Skip to main content

Astroglial Serotonin Receptors as the Central Target of Classic Antidepressants

  • Chapter
  • First Online:
Astrocytes in Psychiatric Disorders

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 26))

Abstract

Major depressive disorder (MDD) presents multiple clinical phenotypes and has complex underlying pathological mechanisms. Existing theories cannot completely explain the pathophysiological mechanism(s) of MDD, while the pharmacology of current antidepressants is far from being fully understood. Astrocytes, the homeostatic and defensive cells of the central nervous system, contribute to shaping behaviors, and regulating mood and emotions. A detailed introduction on the role of astrocytes in depressive disorders is thus required, to which this chapter is dedicated. We also focus on the interactions between classic antidepressants and serotonin receptors, overview the role of astrocytes in the pharmacological mechanisms of various antidepressants, and present astrocytes as targets for the treatment of bipolar disorder. We provide a foundation of knowledge on the role of astrocytes in depressive disorders and astroglial 5-HT2B receptors as targets for selective serotonin reuptake inhibitors in vivo and in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah CG, Sanacora G, Duman RS, Krystal JH (2015) Ketamine and rapid-acting antidepressants: a window into a new neurobiology for mood disorder therapeutics. Annu Rev Med 66:509–523

    Article  CAS  PubMed  Google Scholar 

  • Adrien J, Tissier MH, Lanfumey L, Haj-Dahmane S, Jolas T, Franc B, Hamon M (1992) Central action of 5-HT3 receptor ligands in the regulation of sleep-wakefulness and raphe neuronal activity in the rat. Neuropharmacology 31:519–529

    Article  CAS  PubMed  Google Scholar 

  • Albert PR, François BL (2010) Modifying 5-HT1A receptor gene expression as a new target for antidepressant therapy. Front Neurosci 4:35

    CAS  PubMed  PubMed Central  Google Scholar 

  • Albert PR, Lemonde S (2004) 5-HT1A receptors, gene repression, and depression: guilt by association. Neuroscientist 10:575–593

    Article  CAS  PubMed  Google Scholar 

  • Albinsson A, Björk A, Svartengren J, Klint T, Andersson G (1994) Preclinical pharmacology of FG5893: a potential anxiolytic drug with high affinity for both 5-HT1A and 5-HT2A receptors. Eur J Pharmacol 261:285–294

    Article  CAS  PubMed  Google Scholar 

  • Allaman I, Fiumelli H, Magistretti PJ, Martin JL (2011) Fluoxetine regulates the expression of neurotrophic/growth factors and glucose metabolism in astrocytes. Psychopharmacology 216:75–84

    Article  CAS  PubMed  Google Scholar 

  • Al-Majed A, Bakheit AH, Alharbi RM, Abdel Aziz HA (2018) Mirtazapine. Profiles Drug Subst Excip Relat Methodol 43:209–254

    Article  CAS  PubMed  Google Scholar 

  • Alvarez E, Perez V, Artigas F (2014) Pharmacology and clinical potential of vortioxetine in the treatment of major depressive disorder. Neuropsychiatr Dis Treat 10:1297–1307

    Article  PubMed  PubMed Central  Google Scholar 

  • Amigó J, Díaz A, Pilar-Cuéllar F, Vidal R, Martín A, Compan V, Pazos A, Castro E (2016) The absence of 5-HT4 receptors modulates depression- and anxiety-like responses and influences the response of fluoxetine in olfactory bulbectomised mice: adaptive changes in hippocampal neuroplasticity markers and 5-HT1A autoreceptor. Neuropharmacology 111:47–58

    Article  PubMed  CAS  Google Scholar 

  • Anisman H, Du L, Palkovits M, Faludi G, Kovacs GG, Szontagh-Kishazi P, Merali Z, Poulter MO (2008) Serotonin receptor subtype and p11 mRNA expression in stress-relevant brain regions of suicide and control subjects. J Psychiatry Neurosci 33:131–141

    PubMed  PubMed Central  Google Scholar 

  • Artigas F, Celada P, Laruelle M, Adell A (2001) How does pindolol improve antidepressant action? Trends Pharmacol Sci 22:224–228

    Article  CAS  PubMed  Google Scholar 

  • Banasr M, Duman RS (2008) Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol Psychiatry 64:863–870

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152

    Article  CAS  PubMed  Google Scholar 

  • Benes FM, Todtenkopf MS, Kostoulakos P (2001) GluR5,6,7 subunit immunoreactivity on apical pyramidal cell dendrites in hippocampus of schizophrenics and manic depressives. Hippocampus 11:482–491

    Article  CAS  PubMed  Google Scholar 

  • Beneyto M, Kristiansen LV, Oni-Orisan A, McCullumsmith RE, Meador-Woodruff JH (2007) Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia and mood disorders. Neuropsychopharmacology 32:1888–1902

    Article  CAS  PubMed  Google Scholar 

  • Benjamin S, Doraiswamy PM (2011) Review of the use of mirtazapine in the treatment of depression. Expert Opin Pharmacother 12:1623–1632

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ, Downes CP, Hanley MR (1989) Neural and developmental actions of lithium: a unifying hypothesis. Cell 59:411–419

    Article  CAS  PubMed  Google Scholar 

  • Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ, Graham D, Tsankova NM, Bolanos CA, Rios M, Monteggia LM, Self DW, Nestler EJ (2006) Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311:864–868

    Article  CAS  PubMed  Google Scholar 

  • Bétry C, Pehrson AL, Etiévant A, Ebert B, Sánchez C, Haddjeri N (2013) The rapid recovery of 5-HT cell firing induced by the antidepressant vortioxetine involves 5-HT3 receptor antagonism. Int J Neuropsychopharmacol 16:1115–1127

    Article  PubMed  CAS  Google Scholar 

  • Bijl RV, de Graaf R, Hiripi E, Kessler RC, Kohn R, Offord DR, Ustun TB, Vicente B, Vollebergh WA, Walters EE, Wittchen HU (2003) The prevalence of treated and untreated mental disorders in five countries. Health Aff (Millwood) 22:122–133

    Article  Google Scholar 

  • Blier P, de Montigny C (1994) Current advances and trends in the treatment of depression. Trends Pharmacol Sci 15:220–226

    Article  CAS  PubMed  Google Scholar 

  • Bonaventure P, Schotte A, Cras P, Leysen JE (1997) Autoradiographic mapping of 5-HT1B- and 5-HT1D receptors in human brain using [3H]alniditan, a new radioligand. Recept Channels 5:225–230

    CAS  PubMed  Google Scholar 

  • Borroto-Escuela DO, Narváez M, Ambrogini P, Ferraro L, Brito I, Romero-Fernandez W, Andrade-Talavera Y, Flores-Burgess A, Millon C, Gago B, Narvaez JA, Odagaki Y, Palkovits M, Diaz-Cabiale Z, Fuxe K (2018) Receptor-receptor interactions in multiple 5-HT1A heteroreceptor complexes in raphe-hippocampal 5-HT transmission and their relevance for depression and its treatment. Molecules 23:1341

    Article  PubMed Central  CAS  Google Scholar 

  • Boschert U, Amara DA, Segu L, Hen R (1994) The mouse 5-hydroxytryptamine1B receptor is localized predominantly on axon terminals. Neuroscience 58:167–182

    Article  CAS  PubMed  Google Scholar 

  • Bowley MP, Drevets WC, Ongür D, Price JL (2002) Low glial numbers in the amygdala in major depressive disorder. Biol Psychiatry 52:404–412

    Article  PubMed  Google Scholar 

  • Brennan BP, Hudson JI, Jensen JE, McCarthy J, Roberts JL, Prescot AP, Cohen BM, Pope HG Jr, Renshaw PF, Ongür D (2010) Rapid enhancement of glutamatergic neurotransmission in bipolar depression following treatment with riluzole. Neuropsychopharmacology 35:834–846

    Article  CAS  PubMed  Google Scholar 

  • Brown KM, Tracy DK (2013) Lithium: the pharmacodynamic actions of the amazing ion. Ther Adv Psychopharmacol 3:163–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22:183–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buysse DJ, Angst J, Gamma A, Ajdacic V, Eich D, Rössler W (2008) Prevalence, course, and comorbidity of insomnia and depression in young adults. Sleep 31:473–480

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao X, Li LP, Wang Q, Wu Q, Hu HH, Zhang M, Fang YY, Zhang J, Li SJ, Xiong WC, Yan HC, Gao YB, Liu JH, Li XW, Sun LR, Zeng YN, Zhu XH, Gao TM (2013) Astrocyte-derived ATP modulates depressive-like behaviors. Nat Med 19:773–777

    Article  CAS  PubMed  Google Scholar 

  • Carbone M, Duty S, Rattray M (2012) Riluzole elevates GLT-1 activity and levels in striatal astrocytes. Neurochem Int 60:31–38

    Article  CAS  PubMed  Google Scholar 

  • Cassano GB, Rucci P, Frank E, Fagiolini A, Dell’Osso L, Shear MK, Kupfer DJ (2004) The mood spectrum in unipolar and bipolar disorder: arguments for a unitary approach. Am J Psychiatry 161:1264–1269

    Article  PubMed  Google Scholar 

  • Ceskova E (2016) Current pharmacotherapy of depression – focused on multimodal/multifunctional antidepressants. Expert Opin Pharmacother 17:1835–1837

    Article  PubMed  Google Scholar 

  • Ceskova E, Silhan P (2018) Novel treatment options in depression and psychosis. Neuropsychiatr Dis Treat 14:741–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Hertz L (1996) Inhibition of noradrenaline stimulated increase in [Ca2+]iin cultured astrocytes by chronic treatment with a therapeutically relevant lithium concentration. Brain Res 711:245–248

    Article  CAS  PubMed  Google Scholar 

  • Chen CH, Suckling J, Ooi C, Jacob R, Lupson V, Bullmore ET, Lennox BR (2010) A longitudinal fMRI study of the manic and euthymic states of bipolar disorder. Bipolar Disord 12:344–347

    Article  CAS  PubMed  Google Scholar 

  • Chin WY, Chan KT, Lam CL, Lam TP, Wan EY (2015) Help-seeking intentions and subsequent 12-month mental health service use in Chinese primary care patients with depressive symptoms. BMJ Open 5:e006730

    Article  PubMed  PubMed Central  Google Scholar 

  • Comley RA, van der Aart J, Gulyás B, Garnier M, Iavarone L, Halldin C, Rabiner EA (2015) In vivo occupancy of the 5-HT1A receptor by a novel pan 5-HT1(A/B/D) receptor antagonist, GSK588045, using positron emission tomography. Neuropharmacology 92:44–48

    Article  CAS  PubMed  Google Scholar 

  • Compton WM, Conway KP, Stinson FS, Grant BF (2006) Changes in the prevalence of major depression and comorbid substance use disorders in the United States between 1991–1992 and 2001–2002. Am J Psychiatry 163:2141–2147

    Article  PubMed  Google Scholar 

  • Costall B, Domeney AM, Gerrard PA, Kelly ME, Naylor RJ, Tyers MB (1987) Effects of the 5-HT3 receptor antagonists GR38032F, CS 215-930 and BRL 43694 in tests for anxiolytic activity. Br J Pharmacol 91:195P

    Google Scholar 

  • Cotter D, Mackay D, Landau S, Kerwin R, Everall I (2001) Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry 58:545–553

    Article  CAS  PubMed  Google Scholar 

  • Cotter D, Mackay D, Chana G, Beasley C, Landau S, Everall IP (2002) Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb Cortex 12:386–394

    Article  PubMed  Google Scholar 

  • Croom KF, Perry CM, Plosker GL (2009) Mirtazapine: a review of its use in major depression and other psychiatric disorders. CNS Drugs 23:427–452

    Article  CAS  PubMed  Google Scholar 

  • Czéh B, Simon M, Schmelting B, Hiemke C, Fuchs E (2006) Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment. Neuropsychopharmacology 31:1616–1626

    Article  PubMed  CAS  Google Scholar 

  • Daniele S, Zappelli E, Martini C (2015) Trazodone regulates neurotrophic/growth factors, mitogen-activated protein kinases and lactate release in human primary astrocytes. J Neuroinflammation 12:225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dawson LA, Hughes ZA, Starr KR, Storey JD, Bettelini L, Bacchi F, Dawson LA, Hughes ZA, Starr KR, Storey JD, Bettelini L, Bacchi F, Arban R, Poffe A, Melotto S, Hagan JJ, Price GW (2006) Characterisation of the selective 5-HT1B receptor antagonist SB-616234-A (1-[6-(cis-3,5-dimethylpiperazin-1-yl)-2,3-dihydro-5-methoxyindol-1-yl]-1-[2′-methyl-4′-(5-methyl-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methanone hydrochloride): in vivo neurochemical and behavioural evidence of anxiolytic/antidepressant activity. Neuropharmacology 50:975–983

    Article  CAS  PubMed  Google Scholar 

  • de la Salle S, Choueiry J, Shah D, Bowers H, McIntosh J, Ilivitsky V, Knott V (2016) Effects of ketamine on resting-state EEG activity and their relationship to perceptual/dissociative symptoms in healthy humans. Front Pharmacol 7:348

    PubMed  PubMed Central  Google Scholar 

  • Dekeyne A, Mannoury la Cour C, Gobert A, Brocco M, Lejeune F, Serres F, Sharp T, Daszuta A, Soumier A, Papp M, Rivet JM, Flik G, Cremers TI, Muller O, Lavielle G, Millan MJ (2008) S32006, a novel 5-HT2C receptor antagonist displaying broad-based antidepressant and anxiolytic properties in rodent models. Psychopharmacology 199:549–568

    Article  CAS  PubMed  Google Scholar 

  • Dekeyne A, Brocco M, Loiseau F, Gobert A, Rivet JM, Di Cara B, Cremers TI, Flik G, Fone KC, Watson DJ, Papp M, Sharp T, Serres F, Cespuglio R, Olivier B, Chan JS, Lavielle G, Millan MJ (2012) S32212, a novel serotonin type 2C receptor inverse agonist/α2-adrenoceptor antagonist and potential antidepressant: II. A behavioral, neurochemical, and electrophysiological characterization. J Pharmacol Exp Ther 340:765–780

    Article  CAS  PubMed  Google Scholar 

  • Demyttenaere K, Bruffaerts R, Posada-Villa J, Gasquet I, Kovess V, Lepine JP, Angermeyer MC, Bernert S, de Girolamo G, Morosini P, Polidori G, Kikkawa T, Kawakami N, Ono Y, Takeshima T, Uda H, Karam EG, Fayyad JA, Karam AN, Mneimneh ZN, Medina-Mora ME, Borges G, Lara C, de Graaf R, Ormel J, Gureje O, Shen Y, Huang Y, Zhang M, Alonso J, Haro JM, Vilagut G, Bromet EJ, Gluzman S, Webb C, Kessler RC, Merikangas KR, Anthony JC, Von Korff MR, Wang PS, Brugha TS, Aguilar-Gaxiola S, Lee S, Heeringa S, Pennell BE, Zaslavsky AM, Ustun TB, Chatterji S, WHO World Mental Health Survey Consortium (2004) Prevalence, severity, and unmet need for treatment of mental disorders in the World Health Organization World Mental Health Surveys. JAMA 291:2581–2590

    Article  PubMed  Google Scholar 

  • Diaz SL, Narboux-Nême N, Boutourlinsky K, Doly S, Maroteaux L (2016) Mice lacking the serotonin 5-HT2B receptor as an animal model of resistance to selective serotonin reuptake inhibitors antidepressants. Eur Neuropsychopharmacol 26:265–279

    Article  CAS  PubMed  Google Scholar 

  • Di Matteo V, Di Giovanni G, Pierucci M, Esposito E (2008) Serotonin control of central dopaminergic function: focus on in vivo microdialysis studies. Prog Brain Res 172:7–44

    Article  PubMed  CAS  Google Scholar 

  • Ding F, O’Donnell J, Thrane AS, Zeppenfeld D, Kang H, Xie L, Wang F, Nedergaard M (2013) α1-adrenergic receptors mediate coordinated Ca2+ signaling of cortical astrocytes in awake, behaving mice. Cell Calcium 54:387–394

    Article  CAS  PubMed  Google Scholar 

  • Dong L, Li B, Verkhratsky A, Peng L (2015) Cell type-specific in vivo expression of genes encoding signalling molecules in the brain in response to chronic mild stress and chronic treatment with fluoxetine. Psychopharmacology 232:2827–2835

    Article  CAS  PubMed  Google Scholar 

  • Dracheva S, Chin B, Haroutunian V (2008) Altered serotonin2C receptor RNA splicing in suicide: association with editing. Neuroreport 19:379–382

    Article  CAS  PubMed  Google Scholar 

  • Dremencov E, Newman ME, Kinor N, Blatman-Jan G, Schindler CJ, Overstreet DH, Yadid G (2005) Hyperfunctionality of serotonin-2C receptor-mediated inhibition of accumbal dopamine release in an animal model of depression is reversed by antidepressant treatment. Neuropharmacology 48:34–42

    Article  CAS  PubMed  Google Scholar 

  • Dremencov E, El Mansari M, Blier P (2007) Noradrenergic augmentation of escitalopram response by risperidone: electrophysiologic studies in the rat brain. Biol Psychiatry 61:671–678

    Article  CAS  PubMed  Google Scholar 

  • Dumuis A, Bouhelal R, Sebben M, Cory R, Bockaert J (1988) A nonclassical 5-hydroxytryptamine receptor positively coupled with adenylate cyclase in the central nervous system. Mol Pharmacol 34:880–887

    CAS  PubMed  Google Scholar 

  • Duxon MS, Flanigan TP, Reavley AC, Baxter GS, Blackburn TP, Fone KC (1997) Evidence for expression of the 5-hydroxytryptamine-2B receptor protein in the rat central nervous system. Neuroscience 76:323–329. Editing. Neuroscientist. 9:237–42.

    Article  CAS  PubMed  Google Scholar 

  • Eastwood SL, Harrison PJ (2010) Markers of glutamate synaptic transmission and plasticity are increased in the anterior cingulate cortex in bipolar disorder. Biol Psychiatry 67:1010–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fagni L, Dumuis A, Sebben M, Bockaert J (1992) The 5-HT4 receptor subtype inhibits K+ current in colliculi neurones via activation of a cyclic AMP-dependent protein kinase. Br J Pharmacol 105:973–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari AJ, Somerville AJ, Baxter AJ, Norman R, Patten SB, Vos T, Whiteford HA (2013) Global variation in the prevalence and incidence of major depressive disorder: a systematic review of the epidemiological literature. Psychol Med 43:471–481

    Article  CAS  PubMed  Google Scholar 

  • Fröjd SA, Nissinen ES, Pelkonen MU, Marttunen MJ, Koivisto AM, Kaltiala-Heino R (2008) Depression and school performance in middle adolescent boys and girls. J Adolesc 31:485–498

    Article  PubMed  Google Scholar 

  • Fu H, Li B, Hertz L, Peng L (2012) Contributions in astrocytes of SMIT1/2 and HMIT to myo-inositol uptake at different concentrations and pH. Neurochem Int 61:187–194

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Wu R, Davis C, Li M (2018) Activation of 5-HT2A receptor disrupts rat maternal behavior. Neuropharmacology 128:96–105

    Article  CAS  PubMed  Google Scholar 

  • Gu L, Xie J, Long J, Chen Q, Chen Q, Pan R, Yan Y, Wu G, Liang B, Tan J, Xie X, Wei B, Su L (2013) Epidemiology of major depressive disorder in mainland China: a systematic review. PLoS One 8:e65356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guilloux JP, Mendez-David I, Pehrson A, Guiard BP, Repérant C, Orvoën S, Gardier AM, Hen R, Ebert B, Miller S, Sanchez C, David DJ (2013) Antidepressant and anxiolytic potential of the multimodal antidepressant vortioxetine (Lu AA21004) assessed by behavioural and neurogenesis outcomes in mice. Neuropharmacology 73:147–159

    Article  CAS  PubMed  Google Scholar 

  • Gurevich I, Tamir H, Arango V, Dwork AJ, Mann JJ, Schmauss C (2002) Altered editing of serotonin 2C receptor pre-mRNA in the prefrontal cortex of depressed suicide victims. Neuron 34:349–356

    Article  CAS  PubMed  Google Scholar 

  • Hagan CE, McDevitt RA, Liu Y, Furay AR, Neumaier JF (2012) 5-HT(1B) autoreceptor regulation of serotonin transporter activity in synaptosomes. Synapse 66:1024–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallcher LM, Sherman WR (1980) The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J Biol Chem 255:10896–10901

    Article  CAS  PubMed  Google Scholar 

  • Hamidi M, Drevets WC, Price JL (2004) Glial reduction in amygdala in major depressive disorder is due to oligodendrocytes. Biol Psychiatry 55:563–569

    Article  PubMed  Google Scholar 

  • Hannon J, Hoyer D (2008) Molecular biology of 5-HT receptors. Behav Brain Res 195:198–213

    Article  CAS  PubMed  Google Scholar 

  • Harvey ML, Swallows CL, Cooper MA (2012) A double dissociation in the effects of 5-HT2A and 5-HT2C receptors on the acquisition and expression of conditioned defeat in Syrian hamsters. Behav Neurosci 126:530–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hercher C, Turecki G, Mechawar N (2009) Through the looking glass: examining neuroanatomical evidence for cellular alterations in major depression. J Psychiatr Res 43:947–961

    Article  PubMed  Google Scholar 

  • Hertz L, Lovatt D, Goldman SA, Nedergaard M (2010) Adrenoceptors in brain: cellular gene expression and effects on astrocytic metabolism and [Ca(2+)]i. Neurochem Int 57:411–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hertz L, Li B, Song D, Ren J, Dong L, Chen Y, Peng L (2012) Astrocytes as a 5-HT2B-mediated SERT-independent SSRI target, slowly altering depression-associated genes and function. Curr Signal Transduction Ther 7:65–80

    Article  CAS  Google Scholar 

  • Hertz L, Song D, Li B, Du T, Xu J, Gu L, Chen Y, Peng L (2014) Signal transduction in astrocytes during chronic or acute treatment with drugs (SSRIs, antibipolar drugs, GABA-ergic drugs, and benzodiazepines) ameliorating mood disorders. J Signal Transduct 2014:593934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hertz L, Rothman DL, Li B, Peng L (2015) Chronic SSRI stimulation of astrocytic 5-HT2B receptors change multiple gene expressions/editings and metabolism of glutamate, glucose and glycogen: a potential paradigm shift. Front Behav Neurosci 9:25

    PubMed  PubMed Central  Google Scholar 

  • Hirst WD, Price GW, Rattray M, Wilkin GP (1997) Identification of 5-hydroxytryptamine receptors positively coupled to adenylyl cyclase in rat cultured astrocytes. Br J Pharmacol 120:509–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirst WD, Cheung NY, Rattray M, Price GW, Wilkin GP (1998) Cultured astrocytes express messenger RNA for multiple serotonin receptor subtypes, without functional coupling of 5-HT1 receptor subtypes to adenylyl cyclase. Brain Res Mol Brain Res 61:90–99

    Article  CAS  PubMed  Google Scholar 

  • Hisaoka-Nakashima K, Kajitani N, Kaneko M, Shigetou T, Kasai M, Matsumoto C, Yokoe T, Azuma H, Takebayashi M, Morioka N, Nakata Y (2016) Amitriptyline induces brain-derived neurotrophic factor (BDNF) mRNA expression through ERK-dependent modulation of multiple BDNF mRNA variants in primary cultured rat cortical astrocytes and microglia. Brain Res 1634:57–1667

    Article  CAS  PubMed  Google Scholar 

  • Hjorth S, Tao R (1991) The putative 5-HT1B receptor agonist CP-93,129 suppresses rat hippocampal 5-HT release in vivo: comparison with RU 24969. Eur J Pharmacol 209:249–252

    Article  CAS  PubMed  Google Scholar 

  • Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71:533–554

    Article  CAS  PubMed  Google Scholar 

  • Huang MH, Cheng CM, Huang KL, Hsu JW, Bai YM, Su TP, Li CT, Tsai SJ, Lin WC, Chen TJ, Chen MH (2019) Bipolar disorder and risk of Parkinson disease: a nationwide longitudinal study. Neurology 92:e2735–e2742

    Article  PubMed  Google Scholar 

  • Hudzik TJ, Yanek M, Porrey T, Evenden J, Paronis C, Mastrangelo M, Ryan C, Ross S, Stenfors C (2003) Behavioral pharmacology of AR-A000002, a novel, selective 5-hydroxytryptamine(1B) antagonist. J Pharmacol Exp Ther 304:1072–1084

    Article  CAS  PubMed  Google Scholar 

  • Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4:147ra111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Inhorn RC, Majerus PW (1987) Inositol polyphosphate 1-phosphatase from calf brain. Purification and inhibition by Li+, Ca2+, and Mn2+. J Biol Chem 262:15946–15952

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto K, Kato T (2003) RNA editing of serotonin2C receptor in human postmortem brains of major mental disorders. Neurosci Lett 346:169–172

    Article  CAS  PubMed  Google Scholar 

  • Jeltsch-David H, Koenig J, Cassel JC (2010) Modulation of cholinergic functions by serotonin and possible implications in memory: general data and focus on 5-HT(1A) receptors of the medial septum. Behav Brain Res 195:86–97

    Article  CAS  Google Scholar 

  • Jenck F, Moreau JL, Mutel V, Martin JR, Haefely WE (1993) Evidence for a role of 5-HT1C receptors in the antiserotonergic properties of some antidepressant drugs. Eur J Pharmacol 231:223–229

    Article  CAS  PubMed  Google Scholar 

  • Johnson J Jr, Pajarillo EAB, Taka E, Reams R, Son DS, Aschner M, Lee E (2018) Valproate and sodium butyrate attenuate manganese-decreased locomotor activity and astrocytic glutamate transporters expression in mice. Neurotoxicology 64:230–239

    Article  CAS  PubMed  Google Scholar 

  • Johnson BA, Roache JD, Ait-Daoud N, Zanca NA, Velazquez M (2002) Ondansetron reduces the craving of biologically predisposed alcoholics. Psychopharmacology 160:408–413

    Article  CAS  PubMed  Google Scholar 

  • Johnson BA, Roache JD, Ait-Daoud N, Javors MA, Harrison JM, Elkashef A, Mojsiak J, Li SH, Bloch DA (2006) A preliminary randomized, double-blind, placebo-controlled study of the safety and efficacy of ondansetron in the treatment of cocaine dependence. Drug Alcohol Depend 84:256–263

    Article  CAS  PubMed  Google Scholar 

  • Kajitani N, Hisaoka-Nakashima K, Morioka N, Okada-Tsuchioka M, Kaneko M, Kasai M, Shibasaki C, Nakata Y, Takebayashi M (2012) Antidepressant acts on astrocytes leading to an increase in the expression of neurotrophic/growth factors: differential regulation of FGF-2 by noradrenaline. PLoS One 7:e51197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karnovsky AM, Gotow LF, McKinley DD, Piechan JL, Ruble CL, Mills CJ, Schellin KA, Slightom JL, Fitzgerald LR, Benjamin CW, Roberds SL (2003) A cluster of novel serotonin receptor 3-like genes on human chromosome 3. Gene 319:137–148

    Article  CAS  PubMed  Google Scholar 

  • Kendler KS, Gardner CO, Fiske A, Gatz M (2009) Major depression and coronary artery disease in the Swedish twin registry: phenotypic, genetic, and environmental sources of comorbidity. Arch Gen Psychiatry 66:857–863

    Article  PubMed  PubMed Central  Google Scholar 

  • Kennett GA, Bailey F, Piper DC, Blackburn TP (1995) Effect of SB 200646A, a 5-HT2C/5-HT2B receptor antagonist, in two conflict models of anxiety. Psychopharmacology 118:178–182

    Article  CAS  PubMed  Google Scholar 

  • Kennett GA, Bright F, Trail B, Baxter GS, Blackburn TP (1996) Effects of the 5-HT2B receptor agonist, BW 723C86, on three rat models of anxiety. Br J Pharmacol 117:1443–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennett GA, Trail B, Bright F (1998) Anxiolytic-like actions of BW 723C86 in the rat Vogel conflict test are 5-HT2B receptor mediated. Neuropharmacology 37:1603–1610

    Article  CAS  PubMed  Google Scholar 

  • Kimura Y, Naitou Y, Wanibuchi F, Yamaguchi T (2008) 5-HT(2C) receptor activation is a common mechanism on proerectile effects of apomorphine, oxytocin and melanotan-II in rats. Eur J Pharmacol 589:157–162

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita M, Hirayama Y, Fujishita K, Shibata K, Shinozaki Y, Shigetomi E, Takeda A, Le HPN, Hayashi H, Hiasa M, Moriyama Y, Ikenaka K, Tanaka KF, Koizumi S (2018) Anti-depressant fluoxetine reveals its therapeutic effect via astrocytes. EBioMedicine 32:72–83

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirischuk S, Tuschick S, Verkhratsky A, Kettenmann H (1996) Calcium signalling in mouse Bergmann glial cells mediated by alpha1-adrenoreceptors and H1 histamine receptors. Eur J Neurosci 8:1198–1208

    Article  CAS  PubMed  Google Scholar 

  • Kleinman A (2004) Culture and depression. N Engl J Med 351:951–953

    Article  CAS  PubMed  Google Scholar 

  • Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D, Xie L, Kang H, Xu Q, Liew JA, Plog BA, Ding F, Deane R, Nedergaard M (2014) Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 76:845–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kupfer DJ, Frank E, Phillips ML (2012) Major depressive disorder: new clinical, neurobiological, and treatment perspectives. Lancet 379:1045–1055

    Article  PubMed  Google Scholar 

  • Kursar JD, Nelson DL, Wainscott DB, Baez M (1994) Molecular cloning, functional expression, and mRNA tissue distribution of the human 5-hydroxytryptamine2B receptor. Mol Pharmacol 46:227–234

    CAS  PubMed  Google Scholar 

  • Kutzer T, Dick M, Scudamore T, Wiener M, Schwartz T (2020) Antidepressant efficacy and side effect burden: an updated guide for clinicians. Drugs Context 9:2020-2-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee TK, Park JH, Ahn JH, Shin MC, Cho JH, Bae EJ, Kim YM, Won MH, Lee CH (2016) Pretreated duloxetine protects hippocampal CA1 pyramidal neurons from ischemia-reperfusion injury through decreases of glial activation and oxidative stress. J Neurol Sci 370:229–236

    Article  CAS  PubMed  Google Scholar 

  • Leenders AG, Sheng ZH (2005) Modulation of neurotransmitter release by the second messenger-activated protein kinases: implications for presynaptic plasticity. Pharmacol Ther 105:69–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Gu L, Zhang H, Huang J, Chen Y, Hertz L, Peng L (2007) Up-regulation of cPLA(2) gene expression in astrocytes by all three conventional anti-bipolar drugs is drug-specific and enzyme-specific. Psychopharmacology 194:333–345

    Article  CAS  PubMed  Google Scholar 

  • Li B, Zhang S, Zhang H, Nu W, Cai L, Hertz L, Peng L (2008) Fluoxetine-mediated 5-HT2B receptor stimulation in astrocytes causes EGF receptor transactivation and ERK phosphorylation. Psychopharmacology 201:443–458

    Article  CAS  PubMed  Google Scholar 

  • Li B, Zhang S, Li M, Hertz L, Peng L (2009a) Chronic treatment of astrocytes with therapeutically relevant fluoxetine concentrations enhances cPLA2 expression secondary to 5-HT2B-induced, transactivation-mediated ERK1/2 phosphorylation. Psychopharmacology (Berlin) 207:1–12

    Article  CAS  Google Scholar 

  • Li B, Zhang S, Li M, Zhang H, Hertz L, Peng L (2009b) Down-regulation of GluK2 kainate receptor expression by chronic treatment with mood-stabilizing anti-convulsants or lithium in cultured astrocytes and brain, but not in neurons. Neuropharmacology 57:375–385

    Article  CAS  PubMed  Google Scholar 

  • Li B, Zhang S, Li M, Hertz L, Peng L (2010) Serotonin increases ERK1/2 phosphorylation in astrocytes by stimulation of 5-HT2B and 5-HT2C receptors. Neurochem Int 57:432–439

    Article  CAS  PubMed  Google Scholar 

  • Li B, Zhang S, Zhang H, Hertz L, Peng L (2011) Fluoxetine affects GluK2 editing, glutamate-evoked Ca(2+) influx and extracellular signal-regulated kinase phosphorylation in mouse astrocytes. J Psychiatry Neurosci 36:322–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Dong L, Wang B, Cai L, Jiang N, Peng L (2012) Cell type-specific gene expression and editing responses to chronic fluoxetine treatment in the in vivo mouse brain and their relevance for stress-induced anhedonia. Neurochem Res 37:2480–2495

    Article  CAS  PubMed  Google Scholar 

  • Li B, Hertz L, Peng L (2013) Cell-specific mRNA alterations in Na+, K+-ATPase α and β isoforms and FXYD in mice treated chronically with carbamazepine, an anti-bipolar drug. Neurochem Res 38:834–841

    Article  CAS  PubMed  Google Scholar 

  • Li B, Jia S, Yue T, Yang L, Huang C, Verkhratsky A, Peng L (2017) Biphasic regulation of caveolin-1 gene expression by fluoxetine in astrocytes: opposite effects of PI3K/AKT and MAPK/ERK signaling pathways on c-fos. Front Cell Neurosci 11:335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li B, Ren J, Yang L, Li X, Sun G, Xia M (2018) Lithium inhibits GSK3β activity via two different signaling pathways in neurons after spinal cord injury. Neurochem Res 43:848–856

    Article  CAS  PubMed  Google Scholar 

  • Li X, Liang S, Li Z, Li S, Xia M, Verkhratsky A, Li B (2019) Leptin increases expression of 5-HT2B receptors in astrocytes thus enhancing action of fluoxetine on the depressive behavior induced by sleep deprivation. Front Psych 9:734

    Article  Google Scholar 

  • Li Z, Lu Y, Liang S, Li S, Chen B, Zhang M, Xia M, Guan D, Verkhratsky A, Li B (2020) Fluoxetine improves behavioural deficits induced by chronic alcohol treatment by alleviating RNA editing of 5-HT2C receptors. Neurochem Int 134:104689

    Article  CAS  PubMed  Google Scholar 

  • Liang S, Lu Y, Li Z, Li S, Chen B, Zhang M, Chen B, Ji M, Gong W, Xia M, Verkhratsky A, Wu X, Li B (2020) Iron aggravates the depressive phenotype of stressed mice by compromising the glymphatic system. Neurosci Bull 36:1542–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu KJ, Lee YL, Yang YY, Shih NY, Ho CC, Wu YC, Huang TS, Huang MC, Liu HC, Shen WW, Leu SJ (2011) Modulation of the development of human monocyte-derived dendritic cells by lithium chloride. J Cell Physiol 226:424–433

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Song D, Yan E, Verkhratsky A, Peng L (2015) Chronic treatment with anti-bipolar drugs suppresses glutamate release from astroglial cultures. Amino Acids 47:1045–1051

    Article  CAS  PubMed  Google Scholar 

  • Liu XJ, Zhou Y, Dong L, Guo Q, Chen WC, Psychiatryet DO (2017) A survey of major depression among elderly population in Wuhan (in Chinese). Chin Ment Health J 11:851–856

    Google Scholar 

  • López-Gil X, Artigas F, Adell A (2008) Unraveling monoamine receptors involved in the action of typical and atypical antipsychotics on glutamatergic and serotonergic transmission in prefrontal cortex. Curr Pharm Des 16:502–515

    Article  Google Scholar 

  • López-Muñoz F, Alamo C (2009) Monoaminergic neurotransmission: the history of the discovery of antidepressants from 1950s until today. Curr Pharm Des 15:1563–1586

    Article  PubMed  Google Scholar 

  • Lucas G, Rymar VV, Du J, Mnie-Filali O, Bisgaard C, Manta S, Lambas-Senas L, Wiborg O, Haddjeri N, Piñeyro G, Sadikot AF, Debonnel G (2007) Serotonin(4) (5-HT(4)) receptor agonists are putative antidepressants with a rapid onset of action. Neuron 55:712–725

    Article  CAS  PubMed  Google Scholar 

  • Lynch FL, Clarke GN (2006) Estimating the economic burden of depression in children and adolescents. Am J Prev Med 31:S143–S151

    Article  PubMed  Google Scholar 

  • Madsen K, Torstensen E, Holst KK, Haahr ME, Knorr U, Frokjaer VG, Brandt-Larsen M, Iversen P, Fisher PM, Knudsen GM (2014) Familial risk for major depression is associated with lower striatal 5-HT4 receptor binding. Int J Neuropsychopharmacol 18:pyu034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marathe SV, D’almeida PL, Virmani G, Bathini P, Alberi L (2018) Effects of monoamines and antidepressants on astrocyte physiology: implications for monoamine hypothesis of depression. J Exp Neurosci 12:1179069518789149

    Article  PubMed  PubMed Central  Google Scholar 

  • Marek GJ, Martin-Ruiz R, Abo A, Artigas F (2005) The selective 5-HT2A receptor antagonist M100907 enhances antidepressant-like behavioral effects of the SSRI fluoxetine. Neuropsychopharmacology 30:2205–2215

    Article  CAS  PubMed  Google Scholar 

  • Martin KF, Hannon S, Phillips I, Heal DJ (1992) Opposing roles for 5-HT1B and 5-HT3 receptors in the control of 5-HT release in rat hippocampus in vivo. Br J Pharmacol 106:139–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin CB, Ramond F, Farrington DT, Aguiar AS Jr, Chevarin C, Berthiau AS, Caussanel S, Lanfumey L, Herrick-Davis K, Hamon M, Madjar JJ, Mongeau R (2013) RNA splicing and editing modulation of 5-HT(2C) receptor function: relevance to anxiety and aggression in VGV mice. Mol Psychiatry 18:656–665

    Article  CAS  PubMed  Google Scholar 

  • Masson J, Emerit MB, Hamon M, Darmon M (2012) Serotonergic signaling: multiple effectors and pleiotropic effects. WIREs Membr Transport Signaling 1:685–713

    Article  CAS  Google Scholar 

  • Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3:e442

    Article  PubMed  PubMed Central  Google Scholar 

  • Matzen L, van Amsterdam C, Rautenberg W, Greiner HE, Harting J, Seyfried CA, Böttcher H (2000) 5-HT reuptake inhibitors with 5-HT(1B/1D) antagonistic activity: a new approach toward efficient antidepressants. J Med Chem 43:1149–1157

    Article  CAS  PubMed  Google Scholar 

  • McAlear SD, Bevensee MO (2006) A cysteine-scanning mutagenesis study of transmembrane domain 8 of the electrogenic sodium/bicarbonate cotransporter NBCe1. J Biol Chem 281:32417–32427

    Article  CAS  PubMed  Google Scholar 

  • Meltzer-Brody S, Colquhoun H, Riesenberg R, Epperson CN, Deligiannidis KM, Rubinow DR, Li H, Sankoh AJ, Clemson C, Schacterle A, Jonas J, Kanes S (2018) Brexanolone injection in post-partum depression: two multicentre, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet 392:1058–1070

    Article  CAS  PubMed  Google Scholar 

  • Merzak A, Koochekpour S, Fillion MP, Fillion G, Pilkington GJ (1996) Expression of serotonin receptors in human fetal astrocytes and glioma cell lines: a possible role in glioma cell proliferation and migration. Brain Res Mol Brain Res 41:1–7

    Article  CAS  PubMed  Google Scholar 

  • Meuser T, Pietruck C, Gabriel A, Xie GX, Lim KJ, Pierce Palmer P (2002) 5-HT7 receptors are involved in mediating 5-HT-induced activation of rat primary afferent neurons. Life Sci 71:2279–2289

    Article  CAS  PubMed  Google Scholar 

  • Michael N, Erfurth A, Ohrmann P, Gössling M, Arolt V, Heindel W, Pfleiderer B (2003) Acute mania is accompanied by elevated glutamate/glutamine levels within the left dorsolateral prefrontal cortex. Psychopharmacology 168:344–346

    Article  CAS  PubMed  Google Scholar 

  • Middlemiss DN, Hutson PH (1990) The 5-HT1B receptors. Ann N Y Acad Sci 600:132–147; discussion 347–48.

    Article  CAS  PubMed  Google Scholar 

  • Milak MS, Pantazatos S, Rashid R, Zanderigo F, DeLorenzo C, Hesselgrave N, Ogden RT, Oquendo MA, Mulhern ST, Miller JM, Burke AK, Parsey RV, Mann JJ (2018) Higher 5-HT1A autoreceptor binding as an endophenotype for major depressive disorder identified in high risk offspring – a pilot study. Psychiatry Res Neuroimaging 276:15–23

    Article  PubMed  PubMed Central  Google Scholar 

  • Milaneschi Y, Lamers F, Bot M, Drent ML, Penninx BW (2017) Leptin dysregulation is specifically associated with major depression with atypical features: evidence for a mechanism connecting obesity and depression. Biol Psychiatry 81(9):807–814

    Article  CAS  PubMed  Google Scholar 

  • Millan MJ (2005) Serotonin 5-HT2C receptors as a target for the treatment of depressive and anxious states: focus on novel therapeutic strategies. Therapie 60:441–460

    Article  PubMed  Google Scholar 

  • Mnie-Filali O, Faure C, Lambás-Señas L, El Mansari M, Belblidia H, Gondard E, Etiévant A, Scarna H, Didier A, Berod A, Blier P, Haddjeri N (2011) Pharmacological blockade of 5-HT7 receptors as a putative fast acting antidepressant strategy. Neuropsychopharmacology 36:1275–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montañez S, Munn JL, Owens WA, Horton RE, Daws LC (2013) 5-HT1B receptor modulation of the serotonin transporter in vivo: studies using KO mice. Neurochem Int 73:127–131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moreau JL, Jenck F, Martin JR, Perrin S, Haefely WE (1993) Effects of repeated mild stress and two antidepressant treatments on the behavioral response to 5HT1C receptor activation in rats. Psychopharmacology 110:140–144

    Article  CAS  PubMed  Google Scholar 

  • Moret C, Briley M (2000) The possible role of 5-HT(1B/D) receptors in psychiatric disorders and their potential as a target for therapy. Eur J Pharmacol 404:1–12

    Article  CAS  PubMed  Google Scholar 

  • Mork A, Pehrson A, Brennum LT, Nielsen SM, Zhong H, Lassen AB, Miller S, Westrich L, Boyle NJ, Sánchez C, Fischer CW, Liebenberg N, Wegener G, Bundgaard C, Hogg S, Bang-Andersen B, Stensbøl TB (2012) Pharmacological effects of Lu AA21004: a novel multimodal compound for the treatment of major depressive disorder. J Pharmacol Exp Ther 340:666–675

    Article  CAS  PubMed  Google Scholar 

  • Murrough JW, Neumeister A (2011) The serotonin 1B receptor: a new target for depression therapeutics? Biol Psychiatry 69:714–715

    Article  PubMed  Google Scholar 

  • Murrough JW, Henry S, Hu J, Gallezot JD, Planeta-Wilson B, Neumaier JF, Neumeister A (2011) Reduced ventral striatal/ventral pallidal serotonin1B receptor binding potential in major depressive disorder. Psychopharmacology 213:547–553

    Article  CAS  PubMed  Google Scholar 

  • Nagao K, Kishi T, Moriwaki M, Fujita K, Hirano S, Yamanouchi Y, Funahashi T, Iwata N (2013) Comparative clinical profile of mirtazapine and duloxetine in practical clinical settings in Japan: a 4-week open-label, parallel-group study of major depressive disorder. Neuropsychiatr Dis Treat 9:781–786

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa Y, Ishima T, Takashima T (1998) The 5-HT3 receptor agonist attenuates the action of antidepressants in the forced swim test in rats. Brain Res 786:189–193

    Article  CAS  PubMed  Google Scholar 

  • Naumenko VS, Popova NK, Lacivita E, Leopoldo M, Ponimaskin EG (2014) Interplay between serotonin 5-HT1A and 5-HT7 receptors in depressive disorders. CNS Neurosci Ther 20:582–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nedergaard M, Goldman SA (2020) Glymphatic failure as a final common pathway to dementia. Science 370:50–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemeroff CB, Schatzberg AF, Goldstein DJ, Detke MJ, Mallinckrodt C, Lu Y, Tran PV (2002) Duloxetine for the treatment of major depressive disorder. Psychopharmacol Bull 36:106–132

    PubMed  Google Scholar 

  • Nevitt SJ, Sudell M, Tudur Smith C, Marson AG (2019) Topiramate versus carbamazepine monotherapy for epilepsy: an individual participant data review. Cochrane Database Syst Rev 6:CD012065

    PubMed  Google Scholar 

  • Ni YG, Miledi R (1997) Blockage of 5HT2C serotonin receptors by fluoxetine (Prozac). Proc Natl Acad Sci U S A 94:2036–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niesler B, Walstab J, Combrink S, Möller D, Kapeller J, Rietdorf J, Bönisch H, Göthert M, Rappold G, Brüss M (2007) Characterization of the novel human serotonin receptor subunits 5-HT3C,5-HT3D, and 5-HT3E. Mol Pharmacol 72:8–17

    Article  CAS  PubMed  Google Scholar 

  • Niswender CM, Herrick-Davis K, Dilley GE, Meltzer HY, Overholser JC, Stockmeier CA, Emeson RB, Sanders-Bush E (2001) RNA editing of the human serotonin 5-HT2C receptor. Alterations in suicide and implications for serotonergic pharmacotherapy. Neuropsychopharmacology 24:478–491

    Article  CAS  PubMed  Google Scholar 

  • Nutt DJ (2002) The neuropharmacology of serotonin and noradrenaline in depression. Int Clin Psychopharmacol 17(Suppl 1):S1–S12

    Article  PubMed  Google Scholar 

  • Oba A, Nakagawasai O, Onogi H, Nemoto W, Yaoita F, Arai Y, Tan-No K, Tadano T (2013) Chronic fluvoxamine treatment changes 5-HT(2A/2C) receptor-mediated behavior in olfactory bulbectomized mice. Life Sci 92:119–124

    Article  CAS  PubMed  Google Scholar 

  • Oberheim NA, Takano T, Han X, He W, Lin JH, Wang F, Xu Q, Wyatt JD, Pilcher W, Ojemann JG, Ransom BR, Goldman SA, Nedergaard M (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29:3276–3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olfson M, Blanco C, Marcus SC (2016) Treatment of adult depression in the United States. JAMA Intern Med 176:1482–1491

    Article  PubMed  Google Scholar 

  • Ongür D, Drevets WC, Price JL (1998) Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci U S A 95:13290–13295

    Article  PubMed  PubMed Central  Google Scholar 

  • Ongür D, Jensen JE, Prescot AP, Stork C, Lundy M, Cohen BM, Renshaw PF (2008) Abnormal glutamatergic neurotransmission and neuronal-glial interactions in acute mania. Biol Psychiatry 64:718–726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Opal MD, Klenotich SC, Morais M, Bessa J, Winkle J, Doukas D, Kay LJ, Sousa N, Dulawa SM (2013) Serotonin 2C receptor antagonists induce fast-onset antidepressant effects. Mol Psychiatry 19:1106–1114

    Article  PubMed  CAS  Google Scholar 

  • Orgeta V, Tabet N, Nilforooshan R, Howard R (2017) Efficacy of antidepressants for depression in Alzheimer’s disease: systematic review and meta-analysis. J Alzheimers Dis 58:725–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otte C, Gold SM, Penninx BW, Pariante CM, Etkin A, Fava M, Mohr DC, Schatzberg AF (2016) Major depressive disorder. Nat Rev Dis Primers 2:16065

    Article  PubMed  Google Scholar 

  • Pandey GN, Dwivedi Y, Ren X, Rizavi HS, Faludi G, Sarosi A, Palkovits M (2006) Regional distribution and relative abundance of serotonin(2c) receptors in human brain: effect of suicide. Neurochem Res 31:167–176

    Article  CAS  PubMed  Google Scholar 

  • Patel JG, Bartoszyk GD, Edwards E, Ashby CR Jr (2004) The highly selective 5-hydroxytryptamine (5-HT)2A receptor antagonist, EMD 281014, significantly increases swimming and decreases immobility in male congenital learned helpless rats in the forced swim test. Synapse 52:73–75

    Article  CAS  PubMed  Google Scholar 

  • Pekny M, Pekna M, Messing A, Steinhäuser C, Lee JM, Parpura V, Hol EM, Sofroniew MV, Verkhratsky A (2016) Astrocytes: a central element in neurological diseases. Acta Neuropathol 131:323–345

    Article  CAS  PubMed  Google Scholar 

  • Peng L, Gu L, Li B, Hertz L (2014) Fluoxetine and all other SSRIs are 5-HT2B agonists – importance for their therapeutic effects. Curr Neuropharmacol 12:365–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng L, Verkhratsky A, Gu L, Li B (2015) Targeting astrocytes in major depression. Expert Rev Neurother 15:1299–1306

    Article  CAS  PubMed  Google Scholar 

  • Peng L, Li B, Verkhratsky A (2016) Targeting astrocytes in bipolar disorder. Expert Rev Neurother 16:649–657

    Article  CAS  PubMed  Google Scholar 

  • Peng L, Song D, Li B, Verkhratsky A (2018) Astroglial 5-HT2B receptor in mood disorders. Expert Rev Neurother 18:435–442

    Article  CAS  PubMed  Google Scholar 

  • Penninx BW (2017) Depression and cardiovascular disease: epidemiological evidence on their linking mechanisms. Neurosci Biobehav Rev 74:277–286

    Article  PubMed  Google Scholar 

  • Philippe TJ, Vahid-Ansari F, Donaldson ZR, Le François B, Zahrai A, Turcotte-Cardin V, Daigle M, James J, Hen R, Merali Z, Albert PR (2018) Loss of MeCP2 in adult 5-HT neurons induces 5-HT1A autoreceptors, with opposite sex-dependent anxiety and depression phenotypes. Sci Rep 8:5788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pitychoutis PM, Dalla C, Sideris AC, Tsonis PA, Papadopoulou-Daifoti Z (2012) 5-HT(1A), 5-HT(2A), and 5-HT(2C) receptor mRNA modulation by antidepressant treatment in the chronic mild stress model of depression: sex differences exposed. Neuroscience 210:152–167

    Article  CAS  PubMed  Google Scholar 

  • Pizzonia JH, Ransom BR, Pappas CA (1996) Characterization of Na+/H+ exchange activity in cultured rat hippocampal astrocytes. J Neurosci Res 44:191–198

    Article  CAS  PubMed  Google Scholar 

  • Post RM, Ketter TA, Uhde T, Ballenger JC (2007) Thirty years of clinical experience with carbamazepine in the treatment of bipolar illness: principles and practice. CNS Drugs 21:47–71

    Article  CAS  PubMed  Google Scholar 

  • Rajkowska G (2000) Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiatry 48:766–777

    Article  CAS  PubMed  Google Scholar 

  • Rajkowska G, O’Dwyer G, Teleki Z, Stockmeier CA, Miguel-Hidalgo JJ (2007) GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression. Neuropsychopharmacology 32:471–482

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthy R, Radhakrishnan M, Borah M (2008) Antidepressant-like effects of serotonin type-3 antagonist, ondansetron: an investigation in behaviour-based rodent models. Behav Pharmacol 19:29–40

    Article  CAS  PubMed  Google Scholar 

  • Rao JS, Ertley RN, Lee HJ, Rapoport SI, Bazinet RP (2006) Chronic fluoxetine upregulates activity, protein and mRNA levels of cytosolic phospholipase A2 in rat frontal cortex. Pharmacogenomics J 6:413–420

    Article  CAS  PubMed  Google Scholar 

  • Redrobe JP, Bourin M (1997) Partial role of 5-HT2 and 5-HT3 receptors in the activity of antidepressants in the mouse forced swimming test. Eur J Pharmacol 325:129–135

    Article  CAS  PubMed  Google Scholar 

  • Richardson-Jones JW, Craige CP, Guiard BP, Stephen A, Metzger KL, Kung HF, Gardier AM, Dranovsky A, David DJ, Beck SG, Hen R, Leonardo ED (2010) 5-HT1A autoreceptor levels determine vulnerability to stress and response to antidepressants. Neuron 65:40–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson-Jones JW, Craige CP, Nguyen TH, Kung HF, Gardier AM, Dranovsky A, David DJ, Guiard BP, Beck SG, Hen R, Leonardo ED (2011) Serotonin-1A autoreceptors are necessary and sufficient for the normal formation of circuits underlying innate anxiety. J Neurosci 31:6008–6018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivera AD, Butt AM (2019) Astrocytes are direct cellular targets of lithium treatment: novel roles for lysyl oxidase and peroxisome-proliferator activated receptor-γ as astroglial targets of lithium. Transl Psychiatry 9:211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roberts RE, Duong HT (2014) The prospective association between sleep deprivation and depression among adolescents. Sleep 37:239–244

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosel P, Arranz B, Urretavizcaya M, Oros M, San L, Navarro MA (2004) Altered 5-HT2A and 5-HT4 postsynaptic receptors and their intracellular signalling systems IP3 and cAMP in brains from depressed violent suicide victims. Neuropsychobiology 49:189–195

    Article  CAS  PubMed  Google Scholar 

  • Ruf BM, Bhagwagar Z (2009) The 5-HT1B receptor: a novel target for the pathophysiology of depression. Curr Drug Targets 10:1118–1138

    Article  CAS  PubMed  Google Scholar 

  • Rush AJ, Fava M, Wisniewski SR, Lavori PW, Trivedi MH, Sackeim HA, Thase ME, Nierenberg AA, Quitkin FM, Kashner TM, Kupfer DJ, Rosenbaum JF, Alpert J, Stewart JW, McGrath PJ, Biggs MM, Shores-Wilson K, Lebowitz BD, Ritz L, Niederehe G, STAR*D Investigators Group (2004) Sequenced treatment alternatives to relieve depression (STAR*D): rationale and design. Control Clin Trials 25:119–142

    Article  PubMed  Google Scholar 

  • Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, Niederehe G, Thase ME, Lavori PW, Lebowitz BD, McGrath PJ, Rosenbaum JF, Sackeim HA, Kupfer DJ, Luther J, Fava M (2006) Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry 163:1905–1917

    Article  PubMed  Google Scholar 

  • Rutz S, Riegert C, Rothmaier AK, Buhot MC, Cassel JC, Jackisch R (2006) Presynaptic serotonergic modulation of 5-HT and acetylcholine release in the hippocampus and the cortex of 5-HT1B-receptor knockout mice. Brain Res Bull 70:81–93

    Article  CAS  PubMed  Google Scholar 

  • Rygula R, Abumaria N, Flügge G, Fuchs E, Rüther E, Havemann-Reinecke U (2005) Anhedonia and motivational defificits in rats: impact of chronic social stress. Behav Brain Res 162:127–134

    Article  PubMed  Google Scholar 

  • Rygula R, Abumaria N, Domenici E, Hiemke C, Fuchs E (2006) Effects of fluoxetine on behavioral deficits evoked by chronic social stress in rats. Behav Brain Res 174:188–192

    Article  CAS  PubMed  Google Scholar 

  • Sahli ZT, Banerjee P, Tarazi FI (2016) The preclinical and clinical effects of vilazodone for the treatment of major depressive disorder. Expert Opin Drug Discov 11:515–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sari Y (2004) Serotonin1B receptors: from protein to physiological function and behavior. Neurosci Biobehav Rev 28:565–582

    Article  CAS  PubMed  Google Scholar 

  • Saura J, Kettler R, Da Prada M, Richards JG (1992) Quantitative enzyme radioautography with 3H-Ro 41-1049 and 3H-Ro 19-6327 in vitro: localization and abundance of MAO-A and MAO-B in rat CNS, peripheral organs, and human brain. J Neurosci 12:1977–1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savitz J, Lucki I, Drevets WC (2009) 5-HT(1A) receptor function in major depressive disorder. Prog Neurobiol 88:17–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122:509–522

    Article  CAS  PubMed  Google Scholar 

  • Schmauss C (2003) Serotonin2C receptors: suicide, serotonin, and runaway RNA. Neuroscientist 9:237–242

    Article  CAS  PubMed  Google Scholar 

  • Schmitt K, Holsboer-Trachsler E, Eckert A (2016) BDNF in sleep, insomnia, and sleep deprivation. Ann Med 48:42–51

    Article  CAS  PubMed  Google Scholar 

  • Schulze TG, Buervenich S, Badner JA, Steele CJ, Detera-Wadleigh SD, Dick D, Foroud T, Cox NJ, MacKinnon DF, Potash JB, Berrettini WH, Byerley W, Coryell W, DePaulo JR Jr, Gershon ES, Kelsoe JR, McInnis MG, Murphy DL, Reich T, Scheftner W, Nurnberger JI Jr, McMahon FJ (2004) Loci on chromosomes 6q and 6p interact to increase susceptibility to bipolar affective disorder in the national institute of mental health genetics initiative pedigrees. Biol Psychiatry 56:18–23

    Article  CAS  PubMed  Google Scholar 

  • Segond N, Degrelle SA, Berndt S, Clouqueur E, Rouault C, Saubamea B, Dessen P, Fong KS, Csiszar K, Badet J, Evain-Brion D, Fournier T (2013) Transcriptome analysis of PPARγ target genes reveals the involvement of lysyl oxidase in human placental cytotrophoblast invasion. PLoS One 8:e79413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirayama Y, Takahashi M, Osone F, Hara A, Okubo T (2017) Myo-inositol, glutamate, and glutamine in the prefrontal cortex, hippocampus, and amygdala in major depression. Biol Psychiatry Cogn Neurosci Neuroimaging 2:196–204

    PubMed  Google Scholar 

  • Shokri-Kojori E, Wang GJ, Wiers CE, Demiral SB, Guo M, Kim SW, Lindgren E, Ramirez V, Zehra A, Freeman C, Miller G, Manza P, Srivastava T, De Santi S, Tomasi D, Benveniste H, Volkow ND (2018) β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc Natl Acad Sci U S A 115:4483–4488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song D, Du T, Li B, Cai L, Gu L, Li H, Chen Y, Hertz L, Peng L (2008) Astrocytic alkalinization by therapeutically relevant lithium concentrations: implications for myo-inositol depletion. Psychopharmacology 200:187–195

    Article  CAS  PubMed  Google Scholar 

  • Song D, Man Y, Li B, Xu J, Hertz L, Peng L (2013) Comparison between drug-induced and K+-induced changes in molar acid extrusion fluxes (JH+) and in energy consumption rates in astrocytes. Neurochem Res 38:2364–2374

    Article  CAS  PubMed  Google Scholar 

  • Sotelo C, Cholley B, El Mestikawy S, Gozlan H, Hamon M (1990) Direct immunohistochemical evidence of the existence of 5-HT1A autoreceptors on serotoninergic neurons in the midbrain raphe nuclei. Eur J Neurosci 2:1144–1154

    Article  PubMed  Google Scholar 

  • Spector R, Lorenzo AV (1975) The origin of myo-inositol in brain, cerebrospinal fluid and choroid plexus. J Neurochem 25:353–354

    Article  CAS  PubMed  Google Scholar 

  • Steel Z, Marnane C, Iranpour C, Chey T, Jackson JW, Patel V, Silove D (2014) The global prevalence of common mental disorders: a systematic review and meta-analysis 1980–2013. Int J Epidemiol 43:476–493

    Article  PubMed  PubMed Central  Google Scholar 

  • Stenovec M, Li B, Verkhratsky A, Zorec R (2020) Astrocytes in rapid ketamine antidepressant action. Neuropharmacology 173:108158

    Article  CAS  PubMed  Google Scholar 

  • Strong PV, Greenwood BN, Fleshner M (2009) The effects of the selective 5-HT(2C) receptor antagonist SB 242084 on learned helplessness in male Fischer 344 rats. Psychopharmacology 203:665–675

    Article  CAS  PubMed  Google Scholar 

  • Suárez-Santiago JE, Briones-Aranda A, Espinosa-Raya J, Picazo O (2017) Agonist E-6837 and antagonist SB-271046 of 5-HT6 receptors both reverse the depressive-like effect induced in mice by subchronic ketamine administration. Behav Pharmacol 28:582–585

    Article  PubMed  CAS  Google Scholar 

  • Sun L, Fang L, Lian B, Xia JJ, Zhou CJ, Wang L, Mao Q, Wang XF, Gong X, Liang ZH, Bai SJ, Liao L, Wu Y, Xie P (2017) Biochemical effects of venlafaxine on astrocytes as revealed by 1H NMR-based metabolic profiling. Mol BioSyst 13:338–349

    Article  CAS  PubMed  Google Scholar 

  • Szabo ST, Blier P (2001a) Response of the norepinephrine system to antidepressant drugs. CNS Spectr 6:679–684

    Article  CAS  PubMed  Google Scholar 

  • Szabo ST, Blier P (2001b) Serotonin (1A) receptor ligands act on norepinephrine neuron firing through excitatory amino acid and GABA(A) receptors: a microiontophoretic study in the rat locus coeruleus. Synapse 42:203–212

    Article  CAS  PubMed  Google Scholar 

  • Szabo ST, Blier P (2002) Effects of serotonin (5-hydroxytryptamine, 5-HT) reuptake inhibition plus 5–HT2A receptor antagonism on the fifiring activity of norepinephrine neurons. J Pharmacol Exp Ther 302:983–991

    Article  CAS  PubMed  Google Scholar 

  • Taciak PP, Lysenko N, Mazurek AP (2018) Drugs which influence serotonin transporter and serotonergic receptors: pharmacological and clinical properties in the treatment of depression. Pharmacol Rep 70:37–46

    Article  CAS  PubMed  Google Scholar 

  • Tanaka KF, Samuels BA, Hen R (2012) Serotonin receptor expression along the dorsal-ventral axis of mouse hippocampus. Philos Trans R Soc Lond Ser B Biol Sci 367:2395–2401

    Article  CAS  Google Scholar 

  • Thiebot MH, Martin P (1991) Effects of benzodiazepines, 5-HT1A agonists and 5-HT3 antagonists in animal models sensitive to antidepressant drugs. In: Rodgers RJ, Cooper SJ (eds) 5-HT1A agonists, 5-HT3 antagonists and benzodiazepines: their comparative behavioural pharmacology. Wiley, Chichester, pp 159–194

    Google Scholar 

  • Tiger M, Rück C, Forsberg A, Varrone A, Lindefors N, Halldin C, Farde L, Lundberg J (2014) Reduced 5-HT(1B) receptor binding in the dorsal brain stem after cognitive behavioural therapy of major depressive disorder. Psychiatry Res 223:164–170

    Article  PubMed  Google Scholar 

  • Tsybko AS, Ilchibaeva TV, Popova NK (2017) Role of glial cell line-derived neurotrophic factor in the pathogenesis and treatment of mood disorders. Rev Neurosci 28:219–233

    Article  PubMed  Google Scholar 

  • Vallee A, Lecarpentier Y, Guillevin R, Vallee JN (2017) Interactions between TGFbeta1, canonical WNT/beta-catenin pathway and PPAR gamma in radiationinduced fibrosis. Oncotarget 8:90579–90604

    Article  PubMed  PubMed Central  Google Scholar 

  • Varnäs K, Nyberg S, Halldin C, Varrone A, Takano A, Karlsson P, Andersson J, McCarthy D, Smith M, Pierson ME, Söderström J, Farde L (2011) Quantitative analysis of [11C]AZ10419369 binding to 5-HT1B receptors in human brain. J Cereb Blood Flow Metab 31:113–123

    Article  PubMed  CAS  Google Scholar 

  • Verkhratsky A, Butt AM (2013) Glial physiology and pathophysiology. Wiley-Blackwell, Chichester

    Book  Google Scholar 

  • Verkhratsky A, Nedergaard M (2014) Astroglial cradle in the life of the synapse. Philos Trans R Soc Lond Ser B Biol Sci 369:20130595

    Article  CAS  Google Scholar 

  • Verkhratsky A, Nedergaard M (2018) Physiology of astroglia. Physiol Rev 98:239–389

    Article  CAS  PubMed  Google Scholar 

  • Verkhratsky A, Parpura V (2010) Recent advances in (patho)physiology of astroglia. Acta Pharmacol Sin 31:1044–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verkhratsky A, Parpura V (2015) Physiology of astroglia: channels, receptors, transporters, ion signaling and gliotransmission. In: Verkhratsky A, Parpura V (eds) Colloquium series on neuroglia in biology and medicine: from physiology to disease. Morgan & Claypool Publishers, San Rafael, p 172

    Google Scholar 

  • Verkhratsky A, Rodríguez JJ, Parpura V (2012) Calcium signalling in astroglia. Mol Cell Endocrinol 353:45–56

    Article  CAS  PubMed  Google Scholar 

  • Verkhratsky A, Rodriguez JJ, Steardo L (2014) Astrogliopathology: a central element of neuropsychiatric diseases? Neuroscientist 20:576–588

    Article  PubMed  Google Scholar 

  • Verkhratsky A, Zorec R, Parpura V (2017) Stratification of astrocytes in healthy and diseased brain. Brain Pathol 27:629–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verkhratsky A, Semyanov A, Zorec R (2020) Physiology of astroglial excitability. Function 1:zqaa016

    Article  PubMed  PubMed Central  Google Scholar 

  • Verkhratsky A, Augusto-Oliveira M, Pivoriunas A, Popov A, Brazhe A, Semyanov A (2021) Astroglial asthenia and loss of function, rather than reactivity, contribute to the ageing of the brain. Pflugers Arch 473:753–774

    Article  CAS  PubMed  Google Scholar 

  • Wallace A, Pehrson AL, Sánchez C, Morilak DA (2014) Vortioxetine restores reversal learning impaired by 5-HT depletion or chronic intermittent cold stress in rats. Int J Neuropsychopharmacol 17:1695–1706

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Qiao J, Zhang Y, Wang H, Zhu S, Zhang H, Hartle K, Guo H, Guo W, He J, Kong J, Huang Q, Li XM (2014) Desvenlafaxine prevents white matter injury and improves the decreased phosphorylation of the rate-limiting enzyme of cholesterol synthesis in a chronic mouse model of depression. J Neurochem 131:229–238

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhang Y, Du X, Ding T, Gong W, Liu F (2019) Review of antidepressants in clinic and active ingredients of traditional Chinese medicine targeting 5-HT1A receptors. Biomed Pharmacother 120:109408

    Article  CAS  PubMed  Google Scholar 

  • Watanabe N, Omori IM, Nakagawa A, Cipriani A, Barbui C, Churchill R, Furukawa TA (2011) Mirtazapine versus other antidepressive agents for depression. Cochrane Database Syst Rev 7:CD006528

    Google Scholar 

  • Wolfson M, Hertz E, Belmaker RH, Hertz L (1998) Chronic treatment with lithium and pretreatment with excess inositol reduce inositol pool size in astrocytes by different mechanisms. Brain Res 787:34–40

    Article  CAS  PubMed  Google Scholar 

  • Wolfson M, Bersudsky Y, Zinger E, Simkin M, Belmaker RH, Hertz L (2000) Chronic treatment of human astrocytoma cells with lithium, carbamazepine or valproic acid decreases inositol uptake at high inositol concentrations but increases it at low inositol concentrations. Brain Res 855:158–161

    Article  CAS  PubMed  Google Scholar 

  • Wong YH, Kalmbach SJ, Hartman BK, Sherman WR (1987) Immunohistochemical staining and enzyme activity measurements show myo-inositol-1-phosphate synthase to be localized in the vasculature of brain. J Neurochem 48:1434–1442

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Singh SK, Dias P et al (1999) Activated astrocytes display increased 5-HT2a receptor expression in pathological states. Exp Neurol 158:529–533

    Article  CAS  PubMed  Google Scholar 

  • Xia M, Yang L, Sun G, Qi S, Li B (2017) Mechanism of depression as a risk factor in the development of Alzheimer’s disease: the function of AQP4 and the glymphatic system. Psychopharmacology (Berlin) 234:365–379

    Article  CAS  Google Scholar 

  • Xia M, Li X, Yang L, Ren J, Sun G, Qi S, Verkhratsky A, Li B (2018) The ameliorative effect of fluoxetine on neuroinflammation induced by sleep deprivation. J Neurochem 146:63–75

    Article  CAS  Google Scholar 

  • Xia M, Li Z, Li S, Liang S, Li X, Chen B, Zhang M, Dong C, Verkhratsky A, Guan D, Li B (2020) Sleep deprivation selectively Down-regulates astrocytic 5-HT2B receptors and triggers depressive-like behaviors via stimulating P2X7 receptors in mice. Neurosci Bull 36:1259–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Jing X, Li G, Sun J, Guo H, Hu Y, Sun F, Wen X, Chen F, Wang T, Lu XP (2019) Valproate decreases vitamin D levels in pediatric patients with epilepsy. Seizure 71:60–65

    Article  PubMed  Google Scholar 

  • Yamauchi M, Tatebayashi T, Nagase K, Kojima M, Imanishi T (2004) Chronic treatment with fluvoxamine desensitizes 5-HT2C receptor-mediated hypolocomotion in rats. Pharmacol Biochem Behav 78:683–689

    Article  CAS  PubMed  Google Scholar 

  • Yu W, Greenberg ML (2016) Inositol depletion, GSK3 inhibition and bipolar disorder. Future Neurol 11:135–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu C, Lyu J, Chen Y, Guo Y, Paul S, Bian Z, Zhou H, Tan Y, Chen J, Chen Z, Li L (2015) Epidemiology of major depressive episodes among Chinese adults aged 30-79 years: data from the China Kadoorie Biobank. Zhonghua Liu Xing Bing Xue Za Zhi 36:52–56

    PubMed  Google Scholar 

  • Yue T, Li B, Gu L, Huang J, Verkhratsky A, Peng L (2019) Ammonium induced dysfunction of 5-HT2B receptor in astrocytes. Neurochem Int 129:104479

    Article  CAS  PubMed  Google Scholar 

  • Zarate CA, Manji HK (2008) Riluzole in psychiatry: a systematic review of the literature. Expert Opin Drug Metab Toxicol 4:1223–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeidán-Chuliá F, Salmina AB, Malinovskaya NA, Noda M, Verkhratsky A, Moreira JC (2014) The glial perspective of autism spectrum disorders. Neurosci Biobehav Rev 38:160–172

    Article  PubMed  Google Scholar 

  • Zhang S, Li B, Lovatt D, Xu J, Song D, Goldman SA, Nedergaard M, Hertz L, Peng L (2010) 5-HT2B receptors are expressed on astrocytes from brain and in culture and are a chronic target for all five conventional ‘serotonin-specific reuptake inhibitors’. Neuron Glia Biol 6:113–125

    Article  PubMed  Google Scholar 

  • Zhang M, Zhou D, Wang Y, Maier DL, Widzowski DV, Sobotka-Briner CD, Brockel BJ, Potts WM, Shenvi AB, Bernstein PR, Pierson ME (2011) Preclinical pharmacology and pharmacokinetics of AZD3783, a selective 5-hydroxytryptamine 1B receptor antagonist. J Pharmacol Exp Ther 339:567–578

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Song D, Gu L, Ren Y, Verkhratsky A, Peng L (2015) Decrease of gene expression of astrocytic 5-HT2B receptors parallels development of depressive phenotype in a mouse model of Parkinson’s disease. Front Cell Neurosci 9:388

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhong XM, Dong M, Wang F, Zhang Q, Ungvari GS, Ng CH, Chiu HFK, Si TM, Sim K, Avasthi A, Grover S, Chong MY, Chee KY, Kanba S, Lee MS, Yang SY, Udomratn P, Kallivayalil RA, Tanra AJ, Maramis MM, Shen WW, Sartorius N, Mahendran R, Tan CH, Shinfuku N, Xiang YT (2018) Physical comorbidities in older adults receiving antidepressants in Asia. Psychogeriatrics 18:351–356

    Article  PubMed  Google Scholar 

  • Zielinski MR, Gerashchenko D, Karpova SA, Konanki V, McCarley RW, Sutterwala FS, Strecker RE, Basheer R (2017) The NLRP3 inflammasome modulates sleep and NREM sleep delta power induced by spontaneous wakefulness, sleep deprivation and lipopolysaccharide. Brain Behav Immun 62:137–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

BL’s work is supported by the National Natural Science Foundation of China (grant number 8187185), LiaoNing Revitalization Talents Program (grant number XLYC1807137), the Scientific Research Foundation for Returned Scholars of Education Ministry of China (grant number 20151098), LiaoNing Thousands Talents Program (grant number 202078), and “ChunHui” Program of Education Ministry of China (grant number 2020703). CS’s work is supported by a grant from the Italian Ministry of Education, University and Research (2015KP7T2Y_002) and a grant from the Sapienza University of Rome (RM11916B7A8D0225). VP’s work is supported by a grant from the National Institute of General Medical Sciences of the National Institutes of Health (R01GM123971). VP is an Honorary Professor at the University of Rijeka, Croatia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoman Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verkhratsky, A., Parpura, V., Scuderi, C., Li, B. (2021). Astroglial Serotonin Receptors as the Central Target of Classic Antidepressants. In: Li, B., Parpura, V., Verkhratsky, A., Scuderi, C. (eds) Astrocytes in Psychiatric Disorders. Advances in Neurobiology, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-030-77375-5_13

Download citation

Publish with us

Policies and ethics