Skip to main content
Log in

Mediators, Genes and Signaling in Adventitious Rooting

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Adventitious roots are a post-embryonic root which arise from the stem and leaves and from non-pericycle tissues in old roots and it is one of the most important ways of vegetative propagation in plants. Many exogenous and endogenous factors regulate the formation of adventitious roots, such as Ca2+, sugars, auxin, polyamines, ethylene, nitric oxide, hydrogen peroxide, carbon monoxide, cGMP, MAPKs and peroxidase, etc. These mediators are thought to function as signaling and mediate auxin signal transduction during the formation of adventitious roots. To date, only a few genes have been identified that are associated with the general process of adventitious rooting, such as ARL1, VvPRP1, VvPRP2, HRGPnt3, LRP1 and RML, etc. Auxin has been shown to be intimately involved in the process of adventitious rooting and function as crucial role in adventitious rooting. Great progress has been made in elucidating the auxin-induced genes and auxin signaling pathway, especially in auxin response Aux/IAA and ARF genes family and the auxin receptor TIR1. Although, some of important aspects of adventitious rooting signaling have been revealed, the intricate signaling network remains poorly understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Literature Cited

  • Abel, S. & A. Theologis. 1996. Early genes and auxin action. Plant Physiol. 111: 9–17.

    Article  PubMed  CAS  Google Scholar 

  • Abel, S., M. D. Nguyen, W. Chow & A. Theologis. 1995. ACS4, a primary indoleacetic acid-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis thaliana—characterization, expression in E. coli, and expression characteristics in response to auxin. J. Bio. Chem. 270: 19093–19099.

    Article  CAS  Google Scholar 

  • Ahn, J. H., Y. Choi, Y. M. Kwon, S. G. Kim, Y. D. Choi & J. S. Lee. 1996. A novel extensin gene encoding a hydroxyproline-rich glycoprotein requires sucrose for its wound-inducible expression in transgenic plants. Plant Cell 8: 1477–1490.

    Article  PubMed  CAS  Google Scholar 

  • Ali, A. H. N. & B. C. Jarvis. 1988. Effects of auxin and boron on nucleic acid metabolism and cell division during adventitious root regeneration. New Phytol. 108: 383–391.

    Article  CAS  Google Scholar 

  • Baraldi, R., G. Bertazza, A. M. Bregoli, F. Fasolo, A. Rotondi, S. Predieri, D. Serafini-Fracassini, J. P. Slovin & J. D. Cohen. 1995. Auxins and polyamines in relation to differential in vitro root induction on microcuttings of two pear cultivars. J. Plant Growth Regul. 14: 49–59.

    Article  CAS  Google Scholar 

  • Bellamine, J., C. Penel, H. Greppin & T. Gaspar. 1998. Confirmation of the role of auxin and Calcium in the late phases of adventitious root formation. Plant Growth Regul. 26: 191–194.

    Article  CAS  Google Scholar 

  • Bertell, G., E. Bolander & L. Eliasson. 1990. Factors increasing ethylene production enhance the sensitivity of root growth to auxins. Physiol. Plant 79: 255–258.

    Article  CAS  Google Scholar 

  • Bhalerao, R., J. Eklof, K. Ljung, A. Marchant, M. Bennet & G. Sandberg. 2002. Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. Plant J. 29: 325–332.

    Article  PubMed  CAS  Google Scholar 

  • Biondi, S., T. Diaz, I. Iglesias, G. Gamberini & N. Bagni. 1990. Polyamines and ethylene in relation to adventitious root formation in Prunus avium. Physiol. Plant 78: 474–483.

    Google Scholar 

  • Boerjan, W., M. T. Cervera, M. Delarue, T. Beeckman, W. Dewitte, C. Bellini, M. Caboche, H. V. Onckelen, M. V. Montagu & D. Inze. 1995. superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7: 140–1419.

    Article  Google Scholar 

  • Bollmark, M. & L. Eliasson. 1990. A rooting inhibitor present in Norway spruce seedlings grown at high irradiance—a putative cytokinin. Physiol. Plant. 80: 527–533.

    Article  CAS  Google Scholar 

  • Buehala, A. J. & H. Pythoud. 1988. Vitamin D and related compounds as plant growth substances. Physio. Plant. 74: 391–396.

    Article  Google Scholar 

  • Butler, E. & T. Gallagher. 1999. Isolation and characterisation of a cDNA encoding a novel 2-oxoacid-dependent dioxygenase which is upregulated during adventitious root formation in apple (Malus domestica ‘Jork 9’) stem discs. J. Exp. Bot. 50: 551–552.

    Article  CAS  Google Scholar 

  • ——— & ———. 2000. Characterisation of auxin-induced ARRO-1 expression in the primary root of Malus domestica. J. Exp. Bot. 51: 1765–1766.

    Article  PubMed  CAS  Google Scholar 

  • Caboni, E., P. Lauri, B. Watillon & C. Damiano. 1997. Isolation of mRNA species related to the rooting induction in almond and apple through the differential display technique. Biologia Plantarum 39: 99–104.

    Article  CAS  Google Scholar 

  • Casson, S. A. & K. Lindsey. 2003. Genes and signalling in root development. New Phyto. 158: 11–38.

    CAS  Google Scholar 

  • Chao, I. L., C. L. Cho, L. M. Chen & Z. H. Liu. 2001. Effect of indole-3-butyric acid on the endogenous indole-3-acetic acid and lignin contents in soybean hypocotyl during adventitious root formation. J. Plant Physiol. 158: 1257–1262.

    Article  CAS  Google Scholar 

  • Chen, L. M., J. T. Cheng, E. L. Chen, T. J. Yiu & Z. H. Liu. 2002. Naphthaleneacetic acid suppresses peroxidase activity during the induction of adventitious roots in soybean hypocotyls. J. Plant Physiol. 159: 1349–1354.

    Article  CAS  Google Scholar 

  • Cheng, J. C., K. A. Seeley & Z. Sung. 1995. RML1 and RML2, Arabidopsis genes required for cell proliferation at the root tip. Plant Physiol. 107: 365–376.

    Article  PubMed  CAS  Google Scholar 

  • Concalves, J. C., G. Diogo & S. Amancio. 1998. In vitro propagation of chestnut (Castanea sativa×C. crenata): Effects of rooting treatments on plant survival, peroxidase activity and anatomical changes during adventitious root formation. Sci. Horticult 72: 265–275.

    Article  Google Scholar 

  • Correa, L. R., D. C. Paim, J. Schwambach & A. G. Fett-Neto. 2005. Carbohydrates as regulatory factors on the rooting of Eucalyptus saligna Smith and Eucalyptus globulus Labill. Plant Growth Regul. 45: 63–73.

    Article  CAS  Google Scholar 

  • De Klerk, G. J., W. V. D. Krieken & J. Jong. 1999. The formation of adventitious roots: new concepts, new possibilities. In Vitro. Cell Dev. Biol. 35: 189–199.

    Article  Google Scholar 

  • Delbarre, A., P. Muller, V. Imhoff, H. Barbier-Brygoo, C. Maurel, N. Lebanc, C. Perrot-Rechenmann & J. Guern. 1994. The rolB gene of Agrobacterium rhizogenes does not increase the auxin sensitivity of tobacco protoplast by modifying the intracellular auxin concentration. Plant Physiol. 105: 563–569.

    PubMed  CAS  Google Scholar 

  • Dharmasiri, N. & M. Estelle. 2004. Auxin signaling and regulated protein degradation. Trends Plant Sci. 9: 302–308.

    Article  PubMed  CAS  Google Scholar 

  • ———, S. Dharmasiri & M. Estelle. 2005. The F-box protein TIR1 is an auxin receptor. Nature 435: 441–445.

    Article  PubMed  CAS  Google Scholar 

  • Dhindsa, R. S., G. Dong & L. Lalonde. 1987. Altered gene expression during auxin-induced root development from excised mung bean seedlings. Plant Physiol. 84: 1148–1153.

    Article  PubMed  CAS  Google Scholar 

  • Ermel, F. F., S. Vizoso, J. P. Charpentier, C. Jay-Allemand, A. M. Catesson & I. Couée. 2000. Mechanisms of primordium formation during adventitious root development from walnut cotyledon explants. Planta 211: 563–574.

    Article  PubMed  CAS  Google Scholar 

  • Fabijan, D., J. S. Taylor & D. M. Reid. 1981a. Adventitious rooting in hypocotyls of sunflower (Helianthus annuus) seedlings. II. Action of gibberellins, cytokinins, auxins and ethylene. Physio. Plant. 53: 589–597.

    Article  CAS  Google Scholar 

  • ———, E. Yeung, I. Mukherjee & D. M. Reid. 1981b. Adventitious rooting in hypocotyls of sunflower (Helianthus annuus) seedlings. I. Correlative influences and developmental sequence. Physio. Plant. 53: 578–588.

    Article  Google Scholar 

  • Faivre-Rampant, O., C. Kevers, C. Bellini & T. Gaspar. 1998. Peroxidase activity, ethylene production, lignification and growth limitation in shoots of a rooting mutant of tobacco. Plant Physiol. Biochem. 36: 873–877.

    Article  CAS  Google Scholar 

  • Falasca, G., D. Zaghi, M. Possenti & M. M. Altamura. 2004. Adventitious root formation in Arabidopsis thaliana thin cell layers. Plant Cell Rep. 23: 17–25

    Article  PubMed  CAS  Google Scholar 

  • Fett-Neto, A. G., J. P. Fett, L. W. V. Goulart, G. Pasquali, R. R. Termignoni & A. G. Ferreira. 2001. Distinct effects of auxin and light on adventitious root development in Eucalyptus saligna and Eucalyptus globulus. Tree Physiol. 21: 457– 464.

    PubMed  CAS  Google Scholar 

  • Filippini, F., V. Rossi, O. Marin, M. Trovato, P. Costantino, P. M. Downey, F. L. Schiavo & M. Terzi. 1996. A plant oncogene as a phosphatase. Nature 379: 499–500.

    Article  PubMed  CAS  Google Scholar 

  • Fukaki, H., S. Tameda, H. Masuda & M. Tasaka. 2002. Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J. 29: 153–168.

    Article  PubMed  CAS  Google Scholar 

  • Gazaryan, I. G., T. A. Chubar, E. A. Mareeva, L. M. Lagrimini, R. B. Vanhuystee & R. N. F. Thorneley. 1999. Aerobic oxidation of indole-3-acetic acid catalyzed by anionic and cationic peanut peroxidase. Phytochem. 51: 175–186.

    Article  CAS  Google Scholar 

  • Guilfoyle, T. J. 1986. Auxin-regulated gene expression in higher plants. Crit. Rev. Plant Sci. 4: 247–276.

    Article  CAS  Google Scholar 

  • Hatzilazarou, S. P., T. D. Syros, T. A. Yupsanis, A. M. Bosabalidis & A. S. Economou. 2006. Peroxidases, lignin and anatomy during in vitro and ex vitro rooting of gardenia (Gardenia jasminoides Ellis) microshoots. J. Plant Physiol. 163: 827—836.

    Article  PubMed  CAS  Google Scholar 

  • Hausman, F. J., C. Kevers & T. Gaspar. 1994. Involvement of putrescine in the inductive rooting phase of poplar shoots raised in vitro. Physiol. Plant 92: 201–203.

    CAS  Google Scholar 

  • ———, ——— & ———. 1995. Auxin-polyamine interaction in the control of the rooting inductive phase of poplar shoots in vitro. Plant Sci. 110: 63–71.

    Article  CAS  Google Scholar 

  • ———, ———, D. Evers & T. Gaspar. 1997. Conversion of putrescine into γ-aminobutyric acid, an essential pathway for root formation by poplar shoots in vitro. in: A. Altman, Y. Waisel (Eds.), Biology of Root Formation and Development. Plenum, New York, pp. 133–140.

    Google Scholar 

  • Heloir, M. C., C. Kevers, J. Hausman & T. Gaspar. 1996. Changes in the concentrations of auxins and polyamines during rooting of in vitro-propagated walnut shoots. Tree Physiol. 16: 515–519.

    PubMed  CAS  Google Scholar 

  • Hu, H., P. H. Brown & J. M. Labavitch. 1996. Species variability in boron requirement is correlated with cell wall pectin. J. Exper. Bot. 295: 227–232.

    Article  Google Scholar 

  • James, D. J. & I. J. Thurbon. 1981. Shoot and root initiation in vitro in the apple rootstock M9 and the promotive effects of phloroglucinol. J. Hort. Sci. 56: 15–20.

    CAS  Google Scholar 

  • Jarvis, B. C. & A. Booth. 1981. Influence of indole-butyric acid, boron, myo-inositol, vitamin D2 and seedling age on adventitious root development in cuttings of Phaseolus aureus. Physiol. Plant. 53: 213–218.

    Article  CAS  Google Scholar 

  • Josten, P. & U. Kutschera. 1999. The micronutrient boron causes the development of adventitious roots in sunflower cuttings. Ann. Bot. 84: 337–342.

    Article  CAS  Google Scholar 

  • Keller, B. & C. J. Lamb. 1989. Specific expression of a novel cell wall hydroxyproline-rich glycoprotein gene in lateral root initiation. Genes Develop. 3: 1639–1646.

    Article  PubMed  CAS  Google Scholar 

  • Kepinski, S. & O. Leyser. 2004. Auxin-induced SCFTIR1-Aux/IAA interaction involves stable modification of the SCFTIR1 complex. Proc. Natl. Acad. Sci. USA 101: 12381–12386.

    Article  PubMed  CAS  Google Scholar 

  • ——— & ———. 2005. The arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435: 446–451.

    Article  PubMed  CAS  Google Scholar 

  • King, J. J., D. P. Stimart, R. H. Fisher & A. B. Bleecker. 1995. A mutation altering auxin homeostasis and plant morphology in Arabidopsis. Plant Cell 7: 2023–2037.

    Article  PubMed  CAS  Google Scholar 

  • Klotz, K. L. & L. M. Lagrimini. 1996. Phytohormone control of the tobacco anionic peroxidase promoter. Plant Mol. Biol. 31: 565–573.

    Article  PubMed  CAS  Google Scholar 

  • Kollarova, K., M. Henselova & D. Liskova. 2005. Effect of auxins and plant oligosaccharides on root formation and elongation growth of mung bean hypocotyls. Plant Growth Regul. 46: 1–9.

    Article  CAS  Google Scholar 

  • Leon, P. & J. Sheen. 2003. Sugar and hormone connections. Trend. Plant. Sci. 8: 110–116.

    Article  CAS  Google Scholar 

  • Li, S. W., L. G. Xue, S. J. Xu, H. Y. Feng & L. Z. An. 2007. Hydrogen peroxide involvement in formation and development of adventitious roots in cucumber. Plant Growth Regul. 52: 173–180.

    Article  CAS  Google Scholar 

  • Liu, J. H., I. Mukherjee & D. M. Reid. 1990. Adventitious rooting in hypocotyls of sunflower (Helianthus annuus) seedlings. III. The role of ethylene. Physiol. Plant 78: 268–276.

    Article  CAS  Google Scholar 

  • Liu, Z. H., I. C. Hsiao & Y. W. Pan. 1996. Effect of naphthaleneacetic acid on endogenous indole-3-acetic acid, peroxidase and auxin oxidase in hypocotyl cuttings of soybean during root formation. Bot. Bull. Acad. Sin. 37: 247–253.

    CAS  Google Scholar 

  • Liu, H. J., S. F. Wang, X. B. Yu, J. Yu, X. W. He, S. Zhang, H. X. Shou & P. Wu. 2005. ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant J. 43: 47–56.

    Article  PubMed  CAS  Google Scholar 

  • Lorbiecke, R. & M. Sauter. 1999. Adventitious root growth and cell-cycle induction in deepwater rice1. Plant Physiol. 119: 21–29.

    Article  PubMed  CAS  Google Scholar 

  • Metaxas, D., T. Syros, T. Yupsanis & A. S. Economou. 2004. Peroxidases during adventitious rooting in cuttings of Arbutus unedo and Taxus baccata as affected by plant genotype and growth regulator treatment. Plant Growth Regul. 44: 257–266.

    Article  CAS  Google Scholar 

  • Mockaitis, K. & S. H. Howell. 2000. Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant J. 24: 785–796.

    Article  PubMed  CAS  Google Scholar 

  • Muller, A., C. Guan, L. Galweiler, P. Tanzler, P. Huijser,A. Marchant, G. Parry, M. Bennet, E. Wisman & K. Palme. 1998. AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J. 17: 6903–6911.

    Article  PubMed  CAS  Google Scholar 

  • Nag, S., K. Saha & M. A. Choudhuri. 2001. Role of auxin and polyamines in adventitious root formation in relation to changes in compounds involved in rooting. J. Plant Growth Regul. 20: 182–194.

    Article  CAS  Google Scholar 

  • Neuteboom, L. W., J. M. Y. Ng, M. Kuyper, O. R. Clijdesdale, P. J. J. Hooykaas & B. J. van der Zaal. 1999. Isolation and characterization of cDNA clones corresponding with mRNAs that accumulate during auxin-induced lateral root formation. Plant Mol. Biol. 39: 273–287.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson, O., H. Tuominen, B. Sundberg & O. Olsson. 1997. The Agrobacterium rhizogenes rolB and rolC promoters are expressed in pericycle cells competent to serve as root-initials in transgenic hybrid aspen. Physiol. Plant. 100: 456–462.

    Article  CAS  Google Scholar 

  • Nordstrom, A. C. & L. Eliasson. 1984. Regulation of root formation by auxin–ethylene interaction in pea stem cuttings. Physiol. Plant. 61: 298–302.

    Article  Google Scholar 

  • Overvoorde, P. J., Y. Okushima, J. M. Alonso, A. Chan, C. Chang, J. R. Ecker, B. Hughes, A. Liu, C. Onodera, H. Quach, A. Smith, G. Yu & A. Theologis. 2005. Functional genomic analysis of the AUXIN/INDOLE-3-ACETIC ACID gene family members in Arabidopsis thaliana. Plant Cell 17: 3282–3300.

    Article  PubMed  CAS  Google Scholar 

  • Pagnussat, G. C., M. Simontacchi, S. Puntarulo & L. Lamattina. 2002. Nitric oxide is required for root organogenesis. Plant Physio. 129: 954–956.

    Article  CAS  Google Scholar 

  • ———, M. L. Lanteri & L. Lamattina. 2003. Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physio. 132: 1241–1248.

    Article  CAS  Google Scholar 

  • ———, ———, M. C. Lombardo & L. Lamattina. 2004. Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physio. 135: 279–286.

    Article  CAS  Google Scholar 

  • Pan, R. C., J. X. Wang & X. S. Tian. 2002. Influence of ethylene on adventitious root formation in mung bean hypocotyl cuttings. Plant Growth Regul. 36: 135–139.

    Article  CAS  Google Scholar 

  • Parry, G. M. & M. Estelle. 2006. Auxin receptors: a new role for F-box proteins. Curr. Opin. Cell Bio. 18: 152–156.

    Article  CAS  Google Scholar 

  • Patience, P. A. & P. G. Alderson. 1987. Development of a system to study peroxidases during the rooting of lilac shoots produced in vitro. Acta Hortic. 212: 267–272.

    Google Scholar 

  • Petroski, M. D. & R. J. Deshaies. 2005. Function and regulation of cullin-ring ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 6: 9–20.

    Article  PubMed  CAS  Google Scholar 

  • Pythoud, F. & A. J. Buchala. 1989. The fate of vitamin D3 and indolylbutyric acid applied to cuttings of Populus tremula L. during adventitious root formation. Plant Cell and Enviro. 12: 489–494.

    Article  CAS  Google Scholar 

  • ———, A. Buehala & A. Schmid. 1986. Adventitious root formation in green cuttings of Populus tremula L.: Characterisation of the effect of vitamin D and indolylbutyric acid. Physio Plant. 68: 93–99.

    Article  CAS  Google Scholar 

  • Quint, M. & W. M. Gray. 2006. Auxin signaling. Curr. Opin. Plant Bio. 9: 448–453

    Article  CAS  Google Scholar 

  • Quiroga, M., C. Guerrero, M. A. Botella, A. Barceló, I. Amaya, M. I. Medina, F. J. Alonso, S. M. Forchetti, H. Tigier & V. Valpuesta. 2000. A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiol. 122: 1119–1127.

    Article  PubMed  CAS  Google Scholar 

  • Riov, J. & S. F. Yang. 1989. Ethylene and ethylene–auxin interaction in adventitious root formation in mung bean (Vigna radiata) cuttings. J. Plant Growth Regul. 8: 131–141.

    Article  CAS  Google Scholar 

  • Rodrigues-Pousada, R., W. V. Caeneghem, N. Chavaux, H. V. Onckelen, M. V. Montagu & D. V. D. Straeten. 1999. Hormonal cross-talk regulates the Arabidopsis thaliana I-aminocyclopropane-1-carboxylate synthase gene 1 in a developmental and tissue-dependent manner. Physio. Plant. 105: 312–320.

    Article  CAS  Google Scholar 

  • Rogg, L. E., J. Lasswell & B. Bartel. 2001. A gain-of-function mutation in IAA28 suppresses lateral root development. Plant Cell 13: 465–480.

    Article  PubMed  CAS  Google Scholar 

  • Rout, G. R. 2006. Effect of auxins on adventitious root development from single node cuttings of Camellia sinensis (L.) Kuntze and associated biochemical changes. Plant Growth Regul. 48: 111–117.

    Article  CAS  Google Scholar 

  • ———, S. Samantaray & P. Das. 2000. In vitro rooting of Psoralea corylifolia L.: Peroxidase activity as a marker. Plant Growth Regul. 305: 215–219.

    Article  Google Scholar 

  • Ruegger, M., E. Dewey, W. M. Gray, L. Hobbie, J. Turner & M. Estelle. 1998. The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p. Genes Devel. 12: 198–207.

    Article  PubMed  CAS  Google Scholar 

  • Sabatini, S., H. Beis-Wolkenfelt, J. Murfett, T. Guilfoyle, J. Malamy, P. Benfey, O. Leyser, N. Bechtold, P. Weisbeek & B. Scheres. 1999. An auxin-dependent organizer of pattern and polarity in the Arabidopsis root. Cell 99: 463–472.

    Article  PubMed  CAS  Google Scholar 

  • San-Jose, M. C., N. Vidal & A. Ballester. 1992. Anatomical and biochemical changes during root formation in oak and apple shoots cultured in vitro. Agronomie 12: 767–774.

    Article  Google Scholar 

  • Sato, Y., M. Sugiyama, R. J. Górecki, H. Fukuda & A. Komamine. 1993. Interrelationship between lignin deposition and the activities of peroxidase isoenzymes in differentiating tracheary elements of Zinnia. Planta 189: 584–589.

    Article  CAS  Google Scholar 

  • Schwambach, J., C. Fadanelli & A. G. Fett-Neto. 2005. Mineral nutrition and adventitious rooting in microcuttings of Eucalyptus globules. Tree Physiol. 25: 487–494.

    PubMed  CAS  Google Scholar 

  • Sedira, M., A. Holefors & M. Welander. 2001. Protocol for transformation of the apple rootstock Jork 9 with the rolB gene and its influence on rooting. Plant Cell Rep. 20: 517–524.

    Article  CAS  Google Scholar 

  • Seifert, G. J., C. Barber, B. Wells & K. Roberts. 2004. Growth regulators and the control of nucleotide sugar flux. Plant Cell 16: 723–730.

    Article  PubMed  CAS  Google Scholar 

  • Shen, W. H., A. Petit, J. Guern & J. Tempe. 1988. Hairy roots are more sensitive to auxin than normal roots. Proc. Natl. Acad. Sci. U.S.A. 85: 3417–3421.

    Article  PubMed  CAS  Google Scholar 

  • Smith, D. L. & N. V. Feodoroff. 1995. LRP1, a gene expressed in lateral and adventitious root primordia of Arabidopsis. Plant Cell 7: 735–745.

    Article  PubMed  CAS  Google Scholar 

  • Su, G. X., W. H. Zhang & Y. L. Liu. 2006. Involvement of hydrogen peroxide generated by polyamine oxidative degradation in the development of lateral roots in soybean. J. Integrat Plant Biol. 48: 426−432.

    Article  CAS  Google Scholar 

  • Suttle, J. C. 1988. Effect of ethylene treatment on polar IAA transport, net IAA uptake and specific binding of N-1-naphthylphthalamic acid in tissues and microsomes isolated from etiolated pea epicotyls. Plant Physiol. 88: 795–799.

    Article  PubMed  CAS  Google Scholar 

  • Syros, T., T. Yupsanis, H. Zafiriadis & A. Economou. 2004. Activity and isoforms of peroxidases, lignin and anatomy, during adventitious rooting in cuttings of Ebenus cretica L. J. Plant Physiol. 161: 69–77.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, F., K. Sato-Nara, K. Kobayashi, M. Suzuki & H. Suzuki. 2003. Sugar-induced adventitious roots in Arabidopsis seedlings. J. Plant Res. 116: 83–91.

    PubMed  CAS  Google Scholar 

  • Tatematsu, K., S. Kumagai, H. Muto, A. Sato, M. K. Watahiki, R. M. Harper, E. Liscum & K. T. Yamamoto. 2004. MASARF SUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana. Plant Cell 16: 379–393.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, B. H. & C. F. Scheuring. 1994. A molecular marker for lateral root initiation: the RSI-1 gene of tomato (Lycopersicon esculentum Mill) is activated in early root primordial. Mol. Gene Genet. 243: 148–157.

    CAS  Google Scholar 

  • Thomas, P., M. M. Lee & J. Schiefelbein. 2003. Molecular identification of proline-rich protein genes induced during root formation in grape (Vitis vinifera L.) stem cuttings. Plant Cell Enviro. 26: 1497–1504.

    Article  CAS  Google Scholar 

  • Tiburcio, A. F., C. A. Gendy & T. T. Van. 1989. Morphogenesis in tobacco subepidermal cells: Putrescine as marker of root differentiation. Plant Cell Tiss. Org. cult. 19: 43–54.

    Article  CAS  Google Scholar 

  • Tiwari, S. B., G. Hagen & T. Guilfoyle. 2003. The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15: 533–543.

    Article  PubMed  CAS  Google Scholar 

  • Ulmasov, T., G. Hagen & T. J. Guilfoyle. 1999. Dimerization and DNA binding of auxin response factors. Plant J. 19: 309–319.

    Article  PubMed  CAS  Google Scholar 

  • Vera, P., C. Lamb & P. W. Doerner. 1994. Cell-cycle regulation of hydroxyproline-rich glycoprotein HRGPnt3 gene expression during the initiation of lateral root meristems. Plant J. 6: 717–727.

    Article  CAS  Google Scholar 

  • Visser, E. J. W., J. D. Cohen, C. W. M. Barendse, C. W. P. M. Blom & L. A. C. J. Voesenek. 1996. An ethylene-mediated increase in sensitivity to auxin induces adventitious root formation in flooded Rumex pahstris Sm. Plant Physiol. 112: 1687–1692.

    PubMed  CAS  Google Scholar 

  • Welander, M., N. Pawlicki, A. Holefors & F. Wilson. 1998. Genetic transformation of the apple rootstock M26 with the rolB gene and its influence on rooting. J. Plant Physiol. 153: 371–380.

    CAS  Google Scholar 

  • Wiesmann, Z., J. Riov & E. Epstein. 1988. Comparison of movement and metabolism of indole-3-acetic acid and indole-3-butyric acid in mung bean cuttings. Physiol. Plant. 74: 556–560.

    Article  Google Scholar 

  • Wilmoth, J. C., S. Wang, S. B. Tiwari, A. D. Joshi, G. Hagen, T. J. Guilfoyle, J. M. Alonso, J. R. Ecker & J. W. Reed. 2005. NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant J. 43: 118–130.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, A. K., F. B. Pickett, J. C. Turner & M. Estelle. 1990. A dominant mutation in arabidopsis confers resistance to auxin, ethylene and abscisic acid. Mol. Gene Genet. 222: 377–383.

    Article  CAS  Google Scholar 

  • Xu, J., W. Xuan, B. K. Huang, Y. H. Zhou, T. F. Ling, S. Xu & W. B. Sheng. 2006. Carbon monoxide-induced ARF of hypocotyl cutting from mung bean seedling. Chin. Sci. Bull. 51: 668–674.

    Article  CAS  Google Scholar 

  • Young, R. J., C. F. Scheuring, L. Harris-Haller & B. H. Taylor. 1994. An auxin inducible proteinase inhibitor gene from tomato. Plant Physiol. 104: 811–812.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, L., A. Holefors, A. Ahlman, Z. Xue & M. Welander. 2001. Transformation of the apple rootstock M.9/29 with the rolB gene and its influence on rooting and growth. Plant Sci. 160: 433–439.

    Article  PubMed  CAS  Google Scholar 

  • ———, X. Li, A. Ahlman & M. Welander. 2003. The rooting ability of the dwarfing pear rootstock BP10030 (Pyrus communis) was significantly increased by introduction of the rolB gene. Plant Sci. 165: 829–835.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the “Qing Lan” Talent Engineering Funds of Lanzhou Jiaotong University and the National Natural Science Foundation of China (30870438 and 30870378)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Weng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, SW., Xue, L., Xu, S. et al. Mediators, Genes and Signaling in Adventitious Rooting. Bot. Rev. 75, 230–247 (2009). https://doi.org/10.1007/s12229-009-9029-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-009-9029-9

Keywords

Navigation