Skip to main content

Advertisement

Log in

Dietary supplementation with l-arginine between days 14 and 25 of gestation enhances embryonic development and survival in gilts

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Embryonic loss is a major problem in mammals, but there are few effective ways to prevent it. Using a porcine model, we determined effects of dietary l-arginine supplementation between days 14 and 25 of gestation on embryonic growth and survival. Gilts were checked daily for estrus with boars in the morning and bred at onset of the second estrus and 12 h later (the time of breeding = day 0 of gestation). Between days 14 and 25 of gestation, 15 gilts/treatment were housed individually and fed twice daily 1 kg of a corn- and soybean meal-based diet supplemented with 0.0, 0.4, or 0.8 % l-arginine. All diets were made isonitrogenous by addition of l-alanine. On day 25 of gestation, gilts were hysterectomized to obtain conceptuses. Compared with controls, dietary supplementation with 0.4 or 0.8 % l-arginine increased (P ≤ 0.05) arginine concentrations in maternal plasma, total volume of amniotic fluid; total amounts of arginine in allantoic and amniotic fluids; total amounts of fructose and most amino acids in amniotic fluid; placental growth; and the number of viable fetuses per litter by 2. The numbers of total fetuses, fetal weight, corpora lutea, volume of allantoic fluid, maternal circulating levels of progesterone and estrogen, or total amounts of hormones in allantoic fluid did not differ among the three treatment groups. Reproductive performance of gilts did not differ between the 0.4 and 0.8 % l-arginine groups. Thus, dietary supplementation with 0.4 or 0.8 % l-arginine between days 14 and 25 of gestation enhances embryonic/fetal survival in swine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALF:

Allantoic fluid

AMF:

Amniotic fluid

CL:

Corpora lutea

NO:

Nitric oxide

NRC:

National Research Council

References

  • Bazer FW (1989) Allantoic fluid: regulation of volume and composition. In: Brace RA, Ross MG, Robillard JE (eds) Reproduction and perinatal medicine. Fetal and neonatal body fluids. Ithaca: Perinatology, vol. 11, p 135–155

  • Bazer FW, Thatcher WW (1977) Theory of maternal recognition of pregnancy in swine based on estrogen controlled endocrine versus exocrine secretion of prostaglandin F2alpha by the uterine endometrium. Prostaglandins 14:397–401

    Article  CAS  PubMed  Google Scholar 

  • Bazer FW, Wu G, Spencer TE et al (2010) Novel pathways for implantation and establishment and maintenance of pregnancy in mammals. Mol Hum Reprod 16:135–152

    Article  CAS  PubMed  Google Scholar 

  • Bazer FW, Song GH, Kim JY et al (2012) Mechanistic mammalian target of rapamycin (MTOR) cell signaling: effects of select nutrients and secreted phosphoprotein 1 on development of mammalian conceptuses. Mol Cell Endocrinol 354:22–33

    Article  CAS  PubMed  Google Scholar 

  • Bérard J, Bee G (2010) Effects of dietary l-arginine supplementation to gilts during early gestation on foetal survival, growth and myofiber formation. Animal 4:1680–1687

    Article  PubMed  Google Scholar 

  • Costa RP, Costa AS, Korzekwa AJ et al (2008) Actions of a nitric oxide donor on prostaglandin production and angiogenic activity in the equine endometrium. Reprod Fertil Dev 20:674–683

    Article  PubMed  Google Scholar 

  • Dai ZL, Li XL, Xi PB et al (2012a) Regulatory role for l-arginine in the utilization of amino acids by pig small-intestinal bacteria. Amino Acids 43:233–244

    Article  CAS  PubMed  Google Scholar 

  • Dai ZL, Li XL, Xi PB et al (2012b) Metabolism of select amino acids in bacteria from the pig small intestine. Amino Acids 42:1597–1608

    Article  CAS  PubMed  Google Scholar 

  • Gao KG, Jiang ZY, Lin YC et al (2012) Wu G. Dietary l-arginine supplementation enhances placental growth and reproductive performance in sows. Amino Acids 42:2207–2214

    Article  CAS  PubMed  Google Scholar 

  • Geng MM, Li TJ, Kong XF et al (2011) Reduced expression of intestinal N-acetylglutamate synthase in suckling piglets: a novel molecular mechanism for arginine as a nutritionally essential amino acid for neonates. Amino Acids 40:1513–1522

    Article  CAS  PubMed  Google Scholar 

  • Go GW, Wu G, Silvey DT et al (2012) Lipid metabolism in pigs fed supplemental conjugated linoleic acid and/or dietary arginine. Amino Acids 43:1713–1726

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Burghardt RC, Wu G et al (2011) Select nutrients in the ovine uterine lumen. VIII. Arginine stimulates proliferation of ovine trophectoderm cells through MTOR-RPS6 K-RPS6 signaling cascade and synthesis of nitric oxide and polyamines. Biol Reprod 84:70–78

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Song GW, Wu G et al (2012) Functional roles of fructose. Proc Natl Acad Sci USA 109:E1619–E1628

    Article  CAS  PubMed  Google Scholar 

  • Kong XF, Tan BE, Yin YL et al (2012) l-Arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. J Nutr Biochem 23:1178–1183

    Article  CAS  PubMed  Google Scholar 

  • Li XL (2011) Regulation of porcine conceptus survival and growth by l-arginine (Ph D Dissertation). Texas A&M University, College Station

  • Li X, Bazer FW, Johnson GA et al (2010) (2010), Dietary supplementation with 0.8% l-arginine between Days 0 and 25 of gestation reduces litter size in gilts. J Nutr 140:1111–1116

    Article  CAS  PubMed  Google Scholar 

  • Li XL, Rezaei R, Li P et al (2011) Composition of amino acids in feed ingredients for animal diets. Amino Acids 40:1159–1168

    Article  CAS  PubMed  Google Scholar 

  • Liu XD, Wu X, Yin YL et al (2012) Effects of dietary l-arginine or N-carbamylglutamate supplementation during late gestation of sows on the miR-15b/16, miR-221/222, VEGFA and eNOS expression in umbilical vein. Amino Acids 42:2111–2119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mateo RD, Wu G, Bazer FW et al (2007) Dietary l-arginine supplementation enhances the reproductive performance of gilts. J Nutr 137:652–656

    CAS  PubMed  Google Scholar 

  • McKnight JR, Satterfield MC, Jobgen WS et al (2010) Beneficial effects of l-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino Acids 39:349–357

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (NRC) (1998) Nutrient requirements of swine, 10th edn. National Academic Press, Washington, DC

    Google Scholar 

  • Pope WF (1994) Embryonic mortality in swine. In: Zavy M, Geisert R (eds) Embryonic mortality in domestic species. CRC Press, Boca Raton, pp 53–77

    Google Scholar 

  • Ramaekers P, Kemp B, van der Lende T (2006) Progenos in sows increases number of piglets born. J Anim Sci 84(Suppl1):394 (Abstract)

    Google Scholar 

  • Ren W, Yin YL, Liu G et al (2012) Effect of dietary arginine supplementation on reproductive performance of mice with porcine circovirus type 2 infection. Amino Acids 42:2089–2094

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ren WK, Luo W, Wu MM et al (2013) Dietary l-glutamine supplementation improves pregnancy outcome in mice infected with type-2 porcine circovirus. Amino Acids 45:479–488

    Article  CAS  PubMed  Google Scholar 

  • Reynolds LP, Borowicz PP, Vonnahme KA et al (2005) Placental angiogenesis in sheep models of compromised pregnancy. J Physiol 565:43–58

    Article  CAS  PubMed  Google Scholar 

  • Rhoads JM, Wu G (2009) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37:111–122

    Article  CAS  Google Scholar 

  • Roe JH (1934) A colorimetric method for the determination of fructose in blood and urine. J Biol Chem 107:15–22

    CAS  Google Scholar 

  • Salvemini D, Misko TP, Masferrer JL et al (1993) Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci USA 90:7240–7244

    Article  CAS  PubMed  Google Scholar 

  • Satterfield MC, Dunlap KA, Keisler DH et al (2012) Arginine nutrition and fetal brown adipose tissue development in diet-induced obese sheep. Amino Acids 43:1593–1603

    Article  Google Scholar 

  • Satterfield MC, Dunlap KA, Keisler DH et al (2013) Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep. Amino Acids 45:489–499

    Article  CAS  PubMed  Google Scholar 

  • Schoknecht PA, Pond WG, Mersmann HJ et al (1993) Protein restriction during pregnancy affects postnatal growth in swine progeny. J Nutr 123:1818–1825

    CAS  PubMed  Google Scholar 

  • Schoknecht PA, Newton GR, Weise DE et al (1994) Protein restriction in early pregnancy alters fetal and placental growth and allantoic fluid proteins in swine. Theriogenology 42:217–226

    Article  CAS  PubMed  Google Scholar 

  • Smith MF, McIntush EW, Smith GW (1994) Mechanisms associated with corpus luteum development. J Anim Sci 72:1857–1872

    CAS  PubMed  Google Scholar 

  • Suryawan A, Davis TA (2011) Regulation of protein synthesis by amino acids in muscle of neonates. Front Biosci 16:1445–1460

    Article  CAS  Google Scholar 

  • Vonnahme KA, Ford SP (2004) Placental vascular endothelial growth factor receptor system mRNA expression in pigs selected for placental efficiency. J Physiol 554:194–201

    Article  CAS  PubMed  Google Scholar 

  • Wu G (2013a) Functional amino acids in nutrition and health. Amino Acids 45:407–411

    Article  CAS  PubMed  Google Scholar 

  • Wu G (2013b) Amino acids: biochemistry and nutrition. CRC Press, Boca Raton, Florida p 503

    Book  Google Scholar 

  • Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Tuo W (1995) Developmental changes of free amino acid concentrations in fetal fluids of pigs. J Nutr 125:2859–2868

    CAS  PubMed  Google Scholar 

  • Wu G, Pond WG, Ott TL et al (1998a) Maternal dietary protein deficiency decreases amino acid concentrations in fetal plasma and allantoic fluid of pigs. J Nutr 128:894–902

    CAS  PubMed  Google Scholar 

  • Wu G, Pond WG, Flynn SP et al (1998b) Maternal dietary protein deficiency decreases nitric oxide synthase and ornithine decarboxylase activities in placenta and endometrium of pigs during early gestation. J Nutr 128:2395–2402

    CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Wallace JM et al (2006) Board-invited review: intrauterine growth retardation: implications for the animal sciences. J Anim Sci 84:2316–2337

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Davis TA et al (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC et al (2010) Impacts of amino acid nutrition on pregnancy outcome in pigs: mechanisms and implications for swine production. J Anim Sci 88:E195–E204

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Satterfield MC et al (2013a) Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids 45:241–256

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Wu ZL, Dai ZL et al (2013b) Dietary requirements of “nutritionally nonessential amino acids” by animals and humans. Amino Acids 44:1107–1113

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Johnson GA et al (2013c) Maternal and fetal amino acid metabolism in gestating sows. Soc Reprod Fertil Suppl 68:185–198

    Google Scholar 

  • Xi PB, Jiang ZY, Zheng CT et al (2011) Regulation of protein metabolism by glutamine: implications for nutrition and health. Front Biosci 16:578–597

    Article  CAS  Google Scholar 

  • Yao K, Yin YL, Chu W et al (2008) Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J Nutr 138:867–872

    CAS  PubMed  Google Scholar 

  • Zeng X, Wang F, Fan X et al (2008) Dietary arginine supplementation during early pregnancy enhances embryonic survival in rats. J Nutr 138:1421–1425

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by National Research Initiative Competitive Grants from the Animal Reproduction Program (2008-35203-19120) and Animal Growth & Nutrient Utilization Program (2008-35206-18764) of the USDA National Institute of Food and Agriculture, Texas AgriLife Research (No. 8200), National Natural Science Foundation of China (31272217 and 31272450), Chinese Universities Scientific Funds (2012RC024), and the Thousand-People-Talent program at China Agricultural University.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Bazer, F.W., Johnson, G.A. et al. Dietary supplementation with l-arginine between days 14 and 25 of gestation enhances embryonic development and survival in gilts. Amino Acids 46, 375–384 (2014). https://doi.org/10.1007/s00726-013-1626-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1626-6

Keywords

Navigation