Skip to main content
Log in

Fluoxetine-mediated 5-HT2B receptor stimulation in astrocytes causes EGF receptor transactivation and ERK phosphorylation

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Fluoxetine has relatively high affinity for Gq/11 protein-coupled 5-HT2 receptors. Part of these receptors in brain are on astrocytes, where fluoxetine causes an increase in free cytosolic calcium concentration ([Ca2+]i) and phosphorylation of extracellular regulated kinase 1 and 2 (ERK1/2).

Objective

The objectives of the study are to identify subtype of the 5-HT2 receptor involved, to establish whether ERK1/2 phosphorylation is a result of 5-HT2-mediated transactivation of epidermal growth factor (EGF) receptors (EGFRs), and to determine signaling pathways up- and downstream of ERK1/2.

Materials and methods

Primary cultures of mouse astrocytes, which express all three subtypes of the 5-HT2 receptor but no 5-HT2 transporter, were used. ERK1/2 phosphorylation and c-Fos and FosB protein expression were determined with Western blotting, and c-fos and fosB mRNA expression with reverse transcription polymerase chain reaction. Receptor subtype was investigated with subtype-specific 5-HT antagonists and 5-HT2B receptor depletion and signaling pathways by EGFR phosphorylation, using immunoprecipitation and Western blotting, inhibition of protein kinase C (PKC), and [Ca2+]i chelation by BAPTA/AM.

Results

ERK1/2 phosphorylation was abolished by SB204741, a universal 5-HT2 receptor antagonist, and in 5-HT2B receptor-depleted cells, but unaffected by 5-HT2A or 5-HT2C receptor antagonists (M100907 and SB242084). Phosphorylation of ERK1/2 and EGFRs was abolished by AG 1478, an inhibitor of EGFR tyrosine kinases, and GM 6001, an inhibitor of Zn-dependent metalloproteinases, suggesting growth factor “shedding” and transactivation of EGFRs. Chelation of [Ca2+]i or PKC inhibition with GF 109203X abrogated ERK1/2 phosphorylation. Up-regulated mRNA and protein expression of c-fos and fosB was abolished by SB204741, AG1478, and by U0126, an inhibitor of ERK phosphorylation by MAP kinase/ERK kinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Baez M, Kursar JD, Helton LA, Wainscott DB, Nelson DL (1995) Molecular biology of serotonin receptors. Obes Res 4:441S–447S

    Google Scholar 

  • Bhasin N, LaMantia AS, Lauder JM (2004) Opposing regulation of cell proliferation by retinoic acid and the serotonin2B receptor in the mouse frontonasal mass. Anat Embryol (Berl) 208:135–143

    Article  CAS  Google Scholar 

  • Bolo NR, Hodé Y, Nédélec JF, Lainé E, Wagner G, Macher JP (2000) Brain pharmacokinetics and tissue distribution in vivo of fluvoxamine and fluoxetine by fluorine magnetic resonance spectroscopy. Neuropsychopharmacol 23:428–438

    Article  CAS  Google Scholar 

  • Bonaventure P, Nepomuceno D, Miller K, Chen J, Kuei C, Kamme F, Tran DT, Lovenberg TW, Liu C (2005) Molecular and pharmacological characterization of serotonin 5-HT2A and 5-HT2B receptor subtypes in dog. Eur J Pharmacol 513:181–192

    Article  PubMed  CAS  Google Scholar 

  • Bonhaus DW, Bach C, DeSouza A, Salazar FH, Matsuoka BD, Zuppan P, Chan HW, Eglen RM (1995) The pharmacology and distribution of human 5-hydroxytryptamine2B (5-HT2B) receptor gene products: comparison with 5-HT2A and 5-HT2C receptors. Br J Pharmacol 115:622–628

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Peng L, Zhang X, Stolzenburg JU, Hertz L (1995) Further evidence that fluoxetine interacts with a 5-HT2C receptor in glial cells. Brain Res Bull 38:153–159

    Article  PubMed  CAS  Google Scholar 

  • Choi DS, Maroteaux L (1996) Immunohistochemical localisation of the serotonin 5-HT2B receptor in mouse gut, cardiovascular system, and brain. FEBS Lett 391:45–51

    Article  PubMed  CAS  Google Scholar 

  • Choi DS, Ward SJ, Messaddeq N, Launay JM, Maroteaux L (1997) 5-HT2B receptor-mediated serotonin morphogenetic functions in mouse cranial neural crest and myocardiac cells. Development 124:1745–1755

    PubMed  CAS  Google Scholar 

  • Cowen DS (2007) Serotonin and neuronal growth factors - a convergence of signaling pathways. J. Neurochem 101:1161–1171

    Article  PubMed  CAS  Google Scholar 

  • Deecher DC, Wilcox BD, Dave V, Rossman PA, Kimelberg HK (1993) Detection of 5-hydroxytryptamine2 receptors by radioligand binding, northern blot analysis, and Ca2+ responses in rat primary astrocyte cultures. J Neurosci Res 35:246–256

    Article  PubMed  CAS  Google Scholar 

  • Duxon MS, Kennett GA, Lightowler S, Blackburn TP, Fone KC (1997) Activation of 5-HT2B receptors in the medial amygdala causes anxiolysis in the social interaction test in the rat. Neuropharmacol 6:601–608

    Article  Google Scholar 

  • Elkeles A, Juven-Gershon T, Israeli D, Wilder S, Zalcenstein A, Oren M (1999) The c-fos proto-oncogene is a target for transactivation by the p53 tumor suppressor. Mol Cell Biol 19:2594–2600

    PubMed  CAS  Google Scholar 

  • Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, Van DE, Pitts WJ, Earl RA, Hobbs F, Copeland RA, Magolda RL, Scherle PA, Trzaskos JM (1998) Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 273:18623–18632

    Article  PubMed  CAS  Google Scholar 

  • Gordon PB, Holen I, Fosse M, Røtnes JS, Seglen PO (1993) Dependence of hepatocytic autophagy on intracellularly sequestered calcium. J Biol Chem 268:26107–26112

    PubMed  CAS  Google Scholar 

  • Grobelny D, Poncz L, Galardy E (1992) Inhibition of human skin fibroblast collagenase, thermolysin, and Pseudomonas aeruginosa elastase by peptide hydroxamic acids. Biochem 31:7152–7154

    Article  CAS  Google Scholar 

  • Henry ME, Moore CM, Kaufman MJ, Michelson D, Schmidt ME, Stoddard E, Vuckevic AJ, Berreira PJ, Cohen BM, Renshaw PF (2000) Brain kinetics of paroxetine and fluoxetine on the third day of placebo substitution: a fluorine MRS study. Am J Psychiatry 157:1506–1508

    Article  PubMed  CAS  Google Scholar 

  • Henry ME, Schmidt ME, Hennen J, Villafuerte RA, Butman ML, Tran P, Kerner LT, Cohen B, Renshaw PF (2005) A comparison of brain and serum pharmacokinetics of R-fluoxetine and racemic fluoxetine: a 19-F MRS study. Neuropsychopharmacol 30:1576–1583

    Article  CAS  Google Scholar 

  • Hertz L, Juurlink BHJ, Szuchet S (1985) Cell cultures. In: Lajtha A (ed) Handbook of Neurochemistry Vol 8,. 2nd edn. Plenum Press, New York, pp 603–661

    Google Scholar 

  • Hertz L, Peng L, Lai JC (1998) Functional studies in cultured astrocytes. Methods 16:293–310

    Article  PubMed  CAS  Google Scholar 

  • Hirst WD, Cheung NY, Rattray M, Price GW, Wilkin GP (1998) Cultured astrocytes express messenger RNA for multiple serotonin receptor subtypes, without functional coupling of 5-HT1 receptor subtypes to adenylyl cyclase. Mol Brain Res 61:90–99

    Article  PubMed  CAS  Google Scholar 

  • Hisaoka K, Takebayashi M, Tsuchioka M, Maeda N, Nakata Y, Yamawaki S (2007) Antidepressants increase glial cell line-derived neurotrophic factor production through monoamine-independent activation of protein tyrosine kinase and extracellular signal-regulated kinase in glial cells. J Pharmacol Exp Ther 321:148–157

    Article  PubMed  CAS  Google Scholar 

  • Hitoshi S, Maruta N, Higashi M, Kumar A, Kato N, Ikenaka K (2007) Antidepressant drugs reverse the loss of adult neural stem cells following chronic stress. J Neurosci Res 85:3574–3585

    Article  PubMed  CAS  Google Scholar 

  • Inoue D, Kido S, Matsumoto T (2004) Transcriptional induction of FosB/DeltaFosB gene by mechanical stress in osteoblasts. J Biol Chem 279:49795–49803

    Article  PubMed  CAS  Google Scholar 

  • Jaffre F, Callebert J, Sarre A, Etienne N, Nebigil CG, Launay JM, Maroteaux L, Monassier L (2004) Involvement of the serotonin 5-HT2B receptor in cardiac hypertrophy linked to sympathetic stimulation: control of interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha cytokine production by ventricular fibroblasts. Circulation 110:969–974

    Article  PubMed  CAS  Google Scholar 

  • Jerman JC, Brough SJ, Gager T, Wood M, Coldwell MC, Smart D, Middlemiss DN (2001) Pharmacological characterisation of human 5-HT2 receptor subtypes. Eur J Pharmacol 414:23–30

    Article  PubMed  CAS  Google Scholar 

  • Johnson MP, Siegel BW, Carr AA (1996) [3H]MDL 100,907: a novel selective 5-HT2A receptor ligand. Naunyn. Schmiedebergs. Arch Pharmacol 354:205–209

    Article  CAS  Google Scholar 

  • Kennett GA, Wood MD, Bright F, Trail B, Riley G, Holland V, Avenell KY, Stean T, Upton N, Bromidge S, Forbes IT, Brown AM, Middlemiss DN, Blackburn TP (1997) SB 242084, a selective and brain penetrant 5-HT2C receptor antagonist. Neuropharmacol 36:609–620

    Article  CAS  Google Scholar 

  • Koch S, Perry KW, Nelson DL, Conway RG, Threlkfeld PG, Bymaster FP (2002) R-fluoxetine increases extracellular DA, NE, as well as 5-HT in rat prefrontal cortex and hypothalamus: an in vivo microdialysis and receptor binding study. Neuropsychopharmacol 27:949–959

    Article  CAS  Google Scholar 

  • Kong EK, Peng L, Chen Y, Yu AC, Hertz L (2002) Up-regulation of 5-HT2B receptor density and receptor-mediated glycogenolysis in mouse astrocytes by long-term fluoxetine administration. Neurochem Res 27:113–120

    Article  PubMed  CAS  Google Scholar 

  • Kursar JD, Nelson DL, Wainscott DB, Baez M (1994) Molecular cloning, functional expression, and mRNA tissue distribution of the human 5-hydroxytryptamine2B receptor. Mol Pharmacol 46:227–234

    PubMed  CAS  Google Scholar 

  • Levitzki A, Gazit A (1995) Tyrosine kinase inhibition: an approach to drug development. Science 267:1782–1788

    Article  PubMed  CAS  Google Scholar 

  • Li B, Du T, Li H, Gu L, Zhang H, Huang J, Hertz L, Peng L (2008) Signalling pathways for transactivation by dexmedetomidine of epidermal growth factor receptors in astrocytes and its paracrine effect on neurons. Br J Pharmacol 154:191–203

    Google Scholar 

  • Liang YJ, Lai LP, Wang BW, Juang SJ, Chang CM, Leu JG, Shyu KG (2006) Mechanical stress enhances serotonin 2B receptor modulating brain natriuretic peptide through nuclear factor-κB in cardiomyocytes. Cardiovascular Res 72:303–312

    Article  CAS  Google Scholar 

  • Marjou AE, Delouvée A, Thiery JP, Radvanyi F (2000) Involvement of epidermal growth factor receptor in chemically induced mouse bladder tumour progression. Carcinogenesis 21:2211–2218

    Article  PubMed  Google Scholar 

  • Mårtensson B, Nyberg S, Toresson G, Brodin E, Bertilsson L (1989) Fluoxetine treatment of depression. Clinical effects, drug concentrations and monoamine metabolites and N-terminally extended substance P in cerebrospinal fluid. Acta Psychiatr Scand 79:586–596

    Article  PubMed  Google Scholar 

  • Meier E, Hertz L, Schousboe A (1991) Neurotransmitters as developmental signals. Neurochem Int 19:1–15

    Article  CAS  Google Scholar 

  • Mercier G, Lennon AM, Renouf B, Dessouroux A, Ramauge M, Courtin F, Pierre M (2004) MAP kinase activation by fluoxetine and its relation to gene expression in cultured rat astrocytes. J Mol Neurosci 4:207–216

    Article  Google Scholar 

  • Merzak A, Koochekpour S, Fillion MP, Fillion G, Pilkington GJ (1996) Expression of serotonin receptors in human fetal astrocytes and glioma cell lines: a possible role in glioma cell proliferation and migration. Mol Brain Res 41:1–7

    Article  PubMed  CAS  Google Scholar 

  • Meyer JH, Wilson AA, Sagrati S, Hussey D, Carella A, Potter WZ, Ginovart N, Spencer EP, Cheok A, Houle S (2004) Serotonin transporter occupancy of five selective serotonin reuptake inhibitors at different doses: an [11C]DASB positron emission tomography study. Am J Psychiatry 161:826–835

    Article  PubMed  Google Scholar 

  • Nebigil CG, Maroteaux L (2001) A novel role for serotonin in heart. Trends Cardiovasc Med 11:329–335

    Article  PubMed  CAS  Google Scholar 

  • Nebigil CG, Launay JM, Hickel P, Tournois C, Maroteaux L (2000) 5-Hydroxytryptamine 2B receptor regulates cell-cycle progression: cross-talk with tyrosine kinase pathways. Proc Natl Acad Sci U S A 97:2591–2596

    Article  PubMed  CAS  Google Scholar 

  • Ni YG, Miledi R (1997) Blockage of 5HT2C serotonin receptors by fluoxetine (Prozac). Proc Natl Acad Sci USA 94:2036–2040

    Article  PubMed  CAS  Google Scholar 

  • Pälvimäki EP, Roth BL, Majasuo H, Leaks A, Kuoppamäki M, Syvälahti E, Hietala J (1996) Interactions of selective serotonin reuptake inhibitors with the serotonin 5-HT2C receptor. Psychopharmacol 126:234–240

    Article  Google Scholar 

  • Peng L (2004) Transactivation in astrocytes as a novel mechanism of neuroprotection. In: Hertz L (ed) Non-neuronal cells of the nervous system: function and dysfunction. Elsevier, Amsterdam, pp 503–518

    Google Scholar 

  • Pierce KL, Luttrell LM, Lefkowitz RJ (2001) New mechanisms in heptahelical receptor signaling to mitogen activated protein kinase cascades. Oncogene 20:1532–1539

    Article  PubMed  CAS  Google Scholar 

  • Porter RH, Benwell KR, Lamb H, Malcolm CS, Allen NH, Revell DF, Adams DR, Sheardown MJ (1999) Functional characterization of agonists at recombinant human 5-HT2A, 5-HT2B and 5-HT2C receptors in CHO-K1 cells. Br J Pharmacol 128:13–20

    Article  PubMed  CAS  Google Scholar 

  • Prenzel N, Fischer OM, Streit S, Hart S, Ullrich A (2001) The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr Relat Cancer 8:11–31

    Article  PubMed  CAS  Google Scholar 

  • Roth BL (2007) Drugs and valvular heart disease. N Engl Med 356:6–9

    Article  CAS  Google Scholar 

  • Roth BL, Willins DL, Kristiansen K, Kroeze WK (1998) 5-Hydroxytryptamine2-family receptors (5-hydroxytryptamine2A, 5-hydroxytryptamine2B, 5-hydroxytryptamine2C): where structure meets function. Pharmacol Ther 79:231–257

    Article  PubMed  CAS  Google Scholar 

  • Rothman RB, Baumann MH, Savage JE, Rauser L, McBride A, Hufeisen SJ, Roth BL (2000) Evidence for possible involvement of 5-HT(2B) receptors in the cardiac valvulopathy associated with fenfluramine and other serotonergic medications. Circulation 102:2836–2841

    PubMed  CAS  Google Scholar 

  • Sánchez C, Hyttel J (1999) Comparison of the effects of antidepressants and their metabolites on reuptake of biogenic amines and on receptor binding. Cell Mol Neurobiol 19:467–489

    Article  PubMed  Google Scholar 

  • Sandén N, Thorlin T, Blomstrand F, Persson PA, Hansson E (2000) 5-Hydroxytryptamine2B receptors stimulate Ca2+ increases in cultured astrocytes from three different brain regions. Neurochem Int 36:427–434

    Article  PubMed  Google Scholar 

  • Schmidt CJ, Fadayel GM, Sullivan CK, Taylor VL (1992) 5-HT2 receptors exert a state-dependent regulation of dopaminergic function: studies with MDL 100,907 and the amphetamine analogue,3,4-methylenedioxymethamphetamine. Eur J Pharmacol 223:65–74

    Article  PubMed  CAS  Google Scholar 

  • Toullec D, Pianetti P, Coste H, Bellevergue P, Grand-Perret T, Ajakane M, Baudet V, Boissin P, Boursier E, Loriolle F et al (1991) The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem 266:15771–15781

    PubMed  CAS  Google Scholar 

  • Wong DT, Threlkeld PG, Robertson DW (1991) Affinities of fluoxetine, its enantiomers, and other inhibitors of serotonin uptake for subtypes of serotonin receptors. Neuropsychopharmacol 5:43–47

    CAS  Google Scholar 

  • Wood MD, Glen A, Blackburn TP, Lee JA, Sutiphong JA, Kumar C, Carey J, Robinson J (1993) (−)-Fluoxetine has high affinity for the cloned rat and human 5-HT1C receptor and the human 5-HT2 receptor. Br J Pharmacol 110(suppl):102P

    Google Scholar 

  • Zazpe A, Artaiz I, Labeaga L, Lucero ML, Orjales A (2007) Reversal of learned helplessness by selective serotonin reuptake inhibitors in rats is not dependent on 5-HT availability. Neuropharmacol 52:975–984

    Article  CAS  Google Scholar 

  • Zhang X, Peng L, Chen Y, Hertz L (1993) Stimulation of glycogenolysis in astrocytes by fluoxetine, an antidepressant acting like 5-HT. Neuroreport 4:1235–1238

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Grant Nos. 30670651 and 30770667 from the National Natural Science Foundation of China. Sanofi-Aventis, Chilly-Mazarin, France is thanked for a gift of M100907.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Peng.

Additional information

Baoman Li and Shiquen Zhang contributed equally to the article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B., Zhang, S., Zhang, H. et al. Fluoxetine-mediated 5-HT2B receptor stimulation in astrocytes causes EGF receptor transactivation and ERK phosphorylation. Psychopharmacology 201, 443–458 (2008). https://doi.org/10.1007/s00213-008-1306-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1306-5

Keywords

Navigation