Skip to main content

Immobilized Laccase: A Promising Bioremediation Tool for the Removal of Organic Contaminants in Wastewater

  • Chapter
  • First Online:
Laccases in Bioremediation and Waste Valorisation

Part of the book series: Microbiology Monographs ((MICROMONO,volume 33))

Abstract

Laccase, an incredible enzyme, has a wide prospective in bioremediation processes, mainly due to its relative broad oxidation capacity, the lack of requirement of cofactors, and the use of readily available oxygen as the final electron acceptor. However, the large-scale application of laccases in bioremediation necessitates immobilization/insolubilization of the biocatalysts to enhance their operational stability. With the burgeoning use of laccases in wastewater treatment, several state-of-the-art methods have been developed over the past few years to immobilize laccase, derived from various microbial sources, in order to enhance the selectivity, activity, stability, and reusability. Recent advances in these immobilization methods offer promising solutions to the limitations of soluble enzymes, such as poor reusability due to poor recoverability, low stability, and high costs, to name a few. This article is intended to review the various recent methods employed for immobilization or insolubilization of laccase and its use in treating various types of organic contaminants in wastewaters including those from olive mill, pulp and paper, biorefinery, municipal, hospital, and textile industries. Furthermore, to improve the potential of the laccase-based biocatalytic system against wastewater/pollution treatment, co-immobilization of enzymes such as tyrosinase, peroxidase, and glucose oxidase, with laccase, would serve as a promising bioremediation tool for treating the organic contaminants in industrial and municipal wastewater. The concept and approach of this review also renders knowledge on a yet unexplored focus on the pioneering advances on the development of immobilized laccase-based reusable biocatalysts, which could be employed for treatment of industrial and hospital wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abadulla E, Tzanov T, Costa S, Robra K-H, Cavaco-Paulo A, Gübitz GM (2000) Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl Environ Microbiol 66(8):3357–3362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agathos SN (2012) Biocatalytic weapons against micropollutants. Environ Eng Manag J 11:SS99–SS104

    Article  Google Scholar 

  • Ahn M-Y, Zimmerman AR, Martínez CE, Archibald DD, Bollag J-M, Dec J (2007) Characteristics of Trametes villosa laccase adsorbed on aluminum hydroxide. Enzyme Microb Technol 41(1–2):141–148

    Article  CAS  Google Scholar 

  • Alshabib M, Onaizi SA (2019) A review on phenolic wastewater remediation using homogeneous and heterogeneous enzymatic processes: current status and potential challenges. Sep Purif Technol 219:186

    Article  CAS  Google Scholar 

  • Amitai G, Adani R, Sod-Moriah G, Rabinovitz I, Vincze A, Leader H, Chefetz B, Leibovitz-Persky L, Friesem D, Hadar Y (1998) Oxidative biodegradation of phosphorothiolates by fungal laccase. FEBS Lett 438(3):195–200

    Article  CAS  PubMed  Google Scholar 

  • Ammann EM, Gasser CA, Hommes G, Corvini PF-X (2014) Immobilization of defined laccase combinations for enhanced oxidation of phenolic contaminants. Appl Microbiol Biotechnol 98(3):1397–1406

    Article  CAS  PubMed  Google Scholar 

  • Anderson G, Bleakley B, McDaniel R, Mardani S, Jahandideh A (2018) Fungal treatment of pharmaceuticals in effluents: current state, perspectives, limitations, and opportunities. In: Life cycle assessment of wastewater treatment. CRC, Boca Raton, pp 139–170

    Google Scholar 

  • Arca-Ramos A, Ammann E, Gasser C, Nastold P, Eibes G, Feijoo G, Lema J, Moreira M, Corvini P-X (2016a) Assessing the use of nanoimmobilized laccases to remove micropollutants from wastewater. Environ Sci Pollut Res 23(4):3217–3228

    Article  CAS  Google Scholar 

  • Arca-Ramos A, Kumar V, Eibes G, Moreira M, Cabana H (2016b) Recyclable cross-linked laccase aggregates coupled to magnetic silica microbeads for elimination of pharmaceuticals from municipal wastewater. Environ Sci Pollut Res 23(9):8929–8939

    Article  CAS  Google Scholar 

  • Arca-Ramos A, Eibes G, Feijoo G, Lema JM, Moreira MT (2018) Enzymatic reactors for the removal of recalcitrant compounds in wastewater. Biocatal Biotransform 36(3):195–215

    Article  CAS  Google Scholar 

  • Arıca MY, Altıntas B, Bayramoğlu G (2009) Immobilization of laccase onto spacer-arm attached non-porous poly (GMA/EGDMA) beads: application for textile dye degradation. Bioresour Technol 100(2):665–669

    Article  PubMed  CAS  Google Scholar 

  • Asgher M, Kamal S, Iqbal HMN (2012) Improvement of catalytic efficiency, thermo-stability and dye decolorization capability of Pleurotus ostreatus IBL-02 laccase by hydrophobic sol gel entrapment. Chem Cent J 6(1):110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ba S, Mialon A, Cabana H, Jones J (2012) Laccase insolubilized as combination of crosslinked enzyme aggregates: characterization and potential application in wastewater treatment. J Enzym Res 3:23–28

    Google Scholar 

  • Ba S, Arsenault A, Hassani T, Jones JP, Cabana H (2013) Laccase immobilization and insolubilization: from fundamentals to applications for the elimination of emerging contaminants in wastewater treatment. Crit Rev Biotechnol 33(4):404–418

    Article  CAS  PubMed  Google Scholar 

  • Ba S, Haroune L, Cruz-Morató C, Jacquet C, Touahar IE, Bellenger J-P, Legault CY, Jones JP, Cabana H (2014a) Synthesis and characterization of combined cross-linked laccase and tyrosinase aggregates transforming acetaminophen as a model phenolic compound in wastewaters. Sci Total Environ 487:748–755

    Article  CAS  PubMed  Google Scholar 

  • Ba S, Jones JP, Cabana H (2014b) Hybrid bioreactor (HBR) of hollow fiber microfilter membrane and cross-linked laccase aggregates eliminate aromatic pharmaceuticals in wastewaters. J Hazard Mater 280:662–670

    Article  CAS  PubMed  Google Scholar 

  • Bayramoglu G, Gursel I, Yilmaz M, Arica MY (2012) Immobilization of laccase on itaconic acid grafted and cu (II) ion chelated chitosan membrane for bioremediation of hazardous materials. J Chem Technol Biotechnol 87(4):530–539

    Article  CAS  Google Scholar 

  • Bello MM, Raman AAA, Purushothaman M (2017) Applications of fluidized bed reactors in wastewater treatment–a review of the major design and operational parameters. J Clean Prod 141:1492–1514

    Article  CAS  Google Scholar 

  • Berrio J, Plou FJ, Ballesteros A, Martínez ÁT, Martínez MJ (2007) Immobilization of Pycnoporus coccineus laccase on Eupergit C: stabilization and treatment of olive oil mill wastewaters. Biocatal Biotransform 25(2–4):130–134

    Article  CAS  Google Scholar 

  • Bickerstaff GF (1997) Immobilization of enzymes and cells. In: Immobilization of enzymes and cells. Springer, New York, pp 1–11

    Google Scholar 

  • Bollag J-M, Leonowicz A (1984) Comparative studies of extracellular fungal laccases. Appl Environ Microbiol 48(4):849–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brady D, Jordaan J (2009) Advances in enzyme immobilisation. Biotechnol Lett 31(11):1639

    Article  CAS  PubMed  Google Scholar 

  • Cabana H, Jones JP, Agathos SN (2007) Preparation and characterization of cross-linked laccase aggregates and their application to the elimination of endocrine disrupting chemicals. J Biotechnol 132(1):23–31

    Article  CAS  PubMed  Google Scholar 

  • Cabana H, Jones JP, Agathos SN (2009) Utilization of cross-linked laccase aggregates in a perfusion basket reactor for the continuous elimination of endocrine-disrupting chemicals. Biotechnol Bioeng 102(6):1582–1592

    Article  CAS  PubMed  Google Scholar 

  • Cao L (2005) Immobilised enzymes: science or art? Curr Opin Chem Biol 9(2):217–226

    Article  CAS  PubMed  Google Scholar 

  • Chao Z, Wang Y, Jakobsen JP, Fernandino M, Jakobsen HA (2011) Derivation and validation of a binary multi-fluid Eulerian model for fluidized beds. Chem Eng Sci 66(16):3605–3616

    Article  CAS  Google Scholar 

  • Couto SR, Herrera JLT (2006) Industrial and biotechnological applications of laccases: a review. Biotechnol Adv 24(5):500–513

    Article  CAS  Google Scholar 

  • D’Annibale A, Stazi SR, Vinciguerra V, Di Mattia E, Sermanni GG (1999) Characterization of immobilized laccase from Lentinula edodes and its use in olive-mill wastewater treatment. Process Biochem 34(6–7):697–706

    Article  Google Scholar 

  • D’Annibale A, Stazi SR, Vinciguerra V, Sermanni GG (2000) Oxirane-immobilized Lentinula edodes laccase: stability and phenolics removal efficiency in olive mill wastewater. J Biotechnol 77(2–3):265–273

    Article  PubMed  Google Scholar 

  • Dai Y, Yao J, Song Y, Wang S, Yuan Y (2016) Enhanced adsorption and degradation of phenolic pollutants in water by carbon nanotube modified laccase-carrying electrospun fibrous membranes. Environ Sci 3(4):857–868

    CAS  Google Scholar 

  • Davis S, Burns RG (1992) Covalent immobilization of laccase on activated carbon for phenolic effluent treatment. Appl Microbiol Biotechnol 37(4):474–479

    Article  CAS  Google Scholar 

  • De Cazes M, Abejón R, Belleville M-P, Sanchez-Marcano J (2014) Membrane bioprocesses for pharmaceutical micropollutant removal from waters. Membranes 4(4):692–729

    Article  PubMed  PubMed Central  Google Scholar 

  • de Souza Bezerra TM, Bassan JC, de Oliveira Santos VT, Ferraz A, Monti R (2015) Covalent immobilization of laccase in green coconut fiber and use in clarification of apple juice. Process Biochem 50(3):417–423

    Article  CAS  Google Scholar 

  • Dignac M-F, Ginestet P, Rybacki D, Bruchet A, Urbain V, Scribe P (2000) Fate of wastewater organic pollution during activated sludge treatment: nature of residual organic matter. Water Res 34(17):4185–4194

    Article  CAS  Google Scholar 

  • Fang H, Huang J, Ding L, Li M, Chen Z (2009) Preparation of magnetic chitosan nanoparticles and immobilization of laccase. J Wuhan Univ Technol Mater Sci Ed 24(1):42–47

    Article  CAS  Google Scholar 

  • Fernández-Fernández M, Sanromán MÁ, Moldes D (2013) Recent developments and applications of immobilized laccase. Biotechnol Adv 31(8):1808–1825

    Article  PubMed  CAS  Google Scholar 

  • Frasconi M, Favero G, Boer H, Koivula A, Mazzei F (2010) Kinetic and biochemical properties of high and low redox potential laccases from fungal and plant origin. Biochim Biophys Acta 1804(4):899–908

    Article  CAS  PubMed  Google Scholar 

  • Fraser JE, Bickerstaff GF (1997) Entrapment in calcium alginate. In: Immobilization of enzymes and cells. Springer, New York, pp 61–66

    Google Scholar 

  • Gasser CA, Ammann EM, Shahgaldian P, Corvini PF-X (2014) Laccases to take on the challenge of emerging organic contaminants in wastewater. Appl Microbiol Biotechnol 98(24):9931–9952

    Article  CAS  PubMed  Google Scholar 

  • Grace JR, Bi H (1997) Introduction to circulating fluidized beds. In: Circulating fluidized beds. Springer, New York, pp 1–20

    Google Scholar 

  • Habeeb A, Hiramoto R (1968) Reaction of proteins with glutaraldehyde. Arch Biochem Biophys 126(1):16–26

    Article  CAS  PubMed  Google Scholar 

  • Halling PJ, Ulijn RV, Flitsch SL (2005) Understanding enzyme action on immobilised substrates. Curr Opin Biotechnol 16(4):385–392

    Article  CAS  PubMed  Google Scholar 

  • Hassani T, Ba S, Cabana H (2013) Formation of enzyme polymer engineered structure for laccase and cross-linked laccase aggregates stabilization. Bioresour Technol 128:640–645

    Article  CAS  PubMed  Google Scholar 

  • Illanes A (2008) Enzyme biocatalysis. Principles and applications. Springer, New York

    Book  Google Scholar 

  • Irshad M, Bahadur BA, Anwar Z, Yaqoob M, Ijaz A, Iqbal HMN (2012) Decolorization applicability of sol-gel matrix-immobilized laccase produced from Ganoderma lucidum using agro-industrial waste. BioResour 7(3):4249–4261

    Google Scholar 

  • Jahangiri E, Thomas I, Schulze A, Seiwert B, Cabana H, Schlosser D (2018) Characterisation of electron beam irradiation-immobilised laccase for application in wastewater treatment. Sci Total Environ 624:309–322

    Article  CAS  PubMed  Google Scholar 

  • Jesionowski T, Zdarta J, Krajewska B (2014) Enzyme immobilization by adsorption: a review. Adsorption 20(5–6):801–821

    Article  CAS  Google Scholar 

  • Ji C, Hou J, Wang K, Zhang Y, Chen V (2016) Biocatalytic degradation of carbamazepine with immobilized laccase-mediator membrane hybrid reactor. J Membrane Sci 502:11–20

    Article  CAS  Google Scholar 

  • Ji C, Nguyen LN, Hou J, Hai FI, Chen V (2017) Direct immobilization of laccase on titania nanoparticles from crude enzyme extracts of P. ostreatus culture for micro-pollutant degradation. Sep Purif Technol 178:215–223

    Article  CAS  Google Scholar 

  • Johannes C, Majcherczyk A (2000) Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl Environ Microbiol 66(2):524–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jolivalt C, Brenon S, Caminade E, Mougin C, Pontié M (2000) Immobilization of laccase from Trametes versicolor on a modified PVDF microfiltration membrane: characterization of the grafted support and application in removing a phenylurea pesticide in wastewater. J Membrane Sci 180(1):103–113

    Article  CAS  Google Scholar 

  • Kalkan NA, Aksoy S, Aksoy EA, Hasirci N (2012) Preparation of chitosan-coated magnetite nanoparticles and application for immobilization of laccase. J Appl Polym Sci 123(2):707–716

    Article  CAS  Google Scholar 

  • Kalkan E, Nadaroğlu H, Celebi N, Tozsin G (2014) Removal of textile dye reactive black 5 from aqueous solution by adsorption on laccase-modified silica fume. Desalin Water Treat 52(31–33):6122–6134

    Article  CAS  Google Scholar 

  • Kargi F, Shuler ML (1992) Bioprocess engineering: basic concepts. Prentice-Hall PTR, Englewood Cliffs

    Google Scholar 

  • Krastanov A (2000) Removal of phenols from mixtures by co-immobilized laccase/tyrosinase and polyclar adsorption. J Ind Microbiol Biotechnol 24(6):383–388

    Article  CAS  Google Scholar 

  • Kumar VV, Kumar MP, Thiruvenkadaravi K, Baskaralingam P, Kumar PS, Sivanesan S (2012) Preparation and characterization of porous cross linked laccase aggregates for the decolorization of triphenyl methane and reactive dyes. Bioresour Technol 119:28–34

    Article  CAS  Google Scholar 

  • Kumar VV, Sivanesan S, Cabana H (2014) Magnetic cross-linked laccase aggregates—bioremediation tool for decolorization of distinct classes of recalcitrant dyes. Sci Total Environ 487:830–839

    Article  CAS  PubMed  Google Scholar 

  • Le TT, Murugesan K, Lee C-S, Vu CH, Chang Y-S, Jeon J-R (2016) Degradation of synthetic pollutants in real wastewater using laccase encapsulated in core–shell magnetic copper alginate beads. Bioresour Technol 216:203–210

    Article  CAS  PubMed  Google Scholar 

  • Lema Rodicio JM, Teresa Moreira M, Eibes G, Lu-Chau TA, Lloret L, Taboada R, Arca-Ramos A, Feijoo G (2014) Enzymatic reactors applied for the biotransformation of endocrine disrupting chemicals. Transf Prod Emerg Contam Environ 229–260

    Google Scholar 

  • Li G, Pang S, Wu Y, Ouyang J (2018) Enhanced removal of hydroquinone by graphene aerogel-Zr-MOF with immobilized laccase. Chem Eng Comm 205(5):698–705

    Article  CAS  Google Scholar 

  • Liu Y, Wang Z (2014) Immobilization of laccase on surface modified magnetic silica particles and its use for the papermaking wastewater. In: Applied mechanics matter. Trans Tech, pp 267–270

    Google Scholar 

  • Lloret L, Hollmann F, Eibes G, Feijoo G, Moreira M, Lema J (2012) Immobilisation of laccase on Eupergit supports and its application for the removal of endocrine disrupting chemicals in a packed-bed reactor. Biodegradation 23(3):373–386

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Zhao M, Wang Y (2007) Immobilization of laccase by alginate–chitosan microcapsules and its use in dye decolorization. World J Microbiol Biotechnol 23(2):159–166

    Article  CAS  Google Scholar 

  • Madhavi V, Lele S (2009) Laccase: properties and applications. BioResour 4(4):1694–1717

    Google Scholar 

  • Matijošytė I, Arends IW, de Vries S, Sheldon RA (2010) Preparation and use of cross-linked enzyme aggregates (CLEAs) of laccases. J Mol Catal B 62(2):142–148

    Article  CAS  Google Scholar 

  • Messing R (2012) Immobilized enzymes for industrial reactors. Elsevier, Oxford

    Google Scholar 

  • Mogharabi M, Nassiri-Koopaei N, Bozorgi-Koushalshahi M, Nafissi-Varcheh N, Bagherzadeh G, Faramarzi MA (2012) Immobilization of laccase in alginate-gelatin mixed gel and decolorization of synthetic dyes. Bioinorg Chem Appl 2012:1

    Article  CAS  Google Scholar 

  • Mohidem NA, Mat HB (2012) Catalytic activity and stability of laccase entrapped in sol–gel silica with additives. J Sol-Gel Sci Technol 61(1):96–103

    Article  CAS  Google Scholar 

  • Morozova O, Shumakovich G, Shleev S, Yaropolov YI (2007) Laccase-mediator systems and their applications: a review. Appl Biochem Microbiol 43(5):523–535

    Article  CAS  Google Scholar 

  • Nair RR, Demarche P, Agathos SN (2013) Formulation and characterization of an immobilized laccase biocatalyst and its application to eliminate organic micropollutants in wastewater. New Biotechnol 30(6):814–823

    Article  CAS  Google Scholar 

  • Nguyen LN, Hai FI, Dosseto A, Richardson C, Price WE, Nghiem LD (2016) Continuous adsorption and biotransformation of micropollutants by granular activated carbon-bound laccase in a packed-bed enzyme reactor. Bioresour Technol 210:108–116

    Article  CAS  PubMed  Google Scholar 

  • Niladevi K, Prema P (2008) Immobilization of laccase from Streptomyces psammoticus and its application in phenol removal using packed bed reactor. World J Microbiol Biotechnol 24(7):1215–1222

    Article  CAS  Google Scholar 

  • Niu J, Dai Y, Guo H, Xu J, Shen Z (2013) Adsorption and transformation of PAHs from water by a laccase-loading spider-type reactor. J Hazar Mater 248:254–260

    Article  CAS  Google Scholar 

  • Osma JF, Toca-Herrera JL, Rodríguez-Couto S (2010) Biodegradation of a simulated textile effluent by immobilised-coated laccase in laboratory-scale reactors. Appl Catal A Gen 373(1–2):147–153

    Article  CAS  Google Scholar 

  • Osma JF, Toca-Herrera JL, Rodríguez-Couto S (2011) Cost analysis in laccase production. J Environ Manag 92(11):2907–2912

    Article  Google Scholar 

  • Pal A, Gin KY-H, Lin AY-C, Reinhard M (2010) Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects. Sci Total Environ 408(24):6062–6069

    Article  CAS  PubMed  Google Scholar 

  • Saarinen T, Orelma H, Grönqvist S, Andberg M, Holappa S, Laine J (2008) Adsorption of different laccases on cellulose and lignin surfaces. BioResour 4(1):94–110

    Google Scholar 

  • Salis A, Pisano M, Monduzzi M, Solinas V, Sanjust E (2009) Laccase from Pleurotus sajor-caju on functionalised SBA-15 mesoporous silica: immobilisation and use for the oxidation of phenolic compounds. J Mol Catal B Enzym 58(1–4):175–180

    Article  CAS  Google Scholar 

  • Secundo F (2013) Conformational changes of enzymes upon immobilisation. Chem Soc Rev 42(15):6250–6261

    Article  CAS  PubMed  Google Scholar 

  • Shao J-G, Deng W-J, Yang Y-X, Liu X-N, Chen Y-R (2009) Adsorption of laccase onto mesoporous silica prepared with inorganic counterions. Adsorpt Sci Technol 27(2):147–165

    Article  CAS  Google Scholar 

  • Sheldon RA (2011) Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs). Appl Microbiol Biotechnol 92(3):467–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheldon RA, van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42(15):6223–6235

    Article  CAS  PubMed  Google Scholar 

  • Shojaat R, Saadatjoo N, Karimi A, Aber S (2016) Simultaneous adsorption–degradation of organic dyes using MnFe2O4/calcium alginate nano-composites coupled with GOx and laccase. J Environ Chem Eng 4(2):1722–1730

    Article  CAS  Google Scholar 

  • Singh N, Basu S, Vankelecom IF, Balakrishnan M (2015) Covalently immobilized laccase for decolourization of glucose-glycine maillard products as colourant of distillery wastewater. Appl Biochem Biotechnol 177(1):76–89

    Article  CAS  PubMed  Google Scholar 

  • Sondhi S, Kaur R, Kaur S, Kaur PS (2018) Immobilization of laccase-ABTS system for the development of a continuous flow packed bed bioreactor for decolorization of textile effluent. Int J Biol Macromol 117:1093–1100

    Article  CAS  PubMed  Google Scholar 

  • Spahn C, Minteer SD (2008) Enzyme immobilization in biotechnology. Recent Pat Eng 2(3):195–200

    Article  CAS  Google Scholar 

  • Stanbury PF, Whitaker A, Hall SJ (2013) Principles of fermentation technology. Elsevier, Oxford

    Google Scholar 

  • Strong P, Claus H (2011) Laccase: a review of its past and its future in bioremediation. Crit Rev Env Sci Technol 41(4):373–434

    Article  Google Scholar 

  • Taboada-Puig R, Junghanns C, Demarche P, Moreira M, Feijoo G, Lema J, Agathos SN (2011) Combined cross-linked enzyme aggregates from versatile peroxidase and glucose oxidase: production, partial characterization and application for the elimination of endocrine disruptors. Bioresour Technol 102(11):6593–6599

    Article  CAS  PubMed  Google Scholar 

  • Teerapatsakul C, Bucke C, Parra R, Keshavarz T, Chitradon L (2008) Dye decolorisation by laccase entrapped in copper alginate. World J Microbiol Biotechnol 24(8):1367–1374

    Article  CAS  Google Scholar 

  • Touahar IE, Haroune L, Ba S, Bellenger J-P, Cabana H (2014) Characterization of combined cross-linked enzyme aggregates from laccase, versatile peroxidase and glucose oxidase, and their utilization for the elimination of pharmaceuticals. Sci Total Environ 481:90–99

    Article  CAS  PubMed  Google Scholar 

  • Vanhulle S, Lucas M, Mertens V, Gobeaux B, Corbisier A, Bols C-M, Buchon F, Wesenberg D, Agathos S (2005) Sustainable process for the treatment and detoxification of liquid waste. Google Patents

    Google Scholar 

  • Wang F, Guo C, Liu HZ, Liu CZ (2008) Immobilization of Pycnoporus sanguineus laccase by metal affinity adsorption on magnetic chelator particles. J Chem Technol Biotechnol 83(1):97–104

    Article  CAS  Google Scholar 

  • Wang F, Hu Y, Guo C, Huang W, Liu C-Z (2012) Enhanced phenol degradation in coking wastewater by immobilized laccase on magnetic mesoporous silica nanoparticles in a magnetically stabilized fluidized bed. Bioresour Technol 110:120–124

    Article  CAS  PubMed  Google Scholar 

  • Wanga S-J, Zhonga J-J (2011) Bioreactor engineering. Bioprocessing for value-added products from renewable resources: new technologies and applications, 131

    Google Scholar 

  • Wu Y, Teng Y, Li Z, Liao X, Luo Y (2008) Potential role of polycyclic aromatic hydrocarbons (PAHs) oxidation by fungal laccase in the remediation of an aged contaminated soil. Soil Biol Biochem 40(3):789–796

    Article  CAS  Google Scholar 

  • Yang W-C (2003) Bubbling fluidized beds. In: Handbook of fluidization and fluid-particle systems. CRC, Boca Raton, pp 64–123

    Google Scholar 

  • Yang WY, Wen SX, Jin L, Rong L, Tetsuo M, Bo C (2006) Immobilization and characterization of laccase from Chinese Rhus vernicifera on modified chitosan. Process Biochem 41(6):1378–1382

    Article  CAS  Google Scholar 

  • Yang J, Lin Y, Yang X, Ng TB, Ye X, Lin J (2017) Degradation of tetracycline by immobilized laccase and the proposed transformation pathway. J Hazard Mater 322:525–531

    Article  CAS  PubMed  Google Scholar 

  • Yao J, Wang Q, Wang Y, Zhang Y, Zhang B, Zhang H (2015) Immobilization of laccase on chitosan–halloysite hybrid porous microspheres for phenols removal. Desalin Water Treat 55(5):1293–1301

    CAS  Google Scholar 

  • Yaropolov A, Skorobogat’Ko O, Vartanov S, Varfolomeyev S (1994) Laccase. Appl Biochem Biotechnol 49(3):257–280

    Article  CAS  Google Scholar 

  • Zawisza I, Rogalski J, Opallo M (2006) Electrocatalytic reduction of dioxygen by redox mediator and laccase immobilized in silicate thin film. J Electroanal Chem 588(2):244–252

    Article  CAS  Google Scholar 

  • Zeng J, Zhu Q, Wu Y, Lin X (2016) Oxidation of polycyclic aromatic hydrocarbons using Bacillus subtilis CotA with high laccase activity and copper independence. Chemosphere 148:1–7

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Gao E, Xia L (2006) Dechlorination of dichlorophenol in waste water by immobilized laccase. J Chem Ind Eng 57(2):359

    CAS  Google Scholar 

  • Zille A, Tzanov T, Gübitz GM, Cavaco-Paulo A (2003) Immobilized laccase for decolourization of reactive black 5 dyeing effluent. Biotechnol Lett 25(17):1473–1477

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann Y-S, Shahgaldian P, Corvini PF, Hommes G (2011) Sorption-assisted surface conjugation: a way to stabilize laccase enzyme. Appl Microbiol Biotechnol 92(1):169

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from the Fonds de recherche du Québec—Nature et Technologies, the Natural Sciences and Engineering Research Council of Canada, and Sri Ramaswamy Memorial Institute of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Cabana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vaithyanathan, V.K., Rathankumar, A.K., Vaidyanathan, V.K., Cabana, H. (2020). Immobilized Laccase: A Promising Bioremediation Tool for the Removal of Organic Contaminants in Wastewater. In: Schlosser, D. (eds) Laccases in Bioremediation and Waste Valorisation. Microbiology Monographs, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-030-47906-0_5

Download citation

Publish with us

Policies and ethics