Skip to main content

Advertisement

Log in

Cell type-specific in vivo expression of genes encoding signalling molecules in the brain in response to chronic mild stress and chronic treatment with fluoxetine

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Previously, we reported that chronic treatment with fluoxetine increased gene expression of 5-hydroxytryptamine receptor 2B (5-HT2BR), cytosolic phospholipase 2α (cPLA), glutamate receptor, ionotropic kainate 2 (GluK2) and adenosine deaminase acting on RNA 2 (ADAR2), in cultured astrocytes and astrocytes freshly isolated from transgenic mice tagged with an astrocyte-specific marker. In contrast, neurones isolated from transgenic mice tagged with a neurone-specific marker and exposed to fluoxetine showed an increase in gene expression of glutamate receptor, ionotropic kainate 4 (GluK4) and 5-hydroxytryptamine receptor 2C (5-HT2CR). In a mouse model of anhedonia, the downregulation of 5-HT2BR, cPLA, ADAR2 and GluK4 but not GluK2 and 5-HT2CR was detected.

Objective

To investigate the effects of chronic mild stress (CMS) and/or fluoxetine treatment on gene expression of 5-HT2BR, 5-HT2CR, cPLA, ADAR2, GluK2 and GluK4 specifically in astrocytes and neurones.

Methods

Transgenic mice tagged with either astrocyte- or neurone-specific markers were exposed to the CMS. Real-time PCR was applied to determine expression of messenger RNA (mRNA).

Results

We found that (i) mRNAs of the 5-HT2BR and cPLA in astrocytes and GluK4 in neurones were significantly reduced in mice that became anhedonic; the mRNA levels were restored by fluoxetine treatment; (ii) ADAR2 in astrocytes was decreased by the CMS but showed no response to fluoxetine in anhedonic animals; (iii) neither GluK2 expression in astrocytes nor 5-HT2CR expression in neurones were affected in anhedonic animals, although expression of 5-HT2CR mRNA was upregulated by fluoxetine.

Conclusions

Our results indicate that the effects of chronic treatment with fluoxetine are not only dependent on the cell type studied but also on the development of anhedonia. This suggests that fluoxetine may affect major depression (MD) patients and healthy people in a different manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

5-HT2B 5-HT2C :

5-Hydroxytryptamine receptors 2B and 2C

ADAR:

Adenosine deaminases acting on RNA

APV:

2-Amino-5-phosphonovalerate

BSA:

Bovine serum albumin

CMS:

Chronic mild stress

cPLA :

Cytosolic phospholipase 2α

DNQX:

6,7-Dinitroquinoxaline-2,3-dione

EGF:

Epidermal growth factor

ERK:

Extracellular signal-regulated kinase

FACS:

Fluorescence-activated cell sorting

Fgfr3:

Fibroblast growth factor receptor 3

GABA:

γ-Aminobutyric acid

Gabra-1:

Gamma-aminobutyric acid receptor subunit α-1

GFAP:

Glial fibrillary acidic protein

GFP:

Green fluorescent protein promoter

Glt-1:

Glutamate transporter 1

GluK2 and GluK4:

Glutamate receptor, ionotropic kainate 2 and 4

KCC2:

Potassium-chloride transporter member 5

MEM:

Minimum essential medium

Mag:

Myelin-associated glycoprotein

Mbp:

Myelin basic protein

MD:

Major depression

Mog:

Myelin-oligodendrocyte glycoprotein

mRNA:

Messenger ribonucleic acid

PCR:

Polymerase chain reaction

PBS:

Phosphate-buffered saline

SSRI:

Serotonin-specific reuptake inhibitor

PI:

Propidium iodide

PIPES:

Piperazine-N,N’-bis(2-ethanesulfonic acid)

Snap25:

Synaptosomal-associated protein 25

TBP:

TATAA-box binding protein

Thy1:

Thymocyte antigen 1

YFP:

Yellow fluorescent protein

References

  • Altshuler LL, Abulseoud OA, Foland-Ross L, Bartzokis G, Chang S, Mintz J, Hellemann G, Vinters HV (2010) Amygdala astrocyte reduction in subjects with major depressive disorder but not bipolar disorder. Bipolar Disord 12:541–549

    Article  PubMed  Google Scholar 

  • Barbon A, Popoli M, la Via L, Moraschi S, Vallini I, Tardito D, Tiraboschi E, Musazzi L, Giambelli R, Gennarelli M, Racagni G, Barlati S (2006) Regulation of editing and expression of glutamate α-amino-propionic-acid (AMPA)/kainate receptors by antidepressant drugs. Biol Psychiatry 59:713–720

    Article  CAS  PubMed  Google Scholar 

  • Barbon A, Orlandi C, la Via L, Caracciolo L, Tardito D, Musazzi L, Mallei A, Gennarelli M, Racagni G, Popoli M, Barlati S (2011) Antidepressant treatments change 5-HT2C receptor mRNA expression in rat prefrontal/frontal cortex and hippocampus. Neuropsychobiology 63:160–168

    Article  CAS  PubMed  Google Scholar 

  • Bass CE, Griffin G, Grier M, Mahadevan A, Razdan RK, Martin BR (2002) SR-141716A-induced stimulation of locomotor activity. A structure-activity relationship study. Pharmacol Biochem Behav 74:31–40

    Article  CAS  PubMed  Google Scholar 

  • Beneyto M, Kristiansen LV, Oni-Orisan A, McCullumsmith RE, Meador-Woodruff JH (2007) Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia and mood disorders. Neuropsychopharmacology 32:1888–1902

    Article  CAS  PubMed  Google Scholar 

  • Buchsbaum MS, Wu J, Siegel BV, Hackett E, Trenary M, Abel L, Reynolds C (1997) Effect of sertraline on regional metabolic rate in patients with affective disorder. Biol Psychiatry 41:15–22

    Article  CAS  PubMed  Google Scholar 

  • Catches JS, Xu J, Contractor A (2012) Genetic ablation of the GluK4 kainate receptor subunit causes anxiolytic and antidepressant-like behavior in mice. Behav Brain Res 228:406–414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen CX, Cho DS, Wang Q, Lai F, Carter KC, Nishikura K (2000) A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains. RNA 6:755–767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Edgar N, Sibille E (2012) A putative functional role for oligodendrocytes in mood regulation. Transl Psychiatry 2:e109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Felder CC, Kanterman RY, Ma AL, Axelrod J (1990) Serotonin stimulates phospholipase A2 and the release of arachidonic acid in hippocampal neurons by a type 2 serotonin receptor that is independent of inositolphospholipid hydrolysis. Proc Natl Acad Sci U S A 87:2187–2191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW, Sanes JR (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28:41–51

    Article  CAS  PubMed  Google Scholar 

  • Fu H, Li B, Hertz L, Peng L (2012) Contributions in astrocytes of SMIT1/2 and HMIT to myo-inositol uptake at different concentrations and pH. Neurochem Int 61:187–194

    Article  CAS  PubMed  Google Scholar 

  • Han QQ, Yu J (2014) Inflammation: a mechanism of depression? Neurosci Bull 30:515–523

    Article  CAS  PubMed  Google Scholar 

  • Hertz L (2011) Astrocytic energy metabolism and glutamate formation—relevance for 13C-NMR spectroscopy and importance of cytosolic/mitochondrial trafficking. Magn Reson Imaging 29:1319–1329

    Article  CAS  PubMed  Google Scholar 

  • Hertz L (2013) The glutamate-glutamine (GABA) cycle: importance of late postnatal development and potential reciprocal interactions between biosynthesis and degradation. Front Endocrinol (Lausanne) 4:59

    CAS  Google Scholar 

  • Hertz L, Song D, Li B, Du T, Xu J, Gu L, Chen Y, Peng L (2014) Signal transduction in astrocytes during chronic or acute treatment with drugs (SSRIs, antibipolar drugs, GABA-ergic drugs, and benzodiazepines) ameliorating mood disorders. J Signal Transduct 2014:593934

    PubMed Central  PubMed  Google Scholar 

  • Iwamoto K, Bundo M, Kato T (2009) Serotonin receptor 2C and mental disorders: genetic, expression and RNA editing studies. RNA Biol 6:248–253

    Article  CAS  PubMed  Google Scholar 

  • Jaggi AS, Bhatia N, Kumar N, Singh N, Anand P, Dhawan R (2011) A review on animal models for screening potential anti-stress agents. Neurol Sci 32:993–1005

    Article  PubMed  Google Scholar 

  • Kimbrell TA, Ketter TA, George MS, Little JT, Benson BE, Willis MW, Herscovitch P, Post RM (2002) Regional cerebral glucose utilization in patients with a range of severities of unipolar depression. Biol Psychiatry 51:237–252

    Article  CAS  PubMed  Google Scholar 

  • Li B, Zhang S, Zhang H, Nu W, Cai L, Hertz L, Peng L (2008) Fluoxetine-mediated 5-HT2B receptor stimulation in astrocytes causes EGF receptor transactivation and ERK phosphorylation. Psychopharmacology (Berlin) 201:443–458

    Article  CAS  Google Scholar 

  • Li B, Zhang S, Li M, Hertz L, Peng L (2009) Chronic treatment of astrocytes with therapeutically relevant fluoxetine concentrations enhances cPLA2 expression secondary to 5-HT2B-induced, transactivation-mediated ERK1/2 phosphorylation. Psychopharmacology (Berlin) 207:1–12

  • Li B, Zhang S, Zhang H, Hertz L, Peng L (2011) Fluoxetine affects GluK2 editing, glutamate-evoked Ca2+ influx and extracellular signal-regulated kinase phosphorylation in mouse astrocytes. J Psychiatry Neurosci 36:322–338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li B, Dong L, Wang B, Cai L, Jiang N, Peng L (2012) Cell type-specific gene expression and editing responses to chronic fluoxetine treatment in the in vivo mouse brain and their relevance for stress-induced anhedonia. Neurochem Res 37:2480–2495

    Article  CAS  PubMed  Google Scholar 

  • Little JT, Ketter TA, Kimbrell TA, Danielson A, Benson B, Willis MW, Post RM (1996) Venlafaxine or bupropion responders but not nonresponders show baseline prefrontal and paralimbic hypometabolism compared with controls. Psychopharmacol Bull 32:629–635

    CAS  PubMed  Google Scholar 

  • Lovatt D, Sonnewald U, Waagepetersen HS, Schousboe A, He W, Lin JH, Han X, Takano T, Wang S, Sim FJ, Goldman SA, Nedergaard M (2007) The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J Neurosci 27:12255–12266

    Article  CAS  PubMed  Google Scholar 

  • Mayberg HS, Brannan SK, Tekell JL, Silva JA, Mahurin RK, McGinnis S, Jerabek PA (2000) Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol Psychiatry 48:830–843

    Article  CAS  PubMed  Google Scholar 

  • Nave KA, Ehrenreich H (2014) Myelination and oligodendrocyte functions in psychiatric diseases. JAMA Psychiatry 71:582–584

    Article  PubMed  Google Scholar 

  • Paddock S, Laje G, Charney D, Rush AJ, Wilson AF, Sorant AJ, Lipsky R, Wisniewski SR, Manji H, McMahon FJ (2007) Association of GRIK4 with outcome of antidepressant treatment in the STAR*D cohort. Am J Psychiatry 164:1181–1188

    Article  PubMed  Google Scholar 

  • Pae CU, Yu HS, Lee KU, Kim JJ, Lee CU, Lee SJ, Jun TY, Lee C, Paik IH (2004) BanI polymorphism of the cytosolic phospholipase A2 gene may confer susceptibility to the development of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 28:739–741

    Article  CAS  PubMed  Google Scholar 

  • Peng PL, Zhong X, Tu W, Soundarapandian MM, Molner P, Zhu D, Lau L, Liu S, Liu F, Lu Y (2006) ADAR2-dependent RNA editing of AMPA receptor subunit GluR2 determines vulnerability of neurons in forebrain ischemia. Neuron 49:719–733

    Article  CAS  PubMed  Google Scholar 

  • Peng L, Li B, Du T, Wang F, Hertz L (2012) Does conventional anti-bipolar and antidepressant drug therapy reduce NMDA-mediated neuronal excitation by downregulating astrocytic GluK2 function? Pharmacol Biochem Behav 100:712–725

    Article  CAS  PubMed  Google Scholar 

  • Perez LJ, Diaz de Arce H, Cilloni F, Salviato A, Marciano S, Perera CL, Salomoni A, Beato MS, Romero A, Capua I, Cattoli G (2012) An SYBR Green-based real-time RT-PCR assay for the detection of H5 hemagglutinin subtype avian influenza virus. Mol Cell Probes 26:137–145

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rajkowska G, Miguel-Hidalgo JJ (2007) Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets 6:219–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rao JS, Ertley RN, Lee HJ, Rapoport SI, Bazinet RP (2006) Chronic fluoxetine upregulates activity, protein and mRNA levels of cytosolic phospholipase A2 in rat frontal cortex. Pharmacogenomics J 6:413–420

    Article  CAS  PubMed  Google Scholar 

  • Rasgon NL, Kenna HA, Geist C, Small G, Silverman D (2008) Cerebral metabolic patterns in untreated postmenopausal women with major depressive disorder. Psychiatry Res 164:77–80

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Nawa H, Morioka T, Fukuchi T, Oite T, Abe H, Takei N (2002) Establishment of a novel enzyme-linked immunosorbent assay for Thy-1; quantitative assessment of neuronal degeneration. Neurosci Lett 329:185–188

    Article  CAS  PubMed  Google Scholar 

  • Shaltiel G, Maeng S, Malkesman O, Pearson B, Schloesser RJ, Tragon T, Rogawski M, Gasior M, Luckenbaugh D, Chen G, Manji HK (2008) Evidence for the involvement of the kainate receptor subunit GluR6 (GRIK2) in mediating behavioral displays related to behavioral symptoms of mania. Mol Psychiatry 13:858–872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh M, Zimmerman MB, Beltz TG, Johnson AK (2009) Affect-related behaviors in mice misexpressing the RNA editing enzyme ADAR2. Physiol Behav 97:446–454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh M, Singh MM, Na E, Agassandian K, Zimmerman MB, Johnson AK (2011) Altered ADAR 2 equilibrium and 5HT2C R editing in the prefrontal cortex of ADAR 2 transgenic mice. Genes Brain Behav 10:637–647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stein EJ, da Silveira Filho NG, Machado DC, Hipolide DC, Barlow K, Nobrega JN (2009) Chronic mild stress induces widespread decreases in thyroid hormone α1 receptor mRNA levels in brain—reversal by imipramine. Psychoneuroendocrinology 34:281–286

    Article  CAS  PubMed  Google Scholar 

  • Strekalova T, Couch Y, Kholod N, Boyks M, Malin D, Leprince P, Steinbusch HM (2011) Update in the methodology of the chronic stress paradigm: internal control matters. Behav Brain Funct 7:9

    Article  PubMed Central  PubMed  Google Scholar 

  • Su KP, Huang SY, Peng CY, Lai HC, Huang CL, Chen YC, Aitchison KJ, Pariante CM (2010) Phospholipase A2 and cyclooxygenase 2 genes influence the risk of interferon-alpha-induced depression by regulating polyunsaturated fatty acids levels. Biol Psychiatry 67:550–557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Verkhratsky A, Butt AM (2013) Glial physiology and pathophysiology. Wiley-Blackwell, Chichester

    Book  Google Scholar 

  • Verkhratsky A, Nedergaard M (2014) Astroglial cradle in the life of the synapse. Philosophical Transactions of the Royal Society Series B 369:20130595

  • Videbech P (2000) PET measurements of brain glucose metabolism and blood flow in major depressive disorder: a critical review. Acta Psychiatr Scand 101:11–20

    Article  CAS  PubMed  Google Scholar 

  • Zeidan-Chulia F, Salmina AB, Malinovskaya NA, Noda M, Verkhratsky A, Moreira JC (2014) The glial perspective of autism spectrum disorders. Neurosci Biobehav Rev 38:160–172

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grant nos. 31000479 to BL and 31171036 to LP from the National Natural Science Foundation of China. AV was supported in part by the grant (agreement from August 27 2013, No. 02.В.49.21.0003) between The Ministry of Education and Science of the Russian Federation and Lobachevsky State University of Nizhny Novgorod and by the grant of the Russian Scientific Foundation No. 14-15-00633.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Peng.

Additional information

Lu Dong and Baoman Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, L., Li, B., Verkhratsky, A. et al. Cell type-specific in vivo expression of genes encoding signalling molecules in the brain in response to chronic mild stress and chronic treatment with fluoxetine. Psychopharmacology 232, 2827–2835 (2015). https://doi.org/10.1007/s00213-015-3921-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-3921-2

Keywords

Navigation