Skip to main content

Advertisement

Log in

Cell Type-Specific Gene Expression and Editing Responses to Chronic Fluoxetine Treatment in the In Vivo Mouse Brain and Their Relevance for Stress-Induced Anhedonia

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Recently developed methods for fluorescence-activated cell sorting (FACS) of freshly-isolated brain cells from transgenic mice combining fluorescent signals with cell type-specific markers allow cell-type separation. Based upon previous observations in primary cultures of mouse astrocytes we treated transgenic mice tagged with a neuron-specific or an astrocyte-specific marker with fluoxetine, either acute (10 mg/kg for 2 h) or chronic (10 mg/kg daily for 2 weeks). Acute treatment upregulated cfos and fosB mRNA expression in astrocytes and neurons. Chronic effects on astrocytes replicated those demonstrated in cultures, i.e., upregulation of mRNA and/or protein expression of 5-HT2B receptors (5-HT2BR), and GluK2 receptors, and of cPLA2a and ADAR2, together with increased GluK2 and 5-HT2BR editing. Neurons showed increased GluK4 and 5-HT2C receptor expression. To further correlate these findings with major depression we compared the changes in gene expression with those in a mouse model of anhedonia. Three out of 4 genes up-regulated in astrocytes by fluoxetine were down-regulated, whereas the neuronally upregulated 5-HT2C receptor gene showed no change. References are made to recent review papers discussing potential relations between observed fluoxetine effects and clinical effects of SSRIs, emphasizing that all 5 clinically used SSRIs have identical and virtually equipotent effects on cultured astrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bevilacqua L, Doly S, Kaprio J, Yuan Q, Tikkanen R, Paunio T, Zhou Z, Wedenoja J, Maroteaux L, Diaz S, Belmer A, Hodgkinson CA, Dell’osso L, Suvisaari J, Coccaro E, Rose RJ, Peltonen L, Virkkunen M, Goldman D (2010) A population-specific 5-HTR2B stop codon predisposes to severe impulsivity. Nature 468:1061–1066

    Article  PubMed  CAS  Google Scholar 

  2. Kim SJ, Veenstra-VanderWeele J, Hanna GL, Gonen D, Leventhal BL, Cook EH Jr (2000) Mutation screening of human 5-HT(2B)receptor gene in early-onset obsessive-compulsive disorder. Mol Cell Probes 14:47–52

    Article  PubMed  Google Scholar 

  3. Li B, Zhang S, Zhang H, Nu W, Cai L, Hertz L, Peng L (2008) Fluoxetine-mediated 5-HT2B receptor stimulation in astrocytes causes EGF receptor transactivation and ERK phosphorylation. Psychopharmacology 201:443–458

    Article  PubMed  CAS  Google Scholar 

  4. Li B, Zhang S, Li M, Hertz L, Peng L (2009) Chronic treatment of astrocytes with therapeutically relevant fluoxetine concentrations enhances cPLA2 expression secondary to 5-HT2B-induced, transactivation-mediated ERK1/2 phosphorylation. Psychopharmacology 207:1–12

    Article  PubMed  CAS  Google Scholar 

  5. Li B, Zhang S, Zhang H, Hertz L, Peng L (2011) Fluoxetine affects GluK2 editing, glutamate-evoked Ca(2+) influx and extracellular signal-regulated kinase phosphorylation in mouse astrocytes. J Psychiatry Neurosci 36:322–338

    Article  PubMed  CAS  Google Scholar 

  6. Englander MT, Dulawa SC, Bhansali P, Schmauss C (2005) How stress and fluoxetine modulate serotonin 2C receptor pre-mRNA editing. J Neurosci 25:648–651

    Article  PubMed  CAS  Google Scholar 

  7. Berg KA, Clarke WP, Cunningham KA, Spampinato U (2008) Fine-tuning serotonin2c receptor function in the brain: molecular and functional implications. Neuropharmacology 55:969–976

    Article  PubMed  CAS  Google Scholar 

  8. Barbon A, Orlandi C, La Via L, Caracciolo L, Tardito D, Musazzi L, Mallei A, Gennarelli M, Racagni G, Popoli M, Barlati S (2011) Antidepressant treatments change 5-HT2C receptor mRNA expression in rat prefrontal/frontal cortex and hippocampus. Neuropsychobiology 63:160–168

    Article  PubMed  CAS  Google Scholar 

  9. Pae CU, Yu HS, Lee KU, Kim JJ, Lee CU, Lee SJ, Jun TY, Lee C, Paik IH (2004) BanI polymorphism of the cytosolic phospholipase A2 gene may confer susceptibility to the development of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 28:739–741

    Article  PubMed  CAS  Google Scholar 

  10. Rao JS, Ertley RN, Lee HJ, Rapoport SI, Bazinet RP (2006) Chronic fluoxetine upregulates activity, protein and mRNA levels of cytosolic phospholipase A2 in rat frontal cortex. Pharmacogenomics J 6:413–420

    Article  PubMed  CAS  Google Scholar 

  11. Su KP, Huang SY, Peng CY, Lai HC, Huang CL, Chen YC, Aitchison KJ, Pariante CM (2010) Phospholipase A2 and cyclooxygenase 2 genes influence the risk of interferon-alpha-induced depression by regulating polyunsaturated fatty acids levels. Biol Psychiatry 67:550–557

    Article  PubMed  CAS  Google Scholar 

  12. Delorme R, Krebs MO, Chabane N, Roy I, Millet B, Mouren-Simeoni MC, Maier W, Bourgeron T, Leboyer M (2004) Frequency and transmission of glutamate receptors GRIK2 and GRIK3 polymorphisms in patients with obsessive compulsive disorder. NeuroReport 15:699–702

    Article  PubMed  CAS  Google Scholar 

  13. Sampaio AS, Fagerness J, Crane J, Leboyer M, Delorme R, Pauls DL, Stewart SE (2011) Association between polymorphisms in GRIK2 gene and obsessive-compulsive disorder: a family-based study. CNS Neurosci Ther 17:141–147

    Article  PubMed  CAS  Google Scholar 

  14. Bass BL (2002) RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem 71:817–846

    Article  PubMed  CAS  Google Scholar 

  15. Kawahara Y, Ito K, Sun H, Ito M, Kanazawa I, Kwak S (2004) Regulation of glutamate receptor RNA editing and ADAR mRNA expression in developing human normal and Down’s syndrome brains. Dev Brain Res 148:151–155

    Article  CAS  Google Scholar 

  16. Barbon A, Popoli M, La Via L, Moraschi S, Vallini I, Tardito D, Tiraboschi E, Musazzi L, Giambelli R, Gennarelli M, Racagni G, Barlati S (2006) Regulation of editing and expression of glutamate alpha-amino-propionic-acid (AMPA)/kainate receptors by antidepressant drugs. Biol Psychiatry 59:713–720

    Article  PubMed  CAS  Google Scholar 

  17. Kong EK, Peng L, Chen Y, Yu AC, Hertz L (2002) Up-regulation of 5-HT2B receptor density and receptor-mediated glycogenolysis in mouse astrocytes by long-term fluoxetine administration. Neurochem Res 27:113–120

    Article  PubMed  CAS  Google Scholar 

  18. Diaz SL, Doly S, Narboux-Nême N, Fernández S, Mazot P, Banas SM, Boutourlinsky K, Moutkine I, Belmer A, Roumier A, Maroteaux L (2012) 5-HT(2B) receptors are required for serotonin-selective antidepressant actions. Mol Psychiatry 17:154–163

    Article  PubMed  CAS  Google Scholar 

  19. Zhang S, Li B, Lovatt D, Xu J, Song D, Goldman SA, Nedergaard M, Hertz L, Peng L (2010) 5-HT2B receptors are expressed on astrocytes from brain and in culture and are a chronic target for all five conventional ‘serotonin-specific reuptake inhibitors’. Neuron Glia Biol 6:113–125

    Article  PubMed  Google Scholar 

  20. Einat H, Clenet F, Shaldubina A, Belmaker RH, Bourin M (2001) The antidepressant activity of inositol in the forced swim test involves 5-HT(2) receptors. Behav Brain Res 118:77–83

    Article  PubMed  CAS  Google Scholar 

  21. Peng LA, Juurlink BH, Hertz L (1991) Differences in transmitter release, morphology, and ischemia-induced cell injury between cerebellar granule cell cultures developing in the presence and in the absence of a depolarizing potassium concentration. Brain Res Dev Brain Res 63:1–12

    Article  PubMed  CAS  Google Scholar 

  22. Lovatt D, Sonnewald U, Waagepetersen HS, Schousboe A, He W, Lin JH, Han X, Takano T, Wang S, Sim FJ, Goldman SA, Nedergaard M (2007) The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J Neurosci 27:12255–12266

    Article  PubMed  CAS  Google Scholar 

  23. Stein EJ, da Silveira Filho NG, Machado DC, Hipólide DC, Barlow K, Nobrega JN (2009) Chronic mild stress induces widespread decreases in thyroid hormone alpha1 receptor mRNA levels in brain–reversal by imipramine. Psychoneuroendocrinology 34:281–286

    Article  PubMed  CAS  Google Scholar 

  24. Knapman A, Heinzmann JM, Holsboer F, Landgraf R, Touma C (2010) Modeling psychotic and cognitive symptoms of affective disorders: disrupted latent inhibition and reversal learning deficits in highly stress reactive mice. Neurobiol Learn Mem 94:145–152

    Article  PubMed  CAS  Google Scholar 

  25. Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW, Sanes JR (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28:41–51

    Article  PubMed  CAS  Google Scholar 

  26. Seki M, Nawa H, Morioka T, Fukuchi T, Oite T, Abe H, Takei N (2002) Establishment of a novel enzyme-linked immunosorbent assay for Thy-1; quantitative assessment of neuronal degeneration. Neurosci Lett 329:185–188

    Article  PubMed  CAS  Google Scholar 

  27. Jaggi AS, Bhatia N, Kumar N, Singh N, Anand P, Dhawan R (2011) A review on animal models for screening potential anti-stress agents. Neurol Sci 32:993–1005

    Article  PubMed  Google Scholar 

  28. Fu H, Li B, Hertz L, Peng L (2012) Contributions in astrocytes of SMIT1/2 and HMIT to myo-inositol uptake at different concentrations and pH. Neurochem Int. http://dx.doi.org/10.1016/j.neuint.2012.04.010

  29. Iwamoto K, Bundo M, Kato T (2005) Estimating RNA editing efficiency of five editing sites in the serotonin 2C receptor by pyrosequencing. RNA 11:1596–1603

    Article  PubMed  CAS  Google Scholar 

  30. Baez M, Kursar JD, Helton LA, Wainscott DB, Nelson DL (1995) Molecular biology of serotonin receptors. Obes Res Suppl 4:441S–447S

    Google Scholar 

  31. Mombereau C, Kawahara Y, Gundersen BB, Nishikura K, Blendy JA (2010) Functional relevance of serotonin 2C receptor mRNA editing in antidepressant- and anxiety-like behaviors. Neuropharmacology 59:468–473

    Article  PubMed  CAS  Google Scholar 

  32. Hertz L, Li B, Song D, Ren J, Dong L, Chen Y, Peng L (2012) Astrocytes as a 5-HT2B-mediated SSRI, SERT-independent target, slowly altering depression-associated genes and function. Curr Signal Transd T 7:65–80

    Article  CAS  Google Scholar 

  33. Peng L, Li B, Du T, Wang F, Hertz L (2012) Does conventional anti-bipolar and antidepressant drug therapy reduce NMDA-mediated neuronal excitation by downregulating astrocytic GluK2 function? Pharmacol Biochem Behav 100:712–725

    Article  PubMed  CAS  Google Scholar 

  34. Frazer A (2001) Serotonergic and noradrenergic reuptake inhibitors: prediction of clinical effects from in vitro potencies. J Clin Psychiatry Suppl 12:16–23

    Google Scholar 

  35. Bernard R, Kerman IA, Thompson RC, Jones EG, Bunney WE, Barchas JD, Schatzberg AF, Myers RM, Akil H, Watson SJ (2011) Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression. Mol Psychiatry 16:634–646

    Article  PubMed  CAS  Google Scholar 

  36. Bekar LK, He W, Nedergaard M (2008) Locus coeruleus alpha-adrenergic-mediated activation of cortical astrocytes in vivo. Cereb Cortex 18:2789–2795

    Article  PubMed  Google Scholar 

  37. Perry KW, Fuller RW (1992) Effect of fluoxetine on serotonin and dopamine concentration in microdialysis fluid from rat striatum. Life Sci 50:1683–1690

    Article  PubMed  CAS  Google Scholar 

  38. Li BM, Zhang SQ, Zhang HY, Hertz L, Peng L (2011) Fluoxetine affects GluK2 editing, glutamate-evoked Ca(2+) influx and extracellular signal-regulated kinase phosphorylation in mouse astrocytes. J Psychiatry Neurosci 36:322–338

    Article  PubMed  CAS  Google Scholar 

  39. Catches JS, Xu J, Contractor A (2012) Genetic ablation of the GluK4 kainate receptor subunit causes anxiolytic and antidepressant-like behavior in mice. Behav Brain Res 228:406–414

    Article  PubMed  CAS  Google Scholar 

  40. Paddock S, Laje G, Charney D, Rush AJ, Wilson AF, Sorant AJ, Lipsky R, Wisniewski SR, Manji H, McMahon FJ (2007) Association of GRIK4 with outcome of antidepressant treatment in the STAR*D cohort. Am J Psychiatry 164:1181–1188

    Article  PubMed  Google Scholar 

  41. Chowdhury GM, Behar KL, Cho W, Thomas MA, Rothman DL, Sanacora G (2012) (1)H-[(13)C]-Nuclear magnetic resonance spectroscopy measures of ketamine’s effect on amino acid neurotransmitter metabolism. Biol Psychiatry 71:1022–1025

    Article  PubMed  CAS  Google Scholar 

  42. Bureau I, Dieudonne S, Coussen F, Mulle C (2000) Kainate receptor-mediated synaptic currents in cerebellar Golgi cells are not shaped by diffusion of glutamate. Proc Natl Acad Sci USA 97:6838–6843

    Article  PubMed  CAS  Google Scholar 

  43. Li B, Zhang S, Zhang H, Hertz L, Peng L (2011) Fluoxetine affects GluK2 editing, glutamate-evoked Ca(2+) influx and extracellular signal-regulated kinase phosphorylation in mouse astrocytes. J Psychiatry Neurosci 36:322–338

    Article  PubMed  CAS  Google Scholar 

  44. Hong J, Qian Z, Shen S, Min T, Tan C, Xu J, Zhao Y, Huang W (2005) High doses of siRNAs induce eri-1 and adar-1 gene expression and reduce the efficiency of RNA interference in the mouse. Biochem J 390:675–679

    Article  PubMed  CAS  Google Scholar 

  45. Feng Y, Sansam CL, Singh M, Emeson RB (2006) Altered RNA editing in mice lacking ADAR2 autoregulation. Mol Cell Biol 26:480–488

    Article  PubMed  CAS  Google Scholar 

  46. Ivanov AI, Pero RS, Scheck AC, Romanovsky AA (2002) Prostaglandin E(2)-synthesizing enzymes in fever: differential transcriptional regulation. Am J Physiol Regul Integr Comp Physiol 283:R1104–R1117

    PubMed  Google Scholar 

  47. Lindbom J, Ljungman AG, Lindahl M, Tagesson C (2001) Expression of members of the phospholipase A2 family of enzymes in human nasal mucosa. Eur Respir J 18:130–138

    Article  PubMed  CAS  Google Scholar 

  48. Kennedy BP, Payette P, Mudgett J, Vadas P, Pruzanski W, Kwan M, Tang C, Rancourt DE, Cromlish WA (1995) A natural disruption of the secretory group II phospholipase A2 gene in inbred mouse strains. J Biol Chem 270:22378–22385

    Article  PubMed  CAS  Google Scholar 

  49. Choi DS, Ward SJ, Messadeqq N, Launay JM, Maroteaux L (1997) 5-HT2B receptor-mediated serotonin morphogenetic functions in mouse cranial neural crest and myocardiac cells. Development 124:1745–1755

    PubMed  CAS  Google Scholar 

  50. Li B, Zhang S, Zhang H, Hertz L, Peng L (2011) Fluoxetine affects GluK2 editing, glutamate-evoked Ca(2+) influx and extracellular signal-regulated kinase phosphorylation in mouse astrocytes. J Psychiatry Neurosci 36:322–338

    Article  PubMed  CAS  Google Scholar 

  51. Popova NK, Naumenko VS, Tibeikina MA, Kulikov AV (2009) Serotonin transporter, 5-HT1A receptor, and behavior in DBA/2 J mice in comparison with four inbred mouse strains. J Neurosci Res 87:3649–3657

    Article  PubMed  CAS  Google Scholar 

  52. Elkeles A, Juven-Gershon T, Israeli D, Wilder S, Zalcenstein A, Oren M (1999) The c-fos proto-oncogene is a target for transactivation by the p53 tumor suppressor. Mol Cell Biol 19:2594–2600

    PubMed  CAS  Google Scholar 

  53. Inoue D, Kido S, Matsumoto T (2004) Transcriptional induction of FosB/DeltaFosB gene by mechanical stress in osteoblasts. J Biol Chem 279:49795–49803

    Article  PubMed  CAS  Google Scholar 

  54. El-Marjou M, Montalescot V, Buzyn A, Geny B (2000) Modifications in phospholipase D activity and isoform expression occur upon maturation and differentiation in vivo and in vitro in human myeloid cells. Leukemia 14:2118–2127

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants No. 31000479 to BL and No. 30770667 and 31171036 to LP from the National Natural Science Foundation of China.

Conflict of interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoman Li.

Additional information

In Honor of Leif Hertz

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1256 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B., Dong, L., Wang, B. et al. Cell Type-Specific Gene Expression and Editing Responses to Chronic Fluoxetine Treatment in the In Vivo Mouse Brain and Their Relevance for Stress-Induced Anhedonia. Neurochem Res 37, 2480–2495 (2012). https://doi.org/10.1007/s11064-012-0814-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0814-1

Keywords

Navigation