Skip to main content

Adventitious Root Induction in Arabidopsis thaliana as a Model for In Vitro Root Organogenesis

  • Protocol
  • First Online:
Plant Organogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 959))

Abstract

Adventitious root formation, the development of roots on non-root tissue (e.g. leaves, hypocotyls and stems) is a critical step during micropropagation. Although root induction treatments are routinely used for a large number of species micropropagated in vitro as well as for in vivo cuttings, the mechanisms controlling adventitious rooting are still poorly understood. Researchers attempt to gain better insight into the molecular aspects by studying adventitious rooting in Arabidopsis thaliana. The existing assay involves etiolation of seedlings and measurements of de novo formed roots on the elongated hypocotyl. The etiolated hypocotyls express a novel auxin-controlled signal transduction pathway in which auxin response factors (ARFs), microRNAs and environmental conditions that drive adventitious rooting are integrated. An alternative assay makes use of so-called thin cell layers (TCL), excised strips of cells from the inflorescence stem of Arabidopsis thaliana. However, both the etiolated seedling system and the TCL assay are only distantly related to industrial rooting processes in which roots are induced on adult stem tissue. Here, we describe an adventitious root induction system that uses segments of the inflorescence stems of Arabidopsis thaliana, which have a histological structure similar to cuttings or in vitro micropropagated shoots. The system allows multiple treatments with chemicals as well as the evaluation of different environmental conditions on a large number of explants. It is therefore suitable for high throughput chemical screenings and experiments that require numerous data points for statistical analysis. Using this assay, the adventitious root induction capacity of classical auxins was evaluated and a differential response to the different auxins could be demonstrated. NAA, IBA and IAA stimulated adventitious rooting on the stem segment, whereas 2,4-D and picloram did not. Light conditions profoundly influenced the root induction capacity of the auxins. Additionally to the environmental control of adventitious root formation, we also investigated the spatial and temporal aspects of stem-based adventitious root organogenesis. To determine the cells involved in de novo root initiation on the adult stems, we adopted scanning electron microscopy, which allows the visualization of the auxin responsive stem tissue. Using this technique, direct (without callus interface) and indirect (with intermediate callus phase) organogenesis was readily distinguished. The described micro-stem segment system is also suitable for other non-woody species and it is a valuable tool to perform fast evaluations of different treatments to study adventitious root induction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Klerk GJ, Van der Krieken W, De Jong JC (1999) Review—the formation of adventitious roots: new concepts, new possibilities. In Vitro Cell Dev Biol Plant 35:189–199

    Article  Google Scholar 

  2. Geiss G, Gutierrez L, Bellini C (2009) Adventitious root formation: new insights and perspectives. In: Beeckman T (ed) Root development. Wiley–Blackwell, Hoboken, pp 127–156

    Chapter  Google Scholar 

  3. Golz JF, Hudson A (2002) Signalling in plant lateral organ development. Plant Cell 14:S277–S288

    PubMed  CAS  Google Scholar 

  4. Sultan SE (2000) Phenotypic plasticity for plant development, function and life history. Trends Plant Sci 5:537–542

    Article  PubMed  CAS  Google Scholar 

  5. De Smet I, Vanneste S, Inze D, Beeckman T (2006) Lateral root initiation or the birth of a new meristem. Plant Mol Biol 60:871–887

    Article  PubMed  CAS  Google Scholar 

  6. Peret B, De Rybel B, Casimiro I, Benkova E, Swarup R, Laplaze L, Beeckman T, Bennett MJ (2009) Arabidopsis lateral root development: an emerging story. Trends Plant Sci 14:399–408

    Article  PubMed  CAS  Google Scholar 

  7. Haissig BE, Davis TD, Riemenschneider DE (1992) Researching the controls of adventitious rooting. Physiol Plant 84:310–317

    Article  CAS  Google Scholar 

  8. De Klerk GJ, Keppel M, Terbrugge J, Meekes H (1995) Timing of the phases in adventitious root formation in apple microcuttings. J Exp Bot 46:965–972

    Article  Google Scholar 

  9. Smolka A, Welander M, Olsson P, Holefors A, Zhu LH (2009) Involvement of the ARRO-1 gene in adventitious root formation in apple. Plant Sci 177:710–715

    Article  CAS  Google Scholar 

  10. Fett-Neto AG, Fett JP, Goulart LWV, Pasquali G, Termignon RR, Ferreira AG (2001) Distinct effects of auxin and light on adventitious root development in Eucalyptus saligna and Eucalyptus globulus. Tree Physiol 21:457–464

    Article  PubMed  CAS  Google Scholar 

  11. da Rocha Correa LD, Fett-Neto AG (2004) Effects of temperature on adventitious root development in microcuttings of Eucalyptus saligna Smith and Eucalyptus globulus Labill. J Therm Biol 29:315–324

    Article  Google Scholar 

  12. Fogaça CM, Fett-Neto AG (2005) Role of auxin and its modulators in the adventitious rooting of Eucalyptus species differing in recalcitrance. Plant Growth Regul 45:1–10

    Article  Google Scholar 

  13. Greenwood MS, Weir RJ (1995) Genetic variation in rooting ability of Loblolly pine cuttings—effects of auxin and family on rooting by hypocotyl cuttings. Tree Physiol 15:41–45

    Article  PubMed  CAS  Google Scholar 

  14. Hamann A (1998) Adventitious root formation in cuttings of loblolly pine (Pinus taeda L.): developmental sequence and effects of maturation. Trees-Struct Funct 12:175–180

    Google Scholar 

  15. Rasmussen A, Hunt MA (2010) Ageing delays the cellular stages of adventitious root formation in pine. Aust For 73:41–46

    Google Scholar 

  16. Butler ED, Gallagher TF (1999) Isolation and characterization of a cDNA encoding a novel 2-oxoacid-dependent dioxygenase which is up-regulated during adventitious root formation in apple (Malus domestica “Jork 9”) stem discs. J Exp Bot 50:551–552

    CAS  Google Scholar 

  17. Brinker M, van Zyl L, Liu WB, Craig D, Sederoff RR, Clapham DH, von Arnold S (2004) Microarray analyses of gene expression during adventitious root development in Pinus contorta. Plant Physiol 135:1526–1539

    Article  PubMed  CAS  Google Scholar 

  18. Pagnussat GC, Lanteri ML, Lombardo MC, Lamattina L (2004) Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol 135:279–286

    Article  PubMed  CAS  Google Scholar 

  19. Ricci A, Rolli E, Dramis L, Diaz-Sala C (2008) N,N′-bis-(2,3-methylenedioxyphenyl)urea and N,N′-bis-(3,4-methylenedioxyphenyl)urea enhance adventitious rooting in Pinus radiata and affect expression of genes induced during adventitious rooting in the presence of exogenous auxin. Plant Sci 175:356–363

    Article  CAS  Google Scholar 

  20. Velasco R, Zharkikh A, Affourtit J et al (2010) The genome of the domesticated apple (Malus  ×  domestica Borkh). Nat Genet 42:833–839

    Article  PubMed  CAS  Google Scholar 

  21. Tuskan GA, DiFazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  PubMed  CAS  Google Scholar 

  22. Falasca G, Zaghi D, Possenti M, Altamura MM (2004) Adventitious root formation in Arabidopsis thaliana thin cell layers. Plant Cell Rep 23:17–25

    Article  PubMed  CAS  Google Scholar 

  23. da Rocha Correa L, Troleis J, Mastroberti AA, Mariath JEA, Fett-Netto AG (2012) Distinct modes of adventitious rooting in Arabidopsis thaliana. Plant Biol 14:100–109

    Google Scholar 

  24. Ozawa S, Yasutani I, Fukuda H, Komamine A, Sugiyama M (1998) Organogenic responses in tissue culture of srd mutants of Arabidopsis thaliana. Development 125:135–142

    PubMed  CAS  Google Scholar 

  25. Falasca G, Altamura MM (2003) Histological analysis of adventitious rooting in Arabidopsis thaliana (L.) Heynh seedlings. Plant Biosyst 137:265–273

    Article  Google Scholar 

  26. Sorin C, Bussell JD, Camus I, Ljung K, Kowalczyk M, Geiss G, McKhann H, Garcion C, Vaucheret H, Sandberg G, Bellini C (2005) Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1. Plant Cell 17:1343–1359

    Article  PubMed  CAS  Google Scholar 

  27. Sorin C, Negroni L, Balliau T, Corti H, Jacquemot MP, Davanture M, Sandberg G, Zivy M, Bellini C (2006) Proteomic analysis of different mutant genotypes of Arabidopsis led to the identification of 11 proteins correlating with adventitious root development. Plant Physiol 140:349–364

    Article  PubMed  CAS  Google Scholar 

  28. Gutierrez L, Bussell JD, Pacurar DI, Schwambach J, Pacurar M, Bellini C (2009) Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of auxin response factor transcripts and microRNA abundance. Plant Cell 21:3119–3132

    Article  PubMed  CAS  Google Scholar 

  29. King JJ, Stimart DP (1998) Genetic analysis of variation for auxin-induced adventitious root formation among eighteen ecotypes of Arabidopsis thaliana L-Heynh. J Hered 89:481–487

    Article  PubMed  CAS  Google Scholar 

  30. Altamura MM, Possenti M, Matteucci A, Baima S, Ruberti I, Morelli G (2001) Development of the vascular system in the inflorescence stem of Arabidopsis. New Phytol 151:381–389

    Article  Google Scholar 

  31. Oh S, Park S, Han KH (2003) Transcriptional regulation of secondary growth in Arabidopsis thaliana. J Exp Bot 54:2709–2722

    Article  PubMed  CAS  Google Scholar 

  32. Ko JH, Han KH, Park S, Yang JM (2004) Plant body weight-induced secondary growth in Arabidopsis and its transcription phenotype revealed by whole-transcriptome profiling. Plant Physiol 135:1069–1083

    Article  PubMed  CAS  Google Scholar 

  33. Ludwig-Müller J, Vertocnik A, Town CD (2005) Analysis of indole-3-butyric acid-induced adventitious root formation on Arabidopsis stem segments. J Exp Bot 56:2095–2105

    Article  PubMed  Google Scholar 

  34. Dovzhenko A, Dal Bosco C, Meurer J, Koop HU (2003) Efficient regeneration from cotyledon protoplasts in Arabidopsis thaliana. Protoplasma 222:107–111

    Article  PubMed  CAS  Google Scholar 

  35. Velazquez I, Valencia S, Lopez-Lera A, de la Pena A, Candela M (2004) Analysis of natural allelic variation in in vitro organogenesis of Arabidopsis thaliana. Euphytica 137:73–79

    Article  CAS  Google Scholar 

  36. Passardi F, Dobias J, Valerio L, Guimil S, Penel C, Dunand C (2007) Morphological and physiological traits of three major Arabidopsis thaliana accessions. J Plant Physiol 164:980–992

    Article  PubMed  CAS  Google Scholar 

  37. Chateau S, Sangwan RS, Sangwan-Norreel BS (2000) Competence of Arabidopsis thaliana genotypes and mutants for Agrobacterium tumefaciens-mediated gene transfer: role of phytohormones. J Exp Bot 51:1961–1968

    Article  PubMed  CAS  Google Scholar 

  38. Marion J, Bach L, Bellec Y, Meyer C, Gissot L, Faure JD (2008) Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings. Plant J 56:169–179

    Article  PubMed  CAS  Google Scholar 

  39. Alonso-Blanco C, Blankestijn-de Vries H, Hanhart CJ, Koornneef M (1999) Natural allelic variation at seed size loci in relation to other life history traits of Arabidopsis thaliana. Proc Natl Acad Sci USA 96:4710–4717

    Article  PubMed  CAS  Google Scholar 

  40. Maloof JN, Borevitz JO, Dabi T, Lutes J, Nehring RB, Redfern JL, Trainer GT, Wilson JM, Asami T, Berry CC, Weigel D, Chory J (2001) Natural variation in light sensitivity of Arabidopsis. Nat Genet 29:441–446

    Article  PubMed  CAS  Google Scholar 

  41. Delker C, Poschl Y, Raschke A, Ullrich K, Ettingshausen S, Hauptmann V, Grosse I, Quint M (2010) Natural variation of transcriptional auxin response networks in Arabidopsis thaliana. Plant Cell 22:2184–2200

    Article  PubMed  CAS  Google Scholar 

  42. Konishi M, Sugiyama M (2003) Genetic analysis of adventitious root formation with a novel series of temperature-sensitive mutants of Arabidopsis thaliana. Development 130:5637–5647

    Article  PubMed  CAS  Google Scholar 

  43. Kevers C, Hausman JF, Faivre-Rampant O, Dommes J, Gaspar T (2009). What we have learned about the physiology of in vitro adventitious rooting of woody plants and how it relates to improvements in the practice. In: Niemi K and Scagel C (Eds) Adventitious root formation of forest trees and horticultural plants - from genes to applications. Research Signpost, Kerala, pp 209–225

    Google Scholar 

  44. Kuroha T, Satoh S (2007) Involvement of cytokinins in adventitious and lateral root formation. Plant Root 1:27–33

    Article  CAS  Google Scholar 

  45. Negi S, Sukumar P, Liu X, Cohen JD, Muday GK (2010) Genetic dissection of the role of ethylene in regulating auxin-dependent lateral and adventitious root formation in tomato. Plant J 61:3–15

    Article  PubMed  CAS  Google Scholar 

  46. Gou JQ, Strauss SH, Tsai CJ, Fang K, Chen YR, Jiang XN, Busov VB (2010) Gibberellins regulate lateral root formation in Populus through interactions with auxin and other hormones. Plant Cell 22:623–639

    Article  PubMed  CAS  Google Scholar 

  47. Signora L, De Smet I, Foyer CH, Zhang HM (2001) ABA plays a central role in mediating them regulatory effects of nitrate on root branching in Arabidopsis. Plant J 28:655–662

    Article  PubMed  CAS  Google Scholar 

  48. De Smet I, Signora L, Beeckman T, Inze D, Foyer CH, Zhang HM (2003) An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J 33:543–555

    Article  PubMed  Google Scholar 

  49. De Smet I, Zhang HM, Inze D, Beeckman T (2006) A novel role for abscisic acid emerges from underground. Trends Plant Sci 11:434–439

    Article  PubMed  Google Scholar 

  50. Fattorini L, Falasca G, Kevers C, Rocca LM, Zadra C, Altamura MM (2009) Adventitious rooting is enhanced by methyl jasmonate in tobacco thin cell layers. Planta 231:155–168

    Article  PubMed  CAS  Google Scholar 

  51. Pagnussat GC, Lanteri ML, Lamattina L (2003) Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol 132:1241–1248

    Article  PubMed  CAS  Google Scholar 

  52. Campos-Cuevas JC, Pelagio-Flores R, Raya-Gonzalez J, Mendez-Bravo A, Ortiz-Castro R, Lopez-Bucio J (2008) Tissue culture of Arabidopsis thaliana explants reveals a stimulatory effect of alkamides on adventitious root formation and nitric oxide accumulation. Plant Sci 174:165–173

    Article  CAS  Google Scholar 

  53. Li SW, Xue LG, Xu SJ, Feng HY, An LZ (2009) Mediators, genes and signaling in adventitious rooting. Bot Rev 75:230–247

    Article  Google Scholar 

  54. Nag S, Saha K, Choudhuri MA (2001) Role of auxin and polyamines in adventitious root formation in relation to changes in compounds involved in rooting. J Plant Growth Regul 20:182–194

    Article  CAS  Google Scholar 

  55. Curir P, Vansumere CF, Termini A, Barthe P, Marchesini A, Dolci M (1990) Flavonoid accumulation is correlated with adventitious roots formation in Eucalyptus Gunni Hook micropropagated through axillary bud stimulation. Plant Physiol 92:1148–1153

    Article  PubMed  CAS  Google Scholar 

  56. Tan X, Calderon-Villalobos LIA, Sharon M, Zheng CX, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–645

    Article  PubMed  CAS  Google Scholar 

  57. Calderon-Villalobos LI, Tan X, Zheng N, Estelle M (2010) Auxin perception-structural insights. Cold Spring Harb Perspect Biol 2(7):a005546

    Article  PubMed  Google Scholar 

  58. Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    Article  PubMed  CAS  Google Scholar 

  59. Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451

    Article  PubMed  CAS  Google Scholar 

  60. Badescu GO, Napier RM (2006) Receptors for auxin: will it all end in TIRs? Trends Plant Sci 11:217–223

    Article  PubMed  CAS  Google Scholar 

  61. Spartz AK, Gray WM (2008) Plant hormone receptors: new perceptions. Genes Dev 22:2139–2148

    Article  PubMed  CAS  Google Scholar 

  62. Hansen J (1975) Light dependent promotion and inhibition of adventitious root formatioin by gibberellic acid. Planta 123:203–205

    Article  Google Scholar 

  63. Niemi K, Julkunen-Tiitto R, Tegelberg R, Haggman H (2005) Light sources with different spectra affect root and mycorrhiza formation in Scots pine in vitro. Tree Physiol 25:123–128

    Article  PubMed  Google Scholar 

  64. Kiss JZ, Miller KM, Ogden LA, Roth KK (2002) Phototropism and gravitropism in lateral roots of Arabidopsis. Plant Cell Physiol 43:35–43

    Article  PubMed  CAS  Google Scholar 

  65. Chen XM (2009) Small RNAs and their roles in plant development. In: Schekman R (Ed) Annual review of cell and developmental biology, vol 25. Annual Reviews, Palo Alto, pp 21–44

    Google Scholar 

  66. He GM, Elling AA, Deng XW (2011) The epigenome and plant development. In: Merchant SS, Briggs WR, Ort D (eds) Annual review of plant biology, vol 62. Annual Reviews, Palo Alto, pp 411–435

    Google Scholar 

  67. Rubio-Somoza I, Weigel D (2011) MicroRNA networks and developmental plasticity in plants. Trends Plant Sci 16:258–264

    Article  PubMed  CAS  Google Scholar 

  68. Diaz-Sala C, Garrido G, Sabater B (2002) Age-related loss of rooting capability in Arabidopsis thaliana and its reversal by peptides containing the Arg-Gly-Asp (RGD) motif. Physiol Plant 114:601–607

    Article  PubMed  CAS  Google Scholar 

  69. Diaz-Sala C, Hutchison KW, Goldfarb B, Greenwood MS (1996) Maturation-related loss in rooting competence by loblolly pine stem cuttings: the role of auxin transport, metabolism and tissue sensitivity. Physiol Plant 97:481–490

    Article  CAS  Google Scholar 

  70. Poethig RS (2003) Phase change and the regulation of developmental timing in plants. Science 301:334–336

    Article  PubMed  CAS  Google Scholar 

  71. Vidal N, Arellano G, San-Jose MC, Vieitez AM, Ballester A (2003) Developmental stages during the rooting of in-vitro-cultured Quercus robur shoots from material of juvenile and mature origin. Tree Physiol 23:1247–1254

    Article  PubMed  CAS  Google Scholar 

  72. Boerjan W, Cervera MT, Delarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, Vanonckelen H, Vanmontagu M, Inze D (1995) Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7:1405–1419

    PubMed  CAS  Google Scholar 

  73. Ruegger M, Dewey E, Gray WM, Hobbie L, Turner J, Estelle M (1998) The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grr1p. Genes Dev 12:198–207

    Article  PubMed  CAS  Google Scholar 

  74. Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inze D, Sandberg G, Casero PJ, Bennett M (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:843–852

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the IWT (The Flemish institute for Innovation by Science and Technology). We are grateful to Marjolein Couvreur (Faculty of Sciences, Department Biology) for the critical point drying of the samples and to Dr. Daniel Van Damme for the introduction of the SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny Geelen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Verstraeten, I., Beeckman, T., Geelen, D. (2013). Adventitious Root Induction in Arabidopsis thaliana as a Model for In Vitro Root Organogenesis. In: De Smet, I. (eds) Plant Organogenesis. Methods in Molecular Biology, vol 959. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-221-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-221-6_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-220-9

  • Online ISBN: 978-1-62703-221-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics