Skip to main content
Log in

Role of auxin and its modulators in the adventitious rooting of Eucalyptus species differing in recalcitrance

  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

It is well established that auxins play a central role in the determination of rooting capacity, which is essential for vegetative propagation. Recent studies with apple trees have pointed to significant effects of auxin stability, wound related phenolics and ethylene production in the control of adventitious rooting. In the present study, a comparative analysis of the adventitious rooting of microcuttings of Eucalyptus saligna (easy-to-root species) and Eucalyptus globulus (difficult-to-root species) was carried out with different types of auxins, light intensities, presence or absence of apical meristem, different concentrations of phenolic compounds and presence or absence of an ethylene action inhibitor. Parameters evaluated were the percent rooting, number of roots per rooted cutting, length of longest root and mean rooting time. Results showed that auxins of intermediate stability are more favorable to rooting (particularly for the recalcitrant species), higher light intensities in the presence of exogenous auxins promote the rooting response, the absence of meristematic apex or externally supplied phenolics are not limiting for the rooting induced by exogenous auxins, and ethylene appears to play a minor role in the development of adventitious roots in microcuttings of Eucalyptus, indicating that the rhizogenic response results from direct effect of auxins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Bollmark L. Eliasson (1990) ArticleTitleA rooting inhibitor present in Norway spruce seedlings grown at high irradiance – a putative cytokinin Physiol. Plant. 80 527–533 Occurrence Handle1:CAS:528:DyaK3MXlvFSitA%3D%3D

    CAS  Google Scholar 

  • T.G. Brock P.B. Kauffman (1991) Growth regulators: An account of hormones and growth regulation F.C. Steward (Eds) Plant Physiology – A TreatiseVol X Academic Press San Diego 277–340

    Google Scholar 

  • D.E. Brown A.M. Rashotte A. Murphy J. Normanly B.W. Tague G.K. Muday (2001) ArticleTitleFlavonoids act as negative regulators of auxin transport in vivo in Arabidopsis Plant Physiol. 126 524–535 Occurrence Handle11402184 Occurrence Handle1:CAS:528:DC%2BD3MXks1Gnu7s%3D

    PubMed  CAS  Google Scholar 

  • B. Cheng C.M. Peterson R.J. Mitchell (1992) ArticleTitleThe role of sucrose auxin and explant source on in vitro rooting of seedling explants of Eucalyptus sideroxylon Plant Sci. 87 207–214 Occurrence Handle1:CAS:528:DyaK3sXht1WjtL0%3D

    CAS  Google Scholar 

  • A. Crozier Y Kamiya G. Bishop T. Yokota (2000) Biosynthesis of hormones and elicitor molecules B.B. Buchanan W. Gruissem R.L. Jones (Eds) Biochemistry and Molecular Biology of Plants American Society of Plant Physiologists Rockville 850–929

    Google Scholar 

  • P. Curir C.F. Vansumere A. Termini P. Barthe A. Marchesini M. Dolci (1990) ArticleTitleFlavonoid accumulation is correlated with adventitious roots formation in Eucalyptus gunni Hook micropropagated through axillary bud stimulation Plant Physiol. 92 1148–1153 Occurrence Handle16667383 Occurrence Handle1:CAS:528:DyaK3cXkt1Sqsb4%3D

    PubMed  CAS  Google Scholar 

  • G.-J. De Klerk W.V.D. Krieken J. Jong (1999) ArticleTitleThe formation of adventitious roots: new concepts, new possibilities In Vitro Cell Dev. Biol. 35 189–199 Occurrence Handle10.1007/s11627-999-0076-z

    Article  Google Scholar 

  • G.-J. De Klerk J.T. Brugge S. Marinova (1997) ArticleTitleEffectiveness of indoleacetic acid indolebutyric acid and naphthaleneacetic acid during adventitious root formation in vitro in Malus Jork 9 Plant Cell Tiss. Org. Cult. 49 39–44 Occurrence Handle1:CAS:528:DyaK2sXlvFeqsbg%3D

    CAS  Google Scholar 

  • N. Dharmasiri M. Estelle (2004) ArticleTitleAuxin signaling and regulated protein degradation Trends Plant Sci. 9 302–308 Occurrence Handle15165562 Occurrence Handle1:CAS:528:DC%2BD2cXksVemur0%3D

    PubMed  CAS  Google Scholar 

  • E. Epstein S. Lavee (1984) ArticleTitleConversion of indole-3-butyric acid to indole-3 acetic acid by cuttings of grapevine (Vitis vinifera) and olive (Olea europea) Plant Cell Physiol. 25 697–703 Occurrence Handle1:CAS:528:DyaL2cXlt1Ojsr8%3D

    CAS  Google Scholar 

  • O. Faivre-Rampant C. Kevers C. Bellini T. Gaspar (1998) ArticleTitlePeroxidase activity, ethylene production, lignification and growth limitation in shoots of a rooting mutant of tobacco Plant Physiol. Biochem. 36 873–877 Occurrence Handle1:CAS:528:DyaK1MXotFKlsLc%3D

    CAS  Google Scholar 

  • A.G. Fett-Neto J.P. Fett L.W.V. Goulart G. Pasquali R.R. Termignoni A.G. Ferreira (2001) ArticleTitleDistinct effects of auxin and light on adventitious root development in Eucalyptus saligna and Eucalyptus globulus Tree Physiol. 21 457–464 Occurrence Handle11340046 Occurrence Handle1:CAS:528:DC%2BD3MXktVSgu70%3D

    PubMed  CAS  Google Scholar 

  • A.G. Fett-Neto S.L. Teixeira E.A.M. Da Silva R. Sant’Anna (1992) ArticleTitleBiochemical and morphological changes during in vitro rhizogenesis in cuttings of Sequoia sempervirens (D Don) Engl. J. Plant Physiol. 140 720–728 Occurrence Handle1:CAS:528:DyaK3sXjs1Slsw%3D%3D

    CAS  Google Scholar 

  • G.S. Foster H.E. Stelzer J.B. McRal (2000) ArticleTitleLoblolly pine cutting morphological traits: effects on rooting and field performance New For. 19 291–306

    Google Scholar 

  • T. Gaspar T.A. Thorpe (1977) ArticleTitleChanges in isoperoxidases during differentiation in cultured tobacco epidermal layers Acta Hortic. 78 61–73

    Google Scholar 

  • A. González R.S. Tamés R. Rodriguez (1991) ArticleTitleEthylene in relation to protein, peroxidase and polyphenol oxidase activities during rooting in hazelnut cotyledons Physiol. Plant. 83 611–620

    Google Scholar 

  • M. Jacobs P.H. Rubery (1988) ArticleTitleNaturally occurring auxin transport regulators Science 241 346–349 Occurrence Handle1:CAS:528:DyaL1cXkvV2rs7s%3D Occurrence Handle17734864

    CAS  PubMed  Google Scholar 

  • D.J. James I.J. Thurbon (1981) ArticleTitlePhenolic compounds and other factors controlling rhizogenesis in vitro in the apple rootstocks M.9 and M.26 Z. Pflanzenphysiol. 105 1–10

    Google Scholar 

  • B.C. Jarvis A.H.N. Ali (1984) ArticleTitleIrradiance and adventitious root formation in stem cuttings of Phaseolus aureus Roxb New Phytol. 97 31–36 Occurrence Handle1:CAS:528:DyaL2cXktlCnur0%3D

    CAS  Google Scholar 

  • C. Kevers J.F. Hausman O. Faivre-Rampant D. Evers T. Gaspar (1997) ArticleTitleHormonal control of adventitious rooting: progress and questions Angew. Bot. 71 71–79 Occurrence Handle1:CAS:528:DyaK2sXotFShs7o%3D

    CAS  Google Scholar 

  • T.T. Lee A.N. Starrat J.J. Jevnikar (1982) ArticleTitleRegulation of enzymic oxidation of indole-3-acetic acid by phenols: structure-activity relationships Phytochemistry 21 517–523 Occurrence Handle1:CAS:528:DyaL38XktlGhsLk%3D

    CAS  Google Scholar 

  • J.L. Ludwig-Müller (2000) ArticleTitleIndole-3-butyric acid in plant growth and development Plant Grow. Regul. 32 219–230

    Google Scholar 

  • C. Moncousin J.M. Favre T. Gaspar (1988) Changes in peroxidase activity and endogenous IAA leves during adventitious rooting in vine cuttings M. Kutácek R.S. Bandurski J. Krekule (Eds) Physiology and Biochemistry of Auxins in Plants Academic Publishing Prague 331–337

    Google Scholar 

  • G.K. Muday A. DeLong (2001) ArticleTitlePolar auxin transport: controlling where and how much Trends Plant Sci. 6 535–542 Occurrence Handle11701382 Occurrence Handle1:CAS:528:DC%2BD3MXovFGksLc%3D

    PubMed  CAS  Google Scholar 

  • S.J. Nissen E.G. Sutter (1990) ArticleTitleStability of IAA and IBA in nutrient medium of several tissue culture procedures HortScience 25 800–802 Occurrence Handle1:CAS:528:DyaK3cXlvVKms74%3D

    CAS  Google Scholar 

  • I. Raskin (1992) ArticleTitleRole of salicylic acid in plants Annu. Rev. Plant Physiol. Plant Mol. Biol. 43 439–463 Occurrence Handle1:CAS:528:DyaK38Xks1Knu74%3D

    CAS  Google Scholar 

  • D. Reid F.D. Beall R.P. Pharis (1991) Environmental cues in plant growth and development F.C. Steward (Eds) Plant Physiology – A TreatiseVol X Academic Press San Diego 65–181

    Google Scholar 

  • J. Ross D. O’Neill (2001) ArticleTitleNew interactions between classical plant hormones Trends Plant Sci. 6 2–4 Occurrence Handle11164356 Occurrence Handle1:CAS:528:DC%2BD3MXlsFyksL0%3D

    PubMed  CAS  Google Scholar 

  • R.R. Sokal F.J. Rohlf (1981) Biometry W.H. Freeman San Francisco 859

    Google Scholar 

  • T.C. Stasinopoulos R.P. Hangarter (1990) ArticleTitlePreventing photochemistry in culture media by long-pass light filters growth of cultured tissues Plant Physiol. 93 1365–1369 Occurrence Handle10.1104/pp.93.4.1365 Occurrence Handle16667626 Occurrence Handle1:CAS:528:DyaK3cXmt1OntLg%3D

    Article  PubMed  CAS  Google Scholar 

  • J. Tyburski A. Tretyn (2004) ArticleTitleThe role of light and polar auxin transport in root regeneration from hypocotyls of tomato seedling cuttings Plant Growth Regul. 42 39–48 Occurrence Handle1:CAS:528:DC%2BD2cXpslSrsA%3D%3D

    CAS  Google Scholar 

  • E.J.W. Visser J.D. Cohen G.W.M. Barendse C.W.P.M. Blom L.A.C.J. Voesenek (1996) ArticleTitleAn ethylene-mediated increase in sensitivity to auxin induces adventitious root formation in flooded Rumex palustris Sm Plant Physiol. 112 1687–1692 Occurrence Handle12226472 Occurrence Handle1:CAS:528:DyaK2sXlsVWi

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur G. Fett-Neto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fogaça, C.M., Fett-Neto, A.G. Role of auxin and its modulators in the adventitious rooting of Eucalyptus species differing in recalcitrance. Plant Growth Regul 45, 1–10 (2005). https://doi.org/10.1007/s10725-004-6547-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-004-6547-7

Keywords

Navigation