6

Keywords

Navigation