Skip to main content
Log in

Immobilization of defined laccase combinations for enhanced oxidation of phenolic contaminants

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Immobilization is an important method to increase enzyme stability and allow enzyme reuse. One interesting application in the field of environmental biotechnology is the immobilization of laccase to eliminate phenolic contaminants via oxidation. Fumed silica nanoparticles have interesting potential as support material for laccase immobilization via sorption-assisted immobilization in the perspective of applications such as the elimination of micropollutants in aqueous phases. Based on these facts, the present work aimed to formulate laccase–nanoparticle conjugates with defined laccase combinations in order to obtain nanobiocatalysts, which are active over a broad range of pH values and possess a large substrate spectrum to suitably address pollution by multiple contaminants. A multi-enzymatic approach was investigated by immobilizing five different types of laccases originating from a Thielavia genus, Coriolopsis polyzona, Cerrena unicolor, Pleurotus ostreatus, and Trametes versicolor onto fumed silica nanoparticles, separately and in combinations. The laccases differed concerning their pH optima and substrate affinity. Exploiting their differences allowed the formulation of tailor-made nanobiocatalysts. In particular, the production of a nanobiocatalyst could be achieved that retained a higher percentage of its relative activity over the tested pH range (3–7) compared to the dissolved or separately immobilized enzymes. Furthermore, a nanobiocatalyst could be formulated able to oxidize a broader substrate range than the dissolved or separately immobilized enzymes. Thereby, the potential of the nanobiocatalyst for application in biochemical oxidation applications such as the elimination of multiple target pollutants in biologically treated wastewater has been illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bertanza G, Pedrazzani R, Dal Grande M, Papa M, Zambarda V, Montani C, Steimberg N, Mazzoleni G, Di Lorenzo D (2011) Effect of biological and chemical oxidation on the removal of estrogenic compounds (NP and BPA) from wastewater: an integrated assessment procedure. Water Res 45:2473–2484

    Article  CAS  PubMed  Google Scholar 

  • Bialk HM, Simpson AJ, Pedersen JA (2005) Cross-coupling of sulfonamide antimicrobial agents with model humic constituents. Environ Sci Technol 39(12):4463–4473

    Article  CAS  PubMed  Google Scholar 

  • Brady D, Jordaan J (2009) Advances in enzyme immobilisation. Biotechnol Lett 31:1639–1650

    Article  CAS  PubMed  Google Scholar 

  • Cabana H, Alexandre C, Agathos SN, Jones JP (2009) Immobilization of laccase from the white rot fungus Coriolopsis polyzona and use of the immobilized biocatalyst for the continuous elimination of endocrine disrupting chemicals. Bioresource Technol 100:3447–3458

    Article  CAS  Google Scholar 

  • Cabana H, Ahamed A, Leduc R (2011) Conjugation of laccase from the white rot fungus Trametes versicolor to chitosan and its utilization for the elimination of triclosan. Bioresource Technol 102:1656–1662

    Article  CAS  Google Scholar 

  • Cirja M, Ivashechkin P, Schäffer A, Corvini PFX (2008) Factors affecting the removal of organic micropollutants from wastewater in conventional treatment plants (CTP) and membrane bioreactors (MBR). Rev Environ Sci Biotechnol 7:61–78

    Article  CAS  Google Scholar 

  • Corvini PFX, Shahgaldian P (2010) LANCE: laccase-nanoparticle conjugates for the elimination of micropollutants (endocrine disrupting chemicals) from wastewater in bioreactors. Rev Environ Sci Biotechnol 9:23–27

    Article  CAS  Google Scholar 

  • Durán N, Rosa MA, D’Annibale A, Gianfreda L (2002) Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme Microb Technol 31:907–931

    Article  Google Scholar 

  • Fent K, Zenker A, Rapp M (2010) Widespread occurrence of estrogenic UV-filters in aquatic ecosystems in Switzerland. Environ Pollut 158:1817–1824

    Article  CAS  PubMed  Google Scholar 

  • Galliker P, Hommes G, Schlosser D, Corvini PFX, Shahgaldian P (2010) Laccase-modified silica nanoparticles efficiently catalyze the transformation of phenolic compounds. J Colloid Interface Sci 349:98–105

    Article  CAS  PubMed  Google Scholar 

  • Gerencser AA, Neilson A, Choi SW, Edman U, Yadava N, Oh RJ, Ferrick DA, Nicholls DG, Brand MD (2009) Quantitative microplate-based respirometry with correction for oxygen diffusion. Anal Chem 81:6868–6878

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hommes G, Gasser CA, Howald CBC, Goers R, Schlosser D, Shahgaldian P, Corvini PFX (2012) Production of a robust nanobiocatalyst for municipal wastewater treatment. Bioresource Technol 115:8–15

    Article  CAS  Google Scholar 

  • Hommes G, Gasser CA, Ammann EM, Corvini PFX (2013) Determination of oxidoreductase activity using a high-throughput microplate respiratory measurement. Anal Chem 85:283–291

    Article  CAS  PubMed  Google Scholar 

  • Hu XK, Hwang HM, Wang P (2009) Oxidation of anthracene by immobilized laccase from Trametes versicolor. Bioresource Technol 100:4963–4968

    Article  CAS  Google Scholar 

  • Klavarioti M, Mantzavinos D, Kassinos D (2009) Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int 35:402–417

    Article  CAS  PubMed  Google Scholar 

  • Kunamneni A, Ballesteros A, Plou FJ, Alcalde M (2007) Fungal laccase—a versatile enzyme for biotechnological applications. In: Mendez-Vilas A (ed) Communicating current research and educational topics and trends in applied microbiology. Formatex Research Center, Badajoz, pp 233–245

    Google Scholar 

  • Kuster M, López de Alda MJ, Hernando MD, Petrovic M, Martín-Alonso J, Barceló D (2008) Analysis and occurrence of pharmaceuticals, estrogens, progestogens and polar pesticides in sewage treatment plant effluents, river water, and drinking water in the Llobregat river basin (Barcelona, Spain). J Hydrol 358:112–123

    Article  CAS  Google Scholar 

  • Lapworth DJ, Baran N, Stuart ME, Ward RS (2012) Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut 163:287–303

    Article  CAS  PubMed  Google Scholar 

  • Luterek J, Gianfreda L, Wojtaś-Wasilewska M, Cho NS, Rogalski J, Jaszek M, Malarczyk E, Staszczak M, Fink-Boots M, Leonowicz A (1998) Activity of free and immobilized extracellular Cerrena unicolor laccase in water miscible organic solvents. Holzforschung 52:589–595

    Article  CAS  Google Scholar 

  • Majeau JA, Tyagi RD, Brar SK (2010) Laccases for removal of recalcitrant and emerging pollutants. Bioresource Technol 101:2331–2350

    Article  CAS  Google Scholar 

  • Marco-Urrea E, Pérez-Trujillo M, Cruz-Morató C, Caminal G, Vicent T (2010) Degradation of the drug sodium diclofenac by Trametes versicolor pellets and identification of some intermediates by NMR. J Hazard Mater 176(1–3):836–842

    Article  CAS  PubMed  Google Scholar 

  • McIlvaine TC (1921) A buffer solution for colorimetric comparison. J Biol Chem 49(1):183–186

    CAS  Google Scholar 

  • Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC (2004) Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 37(5):790–796, 798–802

    CAS  PubMed  Google Scholar 

  • Mohidem NA, Mat H (2009) The catalytic activity of laccase immobilized in sol–gel silica. J Appl Sci 9:3141–3145

    Article  CAS  Google Scholar 

  • Pal A, Gin KYH, Lin AYC, Reinhard M (2010) Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects. Sci Total Environ 408:6062–6069

    Article  CAS  PubMed  Google Scholar 

  • Polizzi KM, Bommarius AS, Broering JM, Chaparro-Riggers JF (2007) Stability of biocatalysts. Curr Opin Chem Biol 11:220–225

    Article  CAS  PubMed  Google Scholar 

  • Qiu HJ, Xu CX, Huang XR, Ding Y, Qu YB, Gao PJ (2009) Immobilization of laccase on nanoporous gold: comparative studies on the immobilization strategies and the particle size effects. J Phys Chem 113:2521–2525

    Article  CAS  Google Scholar 

  • Rekuć A, Bryjak J, Szymańska K, Jarzębski AB (2009) Laccase immobilization on mesostructured cellular foams affords preparations with ultra-high activity. Process Biochem 44:191–198

    Article  Google Scholar 

  • Rekuć A, Bryjak J, Szymańska K, Jarzębski AB (2010) Very stable silica–gel-bound laccase biocatalysts for the selective oxidation in continuous systems. Bioresour Technol 101:2076–2083

    Article  PubMed  Google Scholar 

  • Schwarz J, Aust MO, Thiele-Bruhn S (2010) Metabolites from fungal laccase-catalysed transformation of sulfonamides. Chemosphere 81(11):1469–1476

    Article  CAS  PubMed  Google Scholar 

  • Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307

    Article  CAS  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  PubMed  Google Scholar 

  • Straathof AJJ, Panke S, Schmid A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotechnol 13:548–556

    Article  CAS  PubMed  Google Scholar 

  • Tran NH, Urase T, Kusakabe O (2010) Biodegradation characteristics of pharmaceutical substances by whole fungal culture Trametes versicolor and its laccase. J Water Environ Technol 8(2):125–140

    Article  Google Scholar 

  • Uchida H, Fukuda T, Miyamoto H, Kawabata T, Suzuki M, Uwajima T (2001) Polymerization of bisphenol A by purified laccase from Trametes villosa. Biochem Biophys Res Commun 287(2):355–358

    Article  CAS  PubMed  Google Scholar 

  • Weetall HH (1974) Immobilized enzymes. Anal applications Anal Chem 46(7):602A–615a

    CAS  Google Scholar 

  • Weng SS, Ku KL, Lai HT (2012) The implication of mediators for enhancement of laccase oxidation of sulfonamide antibiotics. Bioresource Technol 113:259–264

    Article  CAS  Google Scholar 

  • Xu F, Damhus T, Danielsen S, Østergaard LH (2007) Catalytic applications of laccase. In: Schmid RD, Urlacher VB (eds) Modern biooxidation, 1st edn. Wiley, Weinheim, pp 43–75

    Chapter  Google Scholar 

  • Yang WY, Min DY, Wen SX, Jin L, Rong L, Tetsuo M, Bo C (2006) Immobilization and characterization of laccase from Chinese Rhus vernicifera on modified chitosan. Process Biochem 41(6):1378–1382

    Article  CAS  Google Scholar 

  • Zhu Y, Kaskel S, Shi J, Wage T, van Pée KH (2007) Immobilization of Trametes versicolor laccase on magnetically separable mesoporous silica spheres. Chem Mater 19:6408–6413

    Article  CAS  Google Scholar 

  • Zimmermann YS, Shahgaldian P, Hommes G, Corvini PFX (2011) Sorption-assisted surface conjugation: a way to stabilize laccase enzyme. Appl Microbiol Biotechnol 92:169–178

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Wetlands Engineering SPRL and AB Enzymes GmbH for the supply of Coriolopsis polyzona and Thielavia laccase, respectively.

The support of the Commission for Technology and Innovation of the Swiss Federal Office for Professional Education and Technology (grant PFNM-NM 9632.1), the Swiss National Science Foundation, 622 National Research Program 66 (project 4066–136686), and the European Commission within the 7th framework program under grant agreement 265946 (MINOTAURUS) and FP7-KBBE-2012-6-311933 (Water4Crops) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph A. Gasser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ammann, E.M., Gasser, C.A., Hommes, G. et al. Immobilization of defined laccase combinations for enhanced oxidation of phenolic contaminants. Appl Microbiol Biotechnol 98, 1397–1406 (2014). https://doi.org/10.1007/s00253-013-5055-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5055-y

Keywords

Navigation