Skip to main content
Log in

Up-regulation of cPLA2 gene expression in astrocytes by all three conventional anti-bipolar drugs is drug-specific and enzyme-specific

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Common biological effects by all three conventional anti-bipolar drugs, the lithium ion (Li+), carbamazepine, and valproic acid, are important because identical effects may provide information about the pathophysiology of affective disorders. It has been reported that chronic treatment with either drug in vivo down-regulates the turnover of arachidonic acid in brain. This reaction is catalyzed by Ca2+-dependent phospholipase A2 (cPLA2), the expression of which was down-regulated by Li+ or carbamazepine but not by valproic acid; expression of two other PLA subtypes, iPLA2 and sPLA2 was unaffected. cPLA2 is amply expressed in astrocytes, and in the present study, effects of 1–4 weeks of treatment with clinically relevant concentrations of each of the three anti-bipolar drugs on cPLA2, iPLA2, and sPLA2 mRNA and protein expression were determined in primary cultures of mouse astrocytes by reverse transcription polymerase chain reaction (RT-PCR) and immunoblotting.

Results

Two or more weeks treatment with Li+ concentrations below 2 mM, carbamazepine or valproic acid up-regulated mRNA and protein expression of cPLA2, but had no effect on iPLA2 and sPLA2, showing enzyme specificity. The effect occurred more rapidly at higher than lower concentrations but also tended to end after 4 weeks at the higher concentrations. Two millimolar Li+ caused an initial increase of cPLA2 followed by a decrease after 3 and 4 weeks. Topiramate had no effect, indicating specificity for anti-bipolar drugs.

Conclusions

Both up- and down-regulation of cPLA2 gene expression are involved in the mechanisms of action of anti-bipolar drugs; astrocytes are a target for these drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alloisio S, Aiello R, Ferroni S, Nobile M (2006) Potentiation of native and recombinant P2X7-mediated calcium signaling by arachidonic acid in cultured cortical astrocytes and human embryonic kidney 293 cells. Mol Pharmacol 69:1975–1983

    Article  PubMed  CAS  Google Scholar 

  • Balboa MA, Varela-Nieto I, Lucas KK, Dennis EA (2002) Expression and function of phospholipase A2 in brain. FEBS Lett 531:12–17

    Article  PubMed  CAS  Google Scholar 

  • Basselin M, Chang L, Seemann R, Bell JM, Rapoport SI (2005) Chronic lithium administration to rats selectively modifies 5-HT2A/2C receptor-mediated brain signaling via arachidonic acid. Neuropsychopharmacol 30:461–472

    Article  CAS  Google Scholar 

  • Bazinet RP, Rao JS, Chang L, Rapoport SI, Lee HJ (2005) Chronic valproate does not alter the kinetics of docosahexaenoic acid within brain phospholipids of the unanesthetized rat. Psychopharmacol (Berl) 182:180–185

    Article  CAS  Google Scholar 

  • Bazinet RP, Rao JS, Chang L, Rapoport SI, Lee HJ (2006) Chronic carbamazepine decreases the incorporation rate and turnover of arachidonic acid but not docosahexaenoic acid in brain phospholipids of the unanesthetized rat: relevance to bipolar disorder. Biol Psychiatry 59:401–407

    Article  PubMed  CAS  Google Scholar 

  • Bialer M, Levy RH, Perucca E (1998) Does carbamazepine have a narrow therapeutic plasma concentration range? Ther Drug Monit 20:56–59

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chang MC, Grange E, Rabin O, Bell JM, Allen DD, Rapoport SI (1996) Lithium decreases turnover of arachidonate in several brain phospholipids. Neurosci Lett 220:171–174

    Article  PubMed  CAS  Google Scholar 

  • Chang MC, Contreras MA, Rosenberger TA, Rintala JJ, Bell JM, Rapoport SI (2001) Chronic valproate treatment decreases the in vivo turnover of arachidonic acid in brain phospholipids: a possible common effect of mood stabilizers. J Neurochem 77:796–803

    Article  PubMed  CAS  Google Scholar 

  • Cornell-Bell AH, Jung P, Trinkaus-Randall V (2004) Decoding calcium wave signaling. In Hertz L (ed) Non-neuronal cells of the nervous system: function and dysfunction. Elsevier, Amsterdam, pp 661–687

    Google Scholar 

  • Di Daniel E, Cheng L, Maycox PR, Mudge AW (2006) The common inositol-reversible effect of mood stabilizers on neurons does not involve GSK3 inhibition, myo-inositol-1-phosphate synthase or the sodium-dependent myo-inositol transporters. Mol Cell Neurosci 32:27–36

    Article  PubMed  Google Scholar 

  • El Marjou M, Montalescot V, Buzyn A, Geny B (2000) Modifications in phospholipase D activity and isoform expression occur upon maturation and differentiation in vivo and in vitro in human myeloid cells. Leukemia 14:2118–2127

    Article  PubMed  CAS  Google Scholar 

  • Fiacco TA, McCarthy KD (2006) Astrocyte calcium elevations: properties, propagation, and effects on brain signaling. Glia 54:676–690

    Article  PubMed  Google Scholar 

  • Friis ML, Christiansen J, Hvidberg EF (1978) Brain concentrations of carbamazepine and carbamazepine-10,11-epoxide in epileptic patients. Eur J Clin Pharmacol 14:47–51

    Article  PubMed  CAS  Google Scholar 

  • Garcia MC, Kim HY (1997) Mobilization of arachidonate and docosahexaenoate by stimulation of the 5-HT2Areceptor in rat C6 glioma cells. Brain Res 768:43–48

    Article  PubMed  CAS  Google Scholar 

  • Ghelardoni S, Tomita YA, Bell JM, Rapoport SI, Bosetti F (2004) Chronic carbamazepine selectively downregulates cytosolic phospholipase A2 expression and cyclooxygenase activity in rat brain. Biol Psychiatry 56:248–254

    Article  PubMed  CAS  Google Scholar 

  • Ghosh M, Tucker DE, Burchett SA, Leslie CC (2006) Properties of the Group IV phospholipase A2 family. Prog Lipid Res 45:487–510

    Article  PubMed  CAS  Google Scholar 

  • Goodnick PJ (2006) Anticonvulsants in the treatment of bipolar mania. Expert Opin Pharmacother 7:401–410

    Article  PubMed  CAS  Google Scholar 

  • Haas B, Schipke CG, Peters O, Sohl G, Willecke K, Kettenmann H (2006) Activity-dependent ATP-waves in the mouse neocortex are independent from astrocytic calcium waves. Cereb Cortex 16:237–246

    Article  PubMed  Google Scholar 

  • Hansson E, Rönnbäck L (2004) Astrocytic receptors and second messenger systems. In: Hertz L (ed) Non-Neuronal Cells of the Nervous System: Function and Dysfunction. Elsevier, Amsterdam, pp 475–501

    Google Scholar 

  • Hertz L, Schousboe A, Boechler N, Mukerji S, Fedoroff S (1978) Kinetic characteristics of the glutamate uptake into normal astrocytes in cultures. Neurochem Res 3:1–14

    Article  PubMed  CAS  Google Scholar 

  • Hertz L, Juurlink BHJ, Szuchet S (1985) Cell cultures. In: A Lajtha A (ed) Handbook of neurochemistry (2nd ed, Vol. 8) Plenum, New York, pp 603–661

    Google Scholar 

  • Hertz L, Bender AS, Woodbury D, White SA (1989) Potassium induced calcium uptake in astrocytes and its potent inhibition by a calcium channel blocker. J Neurosci Res 22:209–215

    Article  PubMed  CAS  Google Scholar 

  • Hertz L, Peng L, Lai JC (1998) Functional studies in cultured astrocytes. Methods 16:293–310

    Article  PubMed  CAS  Google Scholar 

  • Hertz L, Chen Y, Bersudsky Y, Wolfson M (2004) Shared effects of all three conventional anti-bipolar drugs on the phosphoinositide system in astrocytes. In: Hertz L (ed) Non-neuronal cells of the nervous system: function and dysfunction. Elsevier, Amsterdam, pp 1033–1048

    Google Scholar 

  • Hewett SJ (1999) Interferon-gamma reduces cyclooxygenase-2-mediated prostaglandin E2 production from primary mouse astrocytes independent of nitric oxide formation. J Neuroimmunol 94:134–143

    Article  PubMed  CAS  Google Scholar 

  • Ivanov A, Pero RS, Scheck A, Romanousky AA (2002) Prostaglandin E2-synthesizing enzymes in fever: differential transcriptional regulation. Am J Physiol Regul Integr Comp Physiol 283:R1104–R1117

    PubMed  Google Scholar 

  • Kennedy BP, Payette P, Mudgett J, Vadas P, Pruzanski W, Kwan M, Tang C, Rancourt DE, Cromlish WA (1995) A natural disruption of the secretory group II phospholipase A2 gene in inbred mouse strains. J Biol Chem 22:22378–22385

    Google Scholar 

  • Kong EKC, Peng L, Chen Y, Yu ACH, Hertz L (2002) Up-regulation of 5-HT2B receptor density and receptor-mediated glycogenolysis in mouse astrocytes by long-term fluoxetine administration. Neurochem Int 27:113–120

    Article  CAS  Google Scholar 

  • Lautens LL, Chiou XG, Sharp JD, Young WS 3rd, Sprague DL, Ross LS, Felder CC (1998) Cytosolic phospholipase A2 (cPLA2) distribution in murine brain and functional studies indicate that cPLA2 does not participate in muscarinic receptor-mediated signaling in neurons. Brain Res 809:18–30

    Article  PubMed  CAS  Google Scholar 

  • Lindbom J, Ljungman AG, Lindahl M, Tagesson C (2001) Expression of members of the phospholipase A2 family of enzymes in human nasal mucosa. Eur Respir J 18:130–138

    Article  PubMed  CAS  Google Scholar 

  • Lubrich B, van Calker D (1999) Inhibition of the high-affinity myo-inositol uptake: a common mechanism of action of anti-bipolar drugs? Neuropsychopharmacol 21:519–529

    Article  CAS  Google Scholar 

  • Maida ME, Hurley SD, Daeschner JA, Moore AH, O’Banion M (2006) Cytosolic prostaglandin E2 synthase (cPGES) expression is decreased in discrete cortical regions in psychiatric disease. Brain Res 1103:164–172

    Article  PubMed  CAS  Google Scholar 

  • Meier E, Hertz L, Schousboe A (1991) Neurotransmitters as developmental signals. Neurochem Int 19:1–15

    Article  CAS  Google Scholar 

  • Moore CM, Demopulos CM, Henry ME, Steingard RJ, Zamvil L, Katic A, Breeze JL, Moore JC, Cohen BM, Renshaw PF (2002) Brain-to-serum lithium ratio and age: an in vivo magnetic resonance spectroscopy study. Am J Psychiatry 159:1240–1242

    Article  PubMed  Google Scholar 

  • Peng L, Juurlink BHJ, Hertz L (1991) Differences in transmitter release, morphology, and ischemia-induced cell injury between cerebellar granule cell cultures developing in the presence and in the absence of a depolarizing potassium concentration. Dev Brain Res 63:1–12

    Article  CAS  Google Scholar 

  • Petit P, Lonjon R, Cociglio M, Sluzewska A, Blayac JP, Hue B, Alric R, Pouget R (1991) Carbamazepine and its 10,11-epoxide metabolite in acute mania: clinical and pharmacokinetic correlates. Eur J Clin Pharmacol 41:541–546

    Article  PubMed  CAS  Google Scholar 

  • Purdon AD, Rosenberger TA, Shetty HU, Rapoport SI (2002) Energy consumption by phospholipid metabolism in mammalian brain. Neurochem Res 27:1641–1647

    Article  PubMed  CAS  Google Scholar 

  • Rapoport SI, Bosetti F (2002) Do lithium and anticonvulsants target the brain arachidonic acid cascade in bipolar disorder? Arch Gen Psychiatry 59:592–596

    Article  PubMed  CAS  Google Scholar 

  • Rintala J, Seemann R, Chandrasekaran K, Rosenberger TA, Chang L, Contreras MA, Rapoport SI, Chang MC (1999) 85 kDa cytosolic phospholipase A2 is a target for chronic lithium in rat brain. Neuroreport 10:3887–3890

    Article  PubMed  CAS  Google Scholar 

  • Scemes E, Giaume C (2006) Astrocyte calcium waves: what they are and what they do. Glia 54:716–725

    Article  PubMed  Google Scholar 

  • Schou M (2001) Lithium treatment at 52. J Affect Disord 67:21–32

    Article  PubMed  CAS  Google Scholar 

  • Sergeeva M, Strokin M, Wang H, Ubl JJ, Reiser G (2003) Arachidonic acid in astrocytes blocks Ca(2+) oscillations by inhibiting store-operated Ca(2+) entry, and causes delayed Ca(2+) influx. Cell Calcium 33:283–292

    Article  PubMed  CAS  Google Scholar 

  • Soares JC, Boada F, Spencer S, Mallinger AG, Dippold CS, Wells KF, Frank E, Keshavan MS, Gershon S, Kupfer DJ (2001) Brain lithium concentrations in bipolar disorder patients: preliminary (7)Li magnetic resonance studies at 3 T. Biol Psychiatry 49:437–443

    Article  PubMed  CAS  Google Scholar 

  • Sproule B (2002) Lithium in bipolar disorder: can drug concentrations predict therapeutic effect? Clin Pharmacokinet 41:639–660

    Article  PubMed  Google Scholar 

  • Stephenson DT, Manetta JV, White DL, Chiou XG, Cox L, Gitter B, May PC, Sharp JD, Kramer RM, Clemens JA (2004) Phospholipase A2 in the central nervous system: implication for neurodegeneration diseases. J Lipid Res 46:205–213

    Google Scholar 

  • Sun GY, Xu J, Jensen MD, Yu S, Wood WG, Gonzalez FA, Simonyi A, Sun, AY, Weisman GA (2005) Phospholipase A2 in astrocytes: responses to oxidative stress, inflammation, and G protein-coupled receptor agonists. Mol Neurobiol 31:27–41

    Article  PubMed  CAS  Google Scholar 

  • Vajda FJ, Donnan GA, Phillips J, Bladin PF (1981) Human brain, plasma, and cerebrospinal fluid concentration of sodium valproate after 72 h of therapy. Neurology 31:486–487

    PubMed  CAS  Google Scholar 

  • Weerasinghe GR, Rapoport SI, Bosetti F (2004) The effect of chronic lithium on arachidonic acid release and metabolism in rat brain does not involve secretory phospholipase A2 or lipoxygenase/cytochrome P450 pathways. Brain Res Bull 63:485–489

    Article  PubMed  CAS  Google Scholar 

  • Wieser HG (1994) Comparison of valproate level in human plasma, cerebrospinal fluid and brain tissue following administration of various preparations of valproate and valpromide. Schweiz Rundsch Med Prax 83:1111–1116

    PubMed  CAS  Google Scholar 

  • Williams V, Grossman RG, Edmunds SM (1980) Volume and surface area estimates of astrocytes in the sensorimotor cortex of the cat. Neurosci 5:115–1151

    Article  Google Scholar 

  • Williams RS, Cheng L, Mudge AW, Harwood AJ (2002) A common mechanism of action for three mood-stabilizing drugs. Nature 417:292–295

    Article  PubMed  CAS  Google Scholar 

  • Wolff J, Chao TI (2004) Cytoarchitectonics of non-neuronal cells in the central nervous system. In Hertz L (ed) Non-neuronal cells of the nervous system: function and dysfunction. Elsevier, Amsterdam, pp 1–52

    Google Scholar 

  • Wolfson M, Bersudsky Y, Zinger E, Simkin M, Belmaker RH, Hertz L (2000) Chronic treatment of human astrocytoma cells with lithium, carbamazepine or valproic acid decreases inositol uptake at high inositol concentrations but increases it at low inositol concentrations. Brain Res 855:158–161

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Weng YI, Simonyi A, Krugh BW, Liao Z, Weisman GA, Sun GY (2002) Role of PKC and MAPK in cytosolic PLA2 phosphorylation and arachidonic acid release in primary murine astrocytes. J Neurochem 83:259–270

    Article  PubMed  CAS  Google Scholar 

  • Yang KT, Chen WP, Chang WL, Su MJ, Tsai KL (2005) Arachidonic acid inhibits capacitative Ca2+ entry and activates non-capacitative Ca2+ entry in cultured astrocytes. Biochem Biophys Res Commun 331:603–613

    Article  PubMed  CAS  Google Scholar 

  • Zhao Z, Hertz L, Code WE (1996) Effects of benzodiazepines on potassium-induced increase in free cytosolic calcium concentration in astrocytes: interactions with nifedipine and the peripheral-type benzodiazepine antagonist PK 11195. Can J Physiol Pharmacol 74:273–277

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Grant No. 30572180 and No. 30370451 from the National Natural Science Foundation of China. We thank Mrs. Xiaolin Yang for her valuable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B., Gu, L., Zhang, H. et al. Up-regulation of cPLA2 gene expression in astrocytes by all three conventional anti-bipolar drugs is drug-specific and enzyme-specific. Psychopharmacology 194, 333–345 (2007). https://doi.org/10.1007/s00213-007-0853-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-0853-5

Keywords

Navigation