Skip to main content

Dopamine Receptor Subtypes in Reward and Relapse

  • Chapter
  • First Online:
The Dopamine Receptors

Part of the book series: The Receptors ((REC))

Abstract

With the advent of subtype-selective ligands and dopamine receptor knockout mice, the last two decades have seen an explosion in research on the role of dopamine receptor subtypes in reward and relapse to drug-seeking behavior. This chapter represents a relatively comprehensive review of this literature, beginning with the ability of D1-like and D2-like receptor agonists to support self-administration behavior and produce conditioned preference, and followed by the modulation of natural reward, brain stimulation reward, and conditioned reward with subtype-selective ligands and dopamine receptor knockout mice. Subsequent sections describe the modulation of drug and alcohol self-administration by dopamine receptor subtypes, and role of dopamine receptor subtypes in relapse to drug and alcohol seeking in animal models. Finally, down-regulation in dopamine receptors following chronic drug self-administration is discussed in reference to differential changes in dopamine receptor-mediated behavior, suggesting that better integration between biological and behavioral data is needed in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Halberda JP, Middaugh LD, Gard BE, Jackson BP. DAD1- and DAD2-like agonist effects on motor activity of C57 mice: differences compared to rats. Synapse 1997;26:81–92.

    Article  PubMed  CAS  Google Scholar 

  2. Mirenowicz J, Schultz W. Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature 1996;379:449–51.

    Article  PubMed  CAS  Google Scholar 

  3. Schultz W. Predictive reward signal of dopamine neurons. J Neurophysiol 1998;80:1–27.

    PubMed  CAS  Google Scholar 

  4. Baxter BL, Gluckman MI, Stein L, Scerni RA. Self-injection of apomorphine in the rat: positive reinforcement by a dopamine receptor stimulant. Pharmacol Biochem Behav 1974;2:387–91.

    Article  PubMed  CAS  Google Scholar 

  5. Baxter BL, Gluckman MI, Scerni RA. Apomorphine self-injection is not affected by alpha-methylparatyrosine treatment: support for dopaminergic reward. Pharmacol Biochem Behav 1976;4:611–2.

    Article  PubMed  CAS  Google Scholar 

  6. Schultz W. Multiple dopamine functions at different time courses. Annu Rev Neurosci 2007;30:259–88.

    Article  PubMed  CAS  Google Scholar 

  7. Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Rev 1998;28:309–69.

    Article  PubMed  CAS  Google Scholar 

  8. Everitt BJ, Dickinson A, Robbins TW. The neuropsychological basis of addictive behaviour. Brain Res Rev 2001;36:129–38.

    Article  PubMed  CAS  Google Scholar 

  9. Salamone JD, Correa M, Farrar A, Mingote SM. Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology 2007;191:461–82.

    Article  PubMed  CAS  Google Scholar 

  10. Woolverton WL, Goldberg LI, Jinos JZ. Intravenous self-administration of dopamine receptor agonists by rhesus monkeys. J Pharmacol Exp Ther 1984;230:678–83.

    PubMed  CAS  Google Scholar 

  11. Self DW, Stein L. The D1 agonists SKF 82958 and SKF 77434 are self-administered by rats. Brain Res 1992;582:349–52.

    Article  PubMed  CAS  Google Scholar 

  12. Weed MR, Vanover KE, Woolverton WL. Reinforcing effect of the D1 dopamine agonist SKF 81297 in rhesus monkeys. Psychopharmacology 1993;113:51–2.

    Article  PubMed  CAS  Google Scholar 

  13. Weed MR, Woolverton ML. The reinforcing effects of D1 receptor agonists in rhesus monkeys. J Pharmacol Exp Ther 1995;275:1367–74.

    PubMed  CAS  Google Scholar 

  14. Grech DM, Spealman RD, Bergman J. Self-administration of D1 receptor agonists by squirrel monkeys. Psychopharmacology 1996;125:97–104.

    Article  PubMed  CAS  Google Scholar 

  15. Self DW, Belluzzi JD, Kossuth S, Stein L. Self-administration of the D1 agonist SKF 82958 is mediated by D1, and not D2, receptors. Psychopharmacology 1996;123:303–6.

    Article  PubMed  CAS  Google Scholar 

  16. Caine SB, Thomsen M, Gabriel KI, et al. Lack of self-administration of cocaine in dopamine D1 receptor knock-out mice. J Neurosci 2007;27:13140–50.

    Article  PubMed  CAS  Google Scholar 

  17. Self DW, Stein L. Receptor subtypes in opioid and stimulant reward. Pharmacol Toxicol 1992;70:87–94.

    Article  PubMed  CAS  Google Scholar 

  18. Yokel RA, Wise RA. Amphetamine-type reinforcement by dopaminergic agonists in the rat. Psychopharmacology 1978;58:289–96.

    Article  PubMed  CAS  Google Scholar 

  19. Wise RA, Murray A, Bozarth MA. Bromocriptine self-administration and bromocriptine-reinstatement of cocaine-trained and heroin-trained lever pressing in rats. Psychopharmacology 1990;100:355–60.

    Article  PubMed  CAS  Google Scholar 

  20. Caine SB, Koob GF. Modulation of cocaine self-administration in the rat through D-3 dopamine receptors. Science 1993;260:1814–6.

    Article  PubMed  CAS  Google Scholar 

  21. Manzardo AM, Del Rio JA, Stein L, Belluzzi JD. Rats choose cocaine over dopamine agonists in a two-lever self-administration preference test. Pharmacol Biochem Behav 2001;70:257–65.

    Article  PubMed  CAS  Google Scholar 

  22. Woolverton WL, Ranaldi R. Comparison of the reinforcing efficacy of two dopamine D2-like receptor agonists in rhesus monkeys using a progressive-ratio schedule of reinforcement. Pharmacol Biochem Behav 2002;72:803–9.

    Article  PubMed  CAS  Google Scholar 

  23. Nader MA, Mach RH. Self-administration of the dopamine D3 agonist 7-OH-DPAT in rhesus monkeys is modified by prior cocaine exposure. Psychopharmacology 1996;125:13–22.

    Article  PubMed  CAS  Google Scholar 

  24. Sinnott RS, Mach RH, Nader MA. Dopamine D2/D3 receptors modulate cocaine’s reinforcing and discriminative stimulus effects in rhesus monkeys. Drug Alcohol Depend 1999;54:97–110.

    Article  PubMed  CAS  Google Scholar 

  25. Ikemoto S, Glazier BS, Murphy JM, McBride WJ. Role of dopamine D1 and D2 receptors in the nucleus accumbens in mediating reward. J Neurosci 1997;17:8580–7.

    PubMed  CAS  Google Scholar 

  26. Ikemoto S. Involvement of the olfactory tubercle in cocaine reward: intracranial self-administration studies. J Neurosci 2003;23:9305–11.

    PubMed  CAS  Google Scholar 

  27. Goeders NE, Smith JE. Reinforcing properties of cocaine in the medical prefrontal cortex: primary action on presynaptic dopaminergic terminals. Pharmacol Biochem Behav 1986;25:191–9.

    Article  PubMed  CAS  Google Scholar 

  28. Goeders NE, Dworkin SI, Smith JE. Neuropharmacological assessment of cocaine self-administration into the medial prefrontal cortex. Pharmacol Biochem Behav 1986;24:1429–40.

    Article  PubMed  CAS  Google Scholar 

  29. Goeders NE, Smith JE. Cortical dopaminergic involvement in cocaine reinforcement. Science 1983;221:773–5.

    Article  PubMed  CAS  Google Scholar 

  30. David V, Segu L, Buhot MC, Ichaye M, Cazala P. Rewarding effects elicited by cocaine microinjections into the ventral tegmental area of C57BL/6 mice: involvement of dopamine D1 and serotonin1B receptors. Psychopharmacology 2004;174:367–75.

    Article  PubMed  CAS  Google Scholar 

  31. Rodd ZA, Bell RL, Kuc KA, Zhang Y, Murphy JM, McBride WJ. Intracranial self-administration of cocaine within the posterior ventral tegmental area of Wistar rats: evidence for involvement of serotonin-3 receptors and dopamine neurons. J Pharmacol Exp Ther 2005;313:134–45.

    Article  PubMed  CAS  Google Scholar 

  32. Corsini GU, Del Zompo M, Gessa GL, Mangoni A. Therapeutic efficacy of apomorphine combined with an extracerebral inhibitor of dopamine receptors in Parkinson’s disease. Lancet 1979;1(8123):954–6.

    Article  PubMed  CAS  Google Scholar 

  33. Kumor K, Sherer M, Jaffe J. Effects of bromocriptine pretreatment on subjective and physiological responses to i.v. cocaine. Pharmacol Biochem Behav 1989;33:829–37.

    Article  PubMed  CAS  Google Scholar 

  34. Brauer LH, Goudie AJ, de Wit H. Dopamine ligands and the stimulus effects of amphetamine: animal models versus human laboratory data. Psychopharmacology 1997; 130:2–13.

    Article  PubMed  CAS  Google Scholar 

  35. Wachtel SR, Ortengren A, de Wit H. The effects of acute haloperidol or risperidone on subjective responses to methamphetamine in healthy volunteers. Drug Alcohol Depend 2002;68:23–33.

    Article  PubMed  CAS  Google Scholar 

  36. Romach MK, Glue P, Kampman K, et al. Attenuation of the euphoric effects of cocaine by the dopamine D1/D5 antagonist ecopipam (SCH 39166). Arch Gen Psychiat 1999;56:1101–6.

    Article  PubMed  CAS  Google Scholar 

  37. Haney M, Ward AS, Foltin RW, Fischman MW. Effects of ecopipam, a selective dopamine D1 antagonist, on smoked cocaine self-administration by humans. Psychopharmacology 2001;155:330–7.

    Article  PubMed  CAS  Google Scholar 

  38. Tzschentke TM. Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog Neurobiol 1998;56:613–72.

    Article  PubMed  CAS  Google Scholar 

  39. Hoffman DC, Beninger RJ. Selective D1 and D2 dopamine agonists produce opposing effects in place conditioning but not in conditioned taste aversion learning. Pharmacol Biochem Behav 1988;31:1–8.

    Article  PubMed  CAS  Google Scholar 

  40. White NM, Packard MG, Hiroi N. Place conditioning with dopamine D1 and D2 agonists injected peripherally or into nucleus accumbens. Psychopharmacology 1991;103:271–6.

    Article  PubMed  CAS  Google Scholar 

  41. Hoffman DC, Beninger RJ. The effects of selective dopamine D1 or D2 receptor antagonists on the establishment of agonist-induced place conditioning in rats. Pharmacol Biochem Behav 1989;33:273–9.

    Article  PubMed  CAS  Google Scholar 

  42. Abrahams BS, Rutherford JD, Mallet PE, Beninger RJ. Place conditioning with the dopamine D1-like receptor agonist SKF 82958 but not SKF 81297 or SKF 77434. Eur J Pharmacol 1998;343:111–8.

    Article  PubMed  CAS  Google Scholar 

  43. Graham DL, Hoppenot R, Hendryx A, Self DW. Differential ability of D1 and D2 dopamine receptor agonists to induce and modulate expression and reinstatement of cocaine place preference in rats. Psychopharmacology 2007;191:719–30.

    Article  PubMed  CAS  Google Scholar 

  44. Blanchet PJ, Grondin R, Bedard PJ, Shiosaki K, Britton DJ. Dopamine D1 receptor desensitization profile in MPTP-lesioned primates. Eur J Pharmacol 1996;309:13–20.

    Article  PubMed  CAS  Google Scholar 

  45. Shippenberg TS, Herz A. Place preference reveals the involvement of D-1 dopamine receptors in the motivational properties of μ- and κ-opioid agonists. Brain Res 1987;436:169–72.

    Article  PubMed  CAS  Google Scholar 

  46. Papp M, Muscat R, Willner P. Subsensitivity to rewarding and locomotor stimulant effects of a dopamine agonist following chronic mild stress. Psychopharmacology 1993;110:152–8.

    Article  PubMed  CAS  Google Scholar 

  47. Mallet PE, Beninger RJ. 7-OH-DPAT produces place conditioning in rats. Eur J Pharmacol 1994;261:R5–6.

    Article  PubMed  CAS  Google Scholar 

  48. Kling-Petersen T, Ljung E, Wollter L, Svensson K. Effects of dopamine D3 preferring compounds on conditioned place preference and intracranial self-stimulation in the rat. J Neural Trans 1995;101:27–39.

    Article  CAS  Google Scholar 

  49. Biondo AM, Clements RL, Hayes DJ, Eshpeter B, Greenshaw AJ. NMDA or AMPA/kainate receptor blockade prevents acquisition of conditioned place preference induced by D(2/3) dopamine receptor stimulation in rats. Psychopharmacology 2005;179:189–97.

    Article  PubMed  CAS  Google Scholar 

  50. Rodriguez De Fonseca F, Rubio P, Martin-Calderon JL, Caine SB, Koob GF, Navarro M. The dopamine receptor agonist 7-OH-DPAT modulates the acquisition and expression of morphine-induced place preference. Eur J Pharmacol 1995;274:47–55.

    Article  PubMed  CAS  Google Scholar 

  51. Frances H, Smirnova M, Leriche L, Sokoloff P. Dopamine D3 receptor ligands modulate the acquisition of morphine-conditioned place preference. Psychopharmacology 2004;175:127–33.

    Article  PubMed  CAS  Google Scholar 

  52. Gyertyan I, Gal K. Dopamine D3 receptor ligands show place conditioning effect but do not influence cocaine-induced place preference. Neuroreport 2003;14:93–8.

    Article  PubMed  CAS  Google Scholar 

  53. Khroyan TV, Baker DA, Neisewander JL. Dose-dependent effects of the D3-preferring agonist 7-OH-DPAT on motor behaviors and place conditioning. Psychopharmacology 1995;122:351–7.

    Article  PubMed  CAS  Google Scholar 

  54. Hoffman DC, Dickson PR, Beninger RJ. The dopamine D2 receptor agonists, quinpirole and bromocriptine produce conditioned place preferences. Prog Neuropsychopharmacol Biol Psychiatry 1988;12:315–22.

    Article  PubMed  CAS  Google Scholar 

  55. Kuz’min AV, Zvartau EE. The reinforcing properties of psychostimulating preparations on models of conditioned-reflex place preference in mice. Zh Vyssh Nerv Deiat Im I P Pavlova 1995;45:802–10.

    PubMed  Google Scholar 

  56. Khroyan TV, Fuchs RA, Baker DA, Neisewander JL. Effects of D3-preferring agonists 7-OH-PIPAT and PD-128,907 on motor behaviors and place conditioning. Behav Pharmacol 1997;8:65–74.

    Article  PubMed  CAS  Google Scholar 

  57. Woolley ML, Waters KA, Reavill C, et al. Selective dopamine D4 receptor agonist (A-412997) improves cognitive performance and stimulates motor activity without influencing reward-related behaviour in rat. Behav Pharmacol 2008;19:765–76.

    Article  PubMed  CAS  Google Scholar 

  58. Rezayof A, Zarrindast MR, Sahraei H, Haeri-Rohani A. Involvement of dopamine receptors of the dorsal hippocampus on the acquisition and expression of morphine-induced place preference in rats. J Psychopharmacol 2003;17:415–23.

    Article  PubMed  CAS  Google Scholar 

  59. Zarrindast MR, Rezayof A, Sahraei H, Haeri-Rohani A, Rassouli Y. Involvement of dopamine D1 receptors of the central amygdala on the acquisition and expression of morphine-induced place preference in rat. Brain Res 2003;965:212–21.

    Article  PubMed  CAS  Google Scholar 

  60. Barrett AC, Miller JR, Dohrmann JM, Caine SB. Effects of dopamine indirect agonists and selective D1-like and D2-like agonists and antagonists on cocaine self-administration and food maintained responding in rats. Neuropharmacology 2004;47(Suppl 1):256–73.

    Article  PubMed  CAS  Google Scholar 

  61. Weatherford SC, Greenberg D, Gibbs J, Smith GP. The potency of D-1 and D-2 receptor antagonists is inversely related to the reward value of sham-fed corn oil and sucrose in rats. Pharmacol Biochem Behav 1990;37:317–23.

    Article  PubMed  CAS  Google Scholar 

  62. Hsiao S, Smith GP. Raclopride reduces sucrose preference in rats. Pharmacol Biochem Behav 1995;50:121–5.

    Article  PubMed  CAS  Google Scholar 

  63. Yu WZ, Silva RM, Sclafani A, Delamater AR, Bodnar RJ. Pharmacology of flavor preference conditioning in sham-feeding rats: effects of dopamine receptor antagonists. Pharmacol Biochem Behav 2000;65:635–47.

    Article  PubMed  CAS  Google Scholar 

  64. Terry P, Gilbert DB, Cooper SJ. Dopamine receptor subtype agonists and feeding behavior. Obes Res 1995;3(Suppl 4):515S–23S.

    PubMed  CAS  Google Scholar 

  65. Phillips G, Willner P, Muscat R. Suppression or facilitation of operant behaviour by raclopride dependent on concentration of sucrose reward. Psychopharmacology 1991;105:239–46.

    Article  PubMed  CAS  Google Scholar 

  66. Price KL, Middaugh LD. The dopamine D1 antagonist reduces ethanol reward for C57BL/6 mice. Alcohol Clin Exp Res 2004;28:1666–75.

    Article  PubMed  CAS  Google Scholar 

  67. Agmo A, Federman I, Navarro V, Padua M, Velazquez G. Reward and reinforcement produced by drinking water: role of opioids and dopamine receptor subtypes. Pharmacol Biochem Behav 1993;46:183–94.

    Article  PubMed  CAS  Google Scholar 

  68. Melis MR, Argiolas A. Dopamine and sexual behavior. Neurosci Biobehav Rev 1995;19: 19–38.

    Article  PubMed  CAS  Google Scholar 

  69. Beck J, Bialy M, Kostowski W. Effects of D(1) receptor agonist SKF 38393 on male rat sexual behavior and postcopulatory departure in the goal compartment-runway paradigm. Physiol Behav 2002;76:91–7.

    Article  PubMed  CAS  Google Scholar 

  70. Everitt BJ. Sexual motivation: a neural and behavioural analysis of the mechanisms underlying appetitive and copulatory responses of male rats. Neurosci Biobehav Rev 1990;14:217–32.

    Article  PubMed  CAS  Google Scholar 

  71. Pfaus JG, Philipps AG. Role of dopamine in anticipatory and consummatory aspects of sexual behavior in the male rat: I. Effects of systemic administration of dopamine antagonists. Behav Neurosci 1991;105:727–43.

    Article  PubMed  CAS  Google Scholar 

  72. Grierson JP, James MD, Pearson JR, Wilson CA. The effect of selective D1 and D2 dopaminergic agents on sexual receptivity in the female rat. Neuropharmacology 1988;27:181–9.

    Article  PubMed  CAS  Google Scholar 

  73. Agustin-Pavon C, Martinez-Ricos J, Martinez-Garcia F, Lanuza E. Effects of dopaminergic drugs on innate pheromone-mediated reward in female mice: a new case of dopamine-independent "liking." Behav Neurosci 2007;121:920–32.

    Article  PubMed  CAS  Google Scholar 

  74. El-Ghundi M, O‘Dowd BF, Erclik M, George SR. Attenuation of sucrose reinforcement in dopamine D1 receptor deficient mice. Eur J Neurosci 2003;17:851–62.

    Article  PubMed  Google Scholar 

  75. Kudwa AE, Dominguez-Salazar E, Cabrera DM, Sibley DR, Rissman EF. Dopamine D5 receptor modulates male and female sexual behavior in mice. Psychopharmacology 2005;180:206–14.

    Article  PubMed  CAS  Google Scholar 

  76. Fowler SC, Zarcone TJ, Vorontsova E, Chen R. Motor and associative deficits in D2 dopamine receptor knockout mice. Int J Dev Neurosci 2002;20:309–21.

    Article  PubMed  CAS  Google Scholar 

  77. Elmer GI, Pieper JO, Rubinstein M, Low MJ, Grandy DK, Wise RA. Failure of intravenous morphine to serve as an effective instrumental reinforcer in dopamine D2 receptor knock-out mice. J Neurosci 2002;22:RC224.

    PubMed  Google Scholar 

  78. Boyce-Rustay JM, Risinger FO. Dopamine D3 receptor knockout mice and the motivational effects of ethanol. Pharmacol Biochem Behav 2003;75:373–9.

    Article  PubMed  CAS  Google Scholar 

  79. Hajnal A, Norgren R. Accumbens dopamine mechanisms in sucrose intake. Brain Res 2001;904:76–84.

    Article  PubMed  CAS  Google Scholar 

  80. Bari AA, Pierce RC. D1-like and D2 dopamine receptor antagonists administered into the shell subregion of the rat nucleus accumbens decrease cocaine, but not food, reinforcement. Neuroscience 2005;135:959–68.

    Article  PubMed  CAS  Google Scholar 

  81. Baldo BA, Sadeghian K, Basso AM, Kelley AE. Effects of selective dopamine D1 or D2 receptor blockade within nucleus accumbens subregions on ingestive behavior and associated motor activity. Behav Brain Res 2002;137:165–77.

    Article  PubMed  CAS  Google Scholar 

  82. Smith-Roe SL, Kelley AE. Coincident activation of NMDA and dopamine D1 receptors within the nucleus accumbens core is required for appetitive instrumental learning. J Neurosci 2000;20:7737–42.

    PubMed  CAS  Google Scholar 

  83. Baldwin AE, Sadeghian K, Holahan MR, Kelley AE. Appetitive instrumental learning is impaired by inhibition of cAMP-dependent protein kinase within the nucleus accumbens. Neurobiol Learn Mem 2002;77:44–62.

    Article  PubMed  CAS  Google Scholar 

  84. Baldwin AE, Sadeghian K, Kelley AE. Appetitive instrumental learning requires coincident activation of NMDA and dopamine D1 receptors within the medial prefrontal cortex. J Neurosci 2002;22:1063–71.

    PubMed  CAS  Google Scholar 

  85. Andrzejewski ME, Spencer RC, Kelley AE. Instrumental learning, but not performance, requires dopamine D1-receptor activation in the amygdala. Neuroscience 2005;135:335–45.

    Article  PubMed  CAS  Google Scholar 

  86. Wise RA. Forebrain substrates of reward and motivation. J Comp Neurol 2005;493:115–21.

    Article  PubMed  CAS  Google Scholar 

  87. You ZB, Tzschentke TM, Brodin E, Wise RA. Electrical stimulation of the prefrontal cortex increases cholecystokinin, glutamate, and dopamine release in the nucleus accumbens: an in vivo microdialysis study in freely moving rats. J Neurosci 1998;18:6492–500.

    PubMed  CAS  Google Scholar 

  88. Gallistel CR, Davis AJ. Affinity for the dopamine D2 receptor predicts neuroleptic potency in blocking the reinforcing effect of MFB stimulation. Pharmacol Biochem Behav 1983;19:867–72.

    Article  PubMed  CAS  Google Scholar 

  89. Nakajima S, O‘Regan NB. The effects of dopaminergic agonists and antagonists on the frequency-response function for hypothalamic self-stimulation in the rat. Pharmacol Biochem Behav 1991;39:465–8.

    Article  PubMed  CAS  Google Scholar 

  90. Carr KD, Yamamoto N, Omura M, Cabeza de Vaca S, Krahne L. Effects of the D(3) dopamine receptor antagonist, U99194A, on brain stimulation and d-amphetamine reward, motor activity, and c-fos expression in ad libitum fed and food-restricted rats. Psychopharmacology 2002;163:76–84.

    Article  PubMed  CAS  Google Scholar 

  91. Tran AH, Tamura R, Uwano T, Kobayashi T, Katsuki M, Ono T. Dopamine D1 receptors involved in locomotor activity and accumbens neural responses to prediction of reward associated with place. Proc Natl Acad Sci USA 2005;102:2117–22.

    Article  PubMed  CAS  Google Scholar 

  92. Elmer GI, Pieper JO, Levy J, et al. Brain stimulation and morphine reward deficits in dopamine D2 receptor-deficient mice. Psychopharmacology 2005;182:33–44.

    Article  PubMed  CAS  Google Scholar 

  93. Hunt GE, Atrens DM, Jackson DM. Reward summation and the effects of dopamine D1 and D2 agonists and antagonists on fixed-interval responding for brain stimulation. Pharmacol Biochem Behav 1994;48:853–62.

    Article  PubMed  CAS  Google Scholar 

  94. Singh J, Desiraju T, Raju TR. Dose-response functions of apomorphine, SKF 38393, LY 171555, haloperidol and clonidine on the self-stimulation evoked from lateral hypothalamus and ventral tegmentum. Indian J Physiol Pharmacol 1996;40:15–22.

    PubMed  CAS  Google Scholar 

  95. Baldo BA, Jain K, Veraldi L, Koob GF, Markou A. A dopamine D1 agonist elevates self-stimulation thresholds: comparison to other dopamine-selective drugs. Pharmacol Biochem Behav 1999;62:659–72.

    Article  PubMed  CAS  Google Scholar 

  96. Gilliss B, Malanga CJ, Pieper JO, Carlezon WA, Jr. Cocaine and SKF-82958 potentiate brain stimulation reward in Swiss-Webster mice. Psychopharmacology 2002;163:238–48.

    Article  PubMed  CAS  Google Scholar 

  97. Ranaldi R, Beninger RJ. The effects of systemic and intracerebral injections of D1 and D2 agonists on brain stimulation reward. Brain Res 1994;651:283–92.

    Article  PubMed  CAS  Google Scholar 

  98. Depoortere R, Perrault G, Sanger DJ. Behavioural effects in the rat of the putative dopamine D3 receptor agonist 7-OH-DPAT: comparison with quinpirole and apomorphine. Psychopharmacology 1996;124:231–40.

    Article  PubMed  CAS  Google Scholar 

  99. Nakajima S, Liu X, Lau CL. Synergistic interaction of D1 and D2 dopamine receptors in the modulation of the reinforcing effect of brain stimulation. Behav Neurosci 1993;107:161–5.

    Article  PubMed  CAS  Google Scholar 

  100. Panagis G, Spyraki C. Neuropharmacological evidence for the role of dopamine in ventral pallidum self-stimulation. Psychopharmacology 1996;123:280–8.

    Article  PubMed  CAS  Google Scholar 

  101. Gilbert DB, Millar J, Cooper SJ. The putative dopamine D3 agonist, 7-OH-DPAT, reduces dopamine release in the nucleus accumbens and electrical self-stimulation to the ventral tegmentum. Brain Res 1995;681:1–7.

    Article  PubMed  CAS  Google Scholar 

  102. Depoortere R, Perrault G, Sanger DJ. Intracranial self-stimulation under a progressive-ratio schedule in rats: effects of strength of stimulation, d-amphetamine, 7-OH-DPAT and haloperidol. Psychopharmacology 1999;142:221–9.

    Article  PubMed  CAS  Google Scholar 

  103. Knapp CM, Kornetsky C. Bromocriptine, a D2 receptor agonist, lowers the threshold for rewarding brain stimulation. Pharmacol Biochem Behav 1994;49:901–4.

    Article  PubMed  CAS  Google Scholar 

  104. Kurumiya S, Nakajima S. Dopamine D1 receptors in the nucleus accumbens: involvement in the reinforcing effect of tegmental stimulation. Brain Res 1988;448:1–6.

    Article  PubMed  CAS  Google Scholar 

  105. Nakajima S, Patterson RL. The involvement of dopamine D2 receptors, but not D3 or D4 receptors, in the rewarding effect of brain stimulation in the rat. Brain Res 1997;760:74–9.

    Article  PubMed  CAS  Google Scholar 

  106. Singh J, Desiraju T, Raju TR. Dopamine receptor sub-types involvement in nucleus accumbens and ventral tegmentum but not in medial prefrontal cortex: on self-stimulation of lateral hypothalamus and ventral mesencephalon. Behav Brain Res 1997;86:171–9.

    Article  PubMed  CAS  Google Scholar 

  107. Choi KH, Clements RL, Greenshaw AJ. Simultaneous AMPA/kainate receptor blockade and dopamine D(2/3) receptor stimulation in the nucleus accumbens decreases brain stimulation reward in rats. Behav Brain Res 2005;158:79–88.

    Article  PubMed  CAS  Google Scholar 

  108. Cameron DL, Williams JT. Dopamine D1 receptors facilitate transmitter release. Nature 1993;366:344–7.

    Article  PubMed  CAS  Google Scholar 

  109. Ferrer JM, Sanguinetti AM, Vives F, Mora F. Effects of agonists and antagonists of D1 and D2 dopamine receptors on self-stimulation of the medial prefrontal cortex in the rat. Pharmacol Biochem Behav 1983;19:211–7.

    Article  PubMed  CAS  Google Scholar 

  110. Van Tol HH, Bunzow JR, Guan HC, et al. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 1991;350(6319):610–4.

    Article  PubMed  Google Scholar 

  111. Seeman P, Van Tol HH. Dopamine receptor pharmacology. Trends Pharmacol Sci 1994;15:264–70.

    Article  PubMed  CAS  Google Scholar 

  112. Tiberi M, Jarvie KR, Silvia C, et al. Cloning, molecular characterization, and chromosomal assignment of a gene encoding a second D1 dopamine receptor subtype: differential expression pattern in rat brain compared with the D1A receptor. Proc Natl Acad Sci USA 1991;88:7491–5.

    Article  PubMed  CAS  Google Scholar 

  113. Robbins TW. The potentiation of conditioned reinforcement by psychomotor stimulant drugs: A test of Hill’s hypthesis. Psychopharmacolgy 1975;45:103–14.

    Article  CAS  Google Scholar 

  114. Taylor JR, Robbins TW. Enhanced behavioral control by conditioned reinforcers following microinjections of d-amphetamine into the nucleus accumbens. Psychopharmacology 1984;84:405–12.

    Article  PubMed  CAS  Google Scholar 

  115. Taylor JR, Robbins TW. 6-hydroxydopamine lesions of the nucleus accumbens, but not of the caudate nucleus, attenuate enhanced responding with reward-related stimuli produced by intra-accumbens d-amphetamine. Psychopharmacology 1986;90:390–7.

    Article  PubMed  CAS  Google Scholar 

  116. Ranaldi R, Beninger RJ. Dopamine D1 and D2 antagonists attenuate amphetamine-produced enhancement of responding for conditioned reward in rats. Psychopharmacology 1993;113:110–8.

    Article  PubMed  CAS  Google Scholar 

  117. Smith JK, Neill JC, Costall B. Bidirectional effects of dopamine D2 receptor antagonists on responding for a conditioned reinforcer. Pharmacol Biochem Behav 1997;57:843–9.

    Article  PubMed  CAS  Google Scholar 

  118. Beninger RJ, Rolfe NG. Dopamine D1-like receptor agonists impair responding for conditioned reward in rats. Behav Pharmacol 1995;6:785–93.

    Article  PubMed  CAS  Google Scholar 

  119. Beninger RJ, Ranaldi R. The effect of amphetamine, apomorphine, SKF 38393, quinpirole and bromocriptine on responding for conditioned reward in rats. Behav Pharmacol 1992;3:155–63.

    Article  PubMed  CAS  Google Scholar 

  120. Ranaldi R, Beninger RJ. Bromocriptine enhancement of responding for conditioned reward depends on intact D1 receptor function. Psychopharmacology 1995;118:437–43.

    Article  PubMed  CAS  Google Scholar 

  121. Wolterink G, Phillips G, Cador M, Donselaar-Wolterink I, Robbins TW, Everitt BJ. Relative roles of ventral striatal D1 and D2 dopamine receptors in responding with conditioned reinforcement. Psychopharmacology 1993;110:355–64.

    Article  PubMed  CAS  Google Scholar 

  122. Phillips GD, Robbins TW, Everitt BJ. Mesoaccumbens dopamine-opiate interactions in the control over behaviour by a conditioned reinforcer. Psychopharmacology 1994;114:345–59.

    Article  PubMed  CAS  Google Scholar 

  123. Hitchcott PK, Phillips GD. Effects of intra-amygdala R(+) 7-OH-DPAT on intra-accumbens d-amphetamine-associated learning. II. Instrumental conditioning. Psychopharmacology 1998;140:310–8.

    Article  PubMed  CAS  Google Scholar 

  124. Berglind WJ, Case JM, Parker MP, Fuchs RA, See RE. Dopamine D1 or D2 receptor antagonism within the basolateral amygdala differentially alters the acquisition of cocaine-cue associations necessary for cue-induced reinstatement of cocaine-seeking. Neuroscience 2006;137:699–706.

    Article  PubMed  CAS  Google Scholar 

  125. Roberts DCS, Vickers G. Atypical neuroleptics increase self-administration of cocaine: an evaluation of a behavioral screen for antipsychotic activity. Psychopharmacology 1984;82:135–9.

    Article  PubMed  CAS  Google Scholar 

  126. Ahmed SH, Koob GF. Transition from moderate to excessive drug intake: change in hedonic set point. Science 1998;282:298–300.

    Article  PubMed  CAS  Google Scholar 

  127. Koob GF, Le HT, Creese I. The D1 dopamine receptor antagonist SCH 23390 increases cocaine self-administration in the rat. Neurosci Lett 1987;79:315–20.

    Article  PubMed  CAS  Google Scholar 

  128. Britton DR, Mackenzie RG, Kebabian JW, Williams JEG, Kerkmen D. Evidence for involvement of both D1 and D2 receptors in maintaining cocaine self-administration. Pharmacol Biochem Behav 1991;39:911–5.

    Article  PubMed  CAS  Google Scholar 

  129. Corrigall WA, Coen KM. Cocaine self-administration is increased by both D1 and D2 dopamine receptor antagonists. Pharmacol Biochem Behav 1991;39:799–802.

    Article  PubMed  CAS  Google Scholar 

  130. Hubner CB, Moreton JB. Effects of selective D1 and D2 dopamine antagonists on cocaine self-administration in the rat. Psychopharmacology 1991;105:151–6.

    Article  PubMed  CAS  Google Scholar 

  131. Glowa JR, Wojnicki FH. Effects of drugs on food- and cocaine-maintained responding, III: Dopaminergic antagonists. Psychopharmacology 1996;128:351–8.

    Article  PubMed  CAS  Google Scholar 

  132. Depoortere RY, Li DH, Lane JD, Emmett-Oglesby MW. Parameters of self-administration of cocaine in rats under a progressive-ratio schedule. Pharmacol Biochem Behav 1993;45:539–48.

    Article  PubMed  CAS  Google Scholar 

  133. Fletcher PJ. A comparison of the effects of risperidone, raclopride, and ritanserin on intravenous self-administration of d-amphetamine. Pharmacol Biochem Behav 1998;60:55–60.

    Article  PubMed  CAS  Google Scholar 

  134. Izzo E, Orsini C, Koob GF, Pulvirenti L. A dopamine partial agonist and antagonist block amphetamine self-administration in a progressive ratio schedule. Pharmacol Biochem Behav 2001;68:701–8.

    Article  PubMed  CAS  Google Scholar 

  135. Caine SB, Negus SS, Mello NK, et al. Role of dopamine D2-like receptors in cocaine self-administration: studies with D2 receptor mutant mice and novel D2 receptor antagonists. J Neurosci 2002;22:2977–88.

    PubMed  CAS  Google Scholar 

  136. Gal K, Gyertyan I. Targeting the dopamine D3 receptor cannot influence continuous reinforcement cocaine self-administration in rats. Brain Res Bull 2003;61:595–601.

    Article  PubMed  CAS  Google Scholar 

  137. Xi ZX, Gilbert JG, Pak AC, Ashby CR, Jr., Heidbreder CA, Gardner EL. Selective dopamine D3 receptor antagonism by SB-277011A attenuates cocaine reinforcement as assessed by progressive-ratio and variable-cost-variable-payoff fixed-ratio cocaine self-administration in rats. Eur J Neurosci 2005;21:3427–38.

    Article  PubMed  Google Scholar 

  138. Xi ZX, Newman AH, Gilbert JG, et al. The novel dopamine D3 receptor antagonist NGB 2904 inhibits cocaine’s rewarding effects and cocaine-induced reinstatement of drug-seeking behavior in rats. Neuropsychopharmacology 2006;31:1393–405.

    Article  PubMed  CAS  Google Scholar 

  139. Self DW, Barnhart WJ, Lehman DA, Nestler EJ. Opposite modulation of cocaine-seeking behavior by D1- and D2-like dopamine receptor agonists. Science 1996;271:1586–9.

    Article  PubMed  CAS  Google Scholar 

  140. Caine SB, Negus SS, Mello NK, Bergman J. Effects of dopamine D(1-like) and D(2-like) agonists in rats that self-administer cocaine. J Pharmacol Exp Ther 1999;291:353–60.

    PubMed  CAS  Google Scholar 

  141. Caine SB, Negus SS, Mello NK. Effects of dopamine D(1-like) and D(2-like) agonists on cocaine self-administration in rhesus monkeys: rapid assessment of cocaine dose-effect functions. Psychopharmacology 2000;148:41–51.

    Article  PubMed  CAS  Google Scholar 

  142. Self DW, Karanian DA, Spencer JJ. Effects of the novel D1 agonist ABT-431on cocaine self-administration and reinstatement. Annl NY Acad Sci 2000;909:133–44.

    Article  CAS  Google Scholar 

  143. Hubner CB, Koob GF. Bromocriptine produces decreases in cocaine self-administration in the rat. Neuropsychopharmacology 1990;3:101–8.

    PubMed  CAS  Google Scholar 

  144. Pulvirenti L, Koob GF. Dopamine receptor agonists, partial agonists and psychostimulant addiction. Trends Pharmacol Sci 1994;15:374–9.

    Article  PubMed  CAS  Google Scholar 

  145. Caine SB, Koob GF. Pretreatment with the dopamine agonist 7-OH-DPAT shifts the cocaine self-administration dose-effect function to the left under different schedules in the rat. Behav Pharmacol 1995;6:333–47.

    Article  PubMed  CAS  Google Scholar 

  146. Rowlett JK, Platt DM, Yao WD, Spealman RD. Modulation of heroin and cocaine self-administration by dopamine D1- and D2-like receptor agonists in rhesus monkeys. J Pharmacol Exp Ther 2007;321:1135–43.

    Article  PubMed  CAS  Google Scholar 

  147. Parsons LH, Caine SB, Sokoloff P, Schwartz J-C, Koob GF, Weiss F. Neurochemical evidence that post-synaptic nucleus accumbens D3 receptor stimulation enhances cocaine reinforcement. J Neurochem 1996;67:1078–89.

    Article  PubMed  CAS  Google Scholar 

  148. Caine SB, Koob GF, Parsons LH, Everitt BJ, Schwartz JC, Sokoloff P. D3 receptor test in vitro predicts decreased cocaine self-administration in rats. Neuroreport 1997;8:2373–7.

    Article  PubMed  CAS  Google Scholar 

  149. Le Foll B, Schwartz JC, Sokoloff P. Dopamine D3 receptor agents as potential new medications for drug addiction. Eur Psychiatry 2000;15:140–6.

    Article  PubMed  Google Scholar 

  150. Xu M, Koeltzow TE, Santiago GT, et al. Dopamine D3 receptor mutant mice exhibit increased behavioral sensitivity to concurrent stimulation of D1 and D2 receptors. Neuron 1997;19:837–48.

    Article  PubMed  CAS  Google Scholar 

  151. Karasinska JM, George SR, Cheng R, O‘Dowd BF. Deletion of dopamine D1 and D3 receptors differentially affects spontaneous behaviour and cocaine-induced locomotor activity, reward and CREB phosphorylation. Eur J Neurosci 2005;22(7):1741–50.

    Article  PubMed  Google Scholar 

  152. Jiao H, Zhang L, Gao F, Lou D, Zhang J, Xu M. Dopamine D(1) and D(3) receptors oppositely regulate NMDA- and cocaine-induced MAPK signaling via NMDA receptor phosphorylation. J Neurochem 2007;103:840–8.

    Article  PubMed  CAS  Google Scholar 

  153. Pilla M, Perachon S, Sautel F, et al. Selective inhibition of cocaine-seeking behaviour by a partial dopamine D3 receptor agonist. Nature 1999;400:371–5.

    Article  PubMed  CAS  Google Scholar 

  154. Maldonado R, Robledo P, Chover AJ, Caine SB, Koob JF. D1 dopamine receptors in the nucleus accumbens modulate cocaine self-administration in the rat. Pharmacol Biochem Behav 1993;45:239–42.

    Article  PubMed  CAS  Google Scholar 

  155. Phillips GD, Robbins TW, Everitt BJ. Bilateral intra-accumbens self-administration of d-amphetamine: antagonism with intra-accumbens SCH-23390 and sulpiride. Psychopharmacology 1994;114:477–85.

    Article  PubMed  CAS  Google Scholar 

  156. Caine SB, Heinrichs SC, Coffin VL, Koob GF. Effects of the dopamine D-1 antagonist SCH 23390 microinjected into the accumbens, amygdala or striatum on cocaine self-administration in the rat. Brain Res 1995;692:47–56.

    Article  PubMed  CAS  Google Scholar 

  157. Bachtell RK, Whisler K, Karanian DA, Self DW. Effects of intranucleus accumbens shell administration of dopamine agonists and antagonists on cocaine-taking and cocaine-seeking behaviors in the rat. Psychopharmacology 2005;183:41–53.

    Article  PubMed  CAS  Google Scholar 

  158. Hurd YL, Ponten M. Cocaine self-administration behavior can be reduced or potentiated by the addition of specific dopamine concentrations in the nucleus accumbens and amygdala using in vivo microdialysis. Behav Brain Res 2000;116:177–86.

    Article  PubMed  CAS  Google Scholar 

  159. Thanos PK, Michaelides M, Umegaki H, Volkow ND. D2R DNA transfer into the nucleus accumbens attenuates cocaine self-administration in rats. Synapse 2008;62:481–6.

    Article  PubMed  CAS  Google Scholar 

  160. McGregor A, Roberts DCS. Dopaminergic antagonism within the nucleus accumbens or the amygdala produces differential effects on intravenous cocaine self-administration under fixed and progressive ratio schedules of reinforcement. Brain Res 1993;624:245–52.

    Article  PubMed  CAS  Google Scholar 

  161. McGregor A, Roberts DC. Effect of medial prefrontal cortex injections of SCH 23390 on intravenous cocaine self-administration under both a fixed and progressive ratio schedule of reinforcement. Behav Brain Res 1995; 67:75–80.

    Article  PubMed  CAS  Google Scholar 

  162. Alleweireldt AT, Hobbs RJ, Taylor AR, Neisewander JL. Effects of SCH-23390 infused into the amygdala or adjacent cortex and basal ganglia on cocaine seeking and self-administration in rats. Neuropsychopharmacology 2006;31:363–74.

    Article  PubMed  CAS  Google Scholar 

  163. Epping-Jordan MP, Markou A, Koob GF. The dopamine D-1 receptor antagonist SCH 23390 injected into the dorsolateral bed nucleus of the stria terminalis decreased cocaine reinforcement in the rat. Brain Res 1998;784:105–15.

    Article  PubMed  CAS  Google Scholar 

  164. Hurd YL, McGregor A, Ponten M. In vivo amygdala dopamine levels modulate cocaine self-administration behaviour in the rat: D1 dopamine receptor involvement. Eur J Neurosci 1997;9:2541–8.

    Article  PubMed  CAS  Google Scholar 

  165. Ranaldi R, Wise RA. Blockade of D1 dopamine receptors in the ventral tegmental area decreases cocaine reward: possible role for dendritically released dopamine. J Neurosci 2001;21:5841–6.

    PubMed  CAS  Google Scholar 

  166. Doron R, Fridman L, Yadid G. Dopamine-2 receptors in the arcuate nucleus modulate cocaine-seeking behavior. Neuroreport 2006;17:1633–6.

    Article  PubMed  CAS  Google Scholar 

  167. Ettenberg A, Pettit HO, Bloom FE, Koob GF. Heroin and cocaine intravenous self-administration in rats: mediation by separate neural systems. Psychopharmacology 1982;78:204–9.

    Article  PubMed  CAS  Google Scholar 

  168. Pettit HO, Ettenberg A, Bloom FE, Koob GF. Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacology 1984;84:167–73.

    Article  PubMed  CAS  Google Scholar 

  169. Gerrits MA, Ramsey NF, Wolterink G, van Ree JM. Lack of evidence for an involvement of nucleus accumbens dopamine D1 receptors in the initiation of heroin self-administration in the rat. Psychopharmacology 1994;114:486–94.

    Article  PubMed  CAS  Google Scholar 

  170. Shippenberg TS, Bals-Kubik R, Herz A. Examination of the neurochemical substrates mediating the motivational effects of opioids: role of the mesolimbic dopamine system and D-1 vs. D-2 dopamine receptors. J Pharmacol Exp Ther 1993;265:53–9.

    PubMed  CAS  Google Scholar 

  171. Stinus L, Nadaud D, Deminiere JM, Jauregui J, Hand TT, Le Moal M. Chronic flupentixol treatment potentiates the reinforcing properties of systemic heroin administration. Biol Psychiatry 1989;26:363–71.

    Article  PubMed  CAS  Google Scholar 

  172. David V, Durkin TP, Cazala P. Differential effects of the dopamine D2/D3 receptor antagonist sulpiride on self-administration of morphine into the ventral tegmental area or the nucleus accumbens. Psychopharmacology 2002;160:307–17.

    Article  PubMed  CAS  Google Scholar 

  173. Le Merrer J, Gavello-Baudy S, Galey D, Cazala P. Morphine self-administration into the lateral septum depends on dopaminergic mechanisms: Evidence from pharmacology and Fos neuroimaging. Behav Brain Res 2007;180:203–17.

    Article  PubMed  CAS  Google Scholar 

  174. Villegier AS, Lotfipour S, McQuown SC, Belluzzi JD, Leslie FM. Tranylcypromine enhancement of nicotine self-administration. Neuropharmacology 2007;52:1415–25.

    Article  PubMed  CAS  Google Scholar 

  175. David V, Besson M, Changeux JP, Granon S, Cazala P. Reinforcing effects of nicotine microinjections into the ventral tegmental area of mice: dependence on cholinergic nicotinic and dopaminergic D1 receptors. Neuropharmacology 2006;50:1030–40.

    Article  PubMed  CAS  Google Scholar 

  176. Ikemoto S, Qin M, Liu ZH. Primary reinforcing effects of nicotine are triggered from multiple regions both inside and outside the ventral tegmental area. J Neurosci 2006;26:723–30.

    Article  PubMed  CAS  Google Scholar 

  177. Ross JT, Corrigall WA, Heidbreder CA, LeSage MG. Effects of the selective dopamine D3 receptor antagonist SB-277011A on the reinforcing effects of nicotine as measured by a progressive-ratio schedule in rats. Eur J Pharmacol 2007;559:173–9.

    Article  PubMed  CAS  Google Scholar 

  178. Andreoli M, Tessari M, Pilla M, Valerio E, Hagan JJ, Heidbreder CA. Selective antagonism at dopamine D3 receptors prevents nicotine-triggered relapse to nicotine-seeking behavior. Neuropsychopharmacology 2003;28:1272–80.

    Article  PubMed  CAS  Google Scholar 

  179. Kameda G, Dadmarz M, Vogel WH. Influence of various drugs on the voluntary intake of nicotine by rats. Neuropsychobiology 2000;41:205–9.

    Article  PubMed  CAS  Google Scholar 

  180. Silvestre JS, O‘Neill MF, Fernandez AG, Palacios JM. Effects of a range of dopamine receptor agonists and antagonists on ethanol intake in the rat. Eur J Pharmacol 1996;318:257–65.

    Article  PubMed  CAS  Google Scholar 

  181. Linseman MA. Effects of dopaminergic agents on alcohol consumption by rats in a limited access paradigm. Psychopharmacology 1990;100:195–200.

    Article  PubMed  CAS  Google Scholar 

  182. Dyr W, McBride WJ, Lumeng L, Li TK, Murphy JM. Effects of D1 and D2 dopamine receptor agents on ethanol consumption in the high-alcohol-drinking (HAD) line of rats. Alcohol 1993;10:207–12.

    Article  PubMed  CAS  Google Scholar 

  183. Panocka I, Ciccocioppo R, Mosca M, Polidori C, Massi M. Effects of the dopamine D1 receptor antagonist SCH 39166 on the ingestive behaviour of alcohol-preferring rats. Psychopharmacology 1995;120:227–35.

    Article  PubMed  CAS  Google Scholar 

  184. Czachowski CL, Santini LA, Legg BH, Samson HH. Separate measures of ethanol seeking and drinking in the rat: effects of remoxipride. Alcohol 2002;28:39–46.

    Article  PubMed  CAS  Google Scholar 

  185. Ng GY, George SR. Dopamine receptor agonist reduces ethanol self-administration in the ethanol-preferring C57BL/6 J inbred mouse. Eur J Pharmacol 1994;269:365–74.

    Article  PubMed  CAS  Google Scholar 

  186. Boyce JM, Risinger FO. Dopamine D3 receptor antagonist effects on the motivational effects of ethanol. Alcohol 2002;28:47–55.

    Article  PubMed  CAS  Google Scholar 

  187. Thanos PK, Katana JM, Ashby CR, Jr., et al. The selective dopamine D3 receptor antagonist SB-277011-A attenuates ethanol consumption in ethanol preferring (P) and non-preferring (NP) rats. Pharmacol Biochem Behav 2005;81:190–7.

    Article  PubMed  CAS  Google Scholar 

  188. Heidbreder CA, Andreoli M, Marcon C, Hutcheson DM, Gardner EL, Ashby CR, Jr. Evidence for the role of dopamine D3 receptors in oral operant alcohol self-administration and reinstatement of alcohol-seeking behavior in mice. Addict Biol 2007;12:35–50.

    Article  PubMed  CAS  Google Scholar 

  189. El-Ghundi M, George SR, Drago J, et al. Disruption of dopamine D1 receptor gene expression attenuates alcohol-seeking behavior. Eur J Pharmacol 1998;353:149–58.

    Article  PubMed  CAS  Google Scholar 

  190. Phillips TJ, Brown KJ, Burkhart-Kasch S, et al. Alcohol preference and sensitivity are markedly reduced in mice lacking dopamine D2 receptors. Nat Neurosci 1998;1:610–5.

    Article  PubMed  CAS  Google Scholar 

  191. Rodd ZA, Melendez RI, Bell RL, et al. Intracranial self-administration of ethanol within the ventral tegmental area of male Wistar rats: evidence for involvement of dopamine neurons. J Neurosci 2004;24:1050–7.

    Article  PubMed  CAS  Google Scholar 

  192. Hodge CW, Samson HH, Chappelle AM. Alcohol self-administration: further examination of the role of dopamine receptors in the nucleus accumbens. Alcohol Clin Exp Res 1997;21:1083–91.

    PubMed  CAS  Google Scholar 

  193. Samson HH, Chappell A. Dopaminergic involvement in medial prefrontal cortex and core of the nucleus accumbens in the regulation of ethanol self-administration: a dual-site microinjection study in the rat. Physiol Behav 2003;79:581–90.

    Article  PubMed  CAS  Google Scholar 

  194. Eiler WJ, 2nd, Seyoum R, Foster KL, Mailey C, June HL. D1 dopamine receptor regulates alcohol-motivated behaviors in the bed nucleus of the stria terminalis in alcohol-preferring (P) rats. Synapse 2003;48:45–56.

    Article  PubMed  CAS  Google Scholar 

  195. Levy AD, Murphy JM, McBride WJ, Lumeng L, Li TK. Microinjection of sulpiride into the nucleus accumbens increases ethanol drinking in alcohol-preferring (P) rats. Alcohol Alcohol Suppl 1991;1:417–20.

    PubMed  CAS  Google Scholar 

  196. Melendez RI, Rodd ZA, McBride WJ, Murphy JM. Dopamine receptor regulation of ethanol intake and extracellular dopamine levels in the ventral pallidum of alcohol preferring (P) rats. Drug Alcohol Depend 2005;77:293–301.

    Article  PubMed  CAS  Google Scholar 

  197. Hodge CW, Chappelle AM, Samson HH. Dopamine receptors in the medial prefrontal cortex influence ethanol and sucrose-reinforced responding. Alcohol Clin Exp Res 1996;20:1631–8.

    Article  PubMed  CAS  Google Scholar 

  198. Thanos PK, Taintor NB, Rivera SN, et al. DRD2 gene transfer into the nucleus accumbens core of the alcohol preferring and nonpreferring rats attenuates alcohol drinking. Alcohol Clin Exp Res 2004;28:720–8.

    Article  PubMed  CAS  Google Scholar 

  199. Self DW, Nestler EJ. Relapse to drug seeking: neural and molecular mechanisms. Drug Alcohol Depend 1998;51:49–60.

    Article  PubMed  CAS  Google Scholar 

  200. Spealman RD, Barrett-Larimore RL, Rowlett JK, Platt DM, Khroyan TV. Pharmacological and environmental determinants of relapse to cocaine-seeking behavior. Pharmacol Biochem Behav 1999;64:327–36.

    Article  PubMed  CAS  Google Scholar 

  201. Stewart J. Pathways to relapse: the neurobiology of drug- and stress-induced relapse to drug-taking. J Psychiat Neurosci 2000;25:125–36.

    CAS  Google Scholar 

  202. Shalev U, Grimm JW, Shaham Y. Neurobiology of relapse to heroin and cocaine seeking: a review. Pharmacol Rev 2002;54:1–42.

    Article  PubMed  CAS  Google Scholar 

  203. Phillips PE, Stuber GD, Heien ML, Wightman RM, Carelli RM. Subsecond dopamine release promotes cocaine seeking. Nature 2003;422:614–8.

    Article  PubMed  CAS  Google Scholar 

  204. Pruessner JC, Champagne F, Meaney MJ, Dagher A. Dopamine release in response to a psychological stress in humans and its relationship to early life maternal care: a positron emission tomography study using [11C] raclopride. J Neurosci 2004;24:2825–31.

    Article  PubMed  CAS  Google Scholar 

  205. Wise RA. The brain and reward. In: Liebman JM, Cooper SJ, eds. The Neuropharmacological Basis of Reward. New York: Oxford University Press; 1989:377–424.

    Google Scholar 

  206. Jaffe JH, Cascella NG, Kumor KM, Sherer MA. Cocaine-induced cocaine craving. Psychopharmacology 1989;97:59–64.

    Article  PubMed  CAS  Google Scholar 

  207. Robbins SJ, Ehrman RN, Childress AR, O‘Brien CP. Relationships among physiological and self-report responses produced by cocaine-related cues. Addict Behav 1997;22:157–67.

    Article  PubMed  CAS  Google Scholar 

  208. Sinha R, Catapano D, O‘Malley S. Stress induced craving and stress response in cocaine dependent individuals. Psychopharmacology 1999;142:343–51.

    Article  PubMed  CAS  Google Scholar 

  209. Fuchs RA, See RE, Middaugh LD. Conditioned stimulus-induced reinstatement of extinguished cocaine seeking in C57BL/6 mice: a mouse model of drug relapse. Brain Res 2003;973:99–106.

    Article  PubMed  CAS  Google Scholar 

  210. Yan Y, Nitta A, Mizoguchi H, Yamada K, Nabeshima T. Relapse of methamphetamine-seeking behavior in C57BL/6 J mice demonstrated by a reinstatement procedure involving intravenous self-administration. Behav Brain Res 2006;168:137–43.

    Article  PubMed  CAS  Google Scholar 

  211. De Vries TJ, Schoffelmeer ANM, Binnekade R, Vanderschuren LJMJ. Dopaminergic mechanisms mediating the incentive to seek cocaine and heroin following long-term withdrawal if IV drug self-administration. Psychopharmacology 1999;143:254–60.

    Article  PubMed  Google Scholar 

  212. Fuchs RA, Tran-Nguyen LT, Weber SM, Khroyan TV, Neisewander JL. Effects of 7-OH-DPAT on cocaine-seeking behavior and on re-establishment of cocaine self-administration. Pharmacol Biochem Behav 2002;72:623–32.

    Article  PubMed  CAS  Google Scholar 

  213. Cervo L, Carnovali F, Stark JA, Mennini T. Cocaine-seeking behavior in response to drug-associated stimuli in rats: involvement of D3 and D2 dopamine receptors. Neuropsychopharmacology 2003;28:1150–9.

    PubMed  CAS  Google Scholar 

  214. Dias C, Lachize S, Boilet V, Huitelec E, Cador M. Differential effects of dopaminergic agents on locomotor sensitisation and on the reinstatement of cocaine-seeking and food-seeking behaviour. Psychopharmacology 2004;175:414–27.

    PubMed  CAS  Google Scholar 

  215. Koeltzow TE, Vezina P. Locomotor activity and cocaine-seeking behavior during acquisition and reinstatement of operant self-administration behavior in rats. Behav Brain Res 2005;160:250–9.

    Article  PubMed  CAS  Google Scholar 

  216. Edwards S, Whisler KN, Fuller DC, Orsulak PJ, Self DW. Addiction-related alterations in D1 and D2 dopamine receptor behavioral responses following chronic cocaine self-administration. Neuropsychopharmacology 2007;32:354–66.

    Article  PubMed  CAS  Google Scholar 

  217. Alleweireldt AT, Weber SM, Kirschner KF, Bullock BL, Neisewander JL. Blockade or stimulation of D1 dopamine receptors attenuates cue reinstatement of extinguished cocaine-seeking behavior in rats. Psychopharmacology 2002;159:284–93.

    Article  PubMed  CAS  Google Scholar 

  218. Alleweireldt AT, Kirschner KF, Blake CB, Neisewander JL. D1-receptor drugs and cocaine-seeking behavior: investigation of receptor mediation and behavioral disruption in rats. Psychopharmacology 2003;168:109–17.

    Article  PubMed  CAS  Google Scholar 

  219. Khroyan TV, Barrett-Larimore RL, Rowlett JK, Spealman RD. Dopamine D1- and D2-like receptor mechanisms in relapse to cocaine-seeking behavior: effects of selective antagonists and agonists. J Pharmacol Exp Ther 2000;294:680–7.

    PubMed  CAS  Google Scholar 

  220. Khroyan TV, Platt DM, Rowlett JK, Spealman RD. Attenuation of relapse to cocaine seeking by dopamine D1 receptor agonists and antagonists in non-human primates. Psychopharmacology 2003;168:124–31.

    Article  PubMed  CAS  Google Scholar 

  221. Haney M, Foltin RW, Fischman MW. Effects of pergolide on intravenous cocaine self-administration in men and women. Psychopharmacology 1998;137:15–24.

    Article  PubMed  CAS  Google Scholar 

  222. Haney M, Collins ED, Ward AS, Foltin RW, Fischman MW. Effect of a selective D1 agonist (ABT-431) on smoked cocaine self-administration in humans. Psychopharmacology 1999;143:102–10.

    Article  PubMed  CAS  Google Scholar 

  223. Phillips PE, Stuber GD, Heien ML, Wightman RM, Carelli RM. Subsecond dopamine release promotes cocaine seeking. Nature 2003;422:614–8.

    Article  PubMed  CAS  Google Scholar 

  224. Schenk S, Gittings D. Effects of SCH 23390 and eticlopride on cocaine-seeking produced by cocaine and WIN 35,428 in rats. Psychopharmacology 2003;168:118–23.

    Article  PubMed  CAS  Google Scholar 

  225. Weissenborn R, Deroche V, Koob G, Weiss F. Effects of dopamine agonists and antagonists on cocaine-induced operant responding for a cocaine-associated stimulus. Psychopharmacology 1996;126:311–22.

    Article  PubMed  CAS  Google Scholar 

  226. Ciccocioppo R, Sanna PP, Weiss F. Cocaine-predictive stimulus induces drug-seeking behavior and neural activation in limbic brain regions after multiple months of abstinence: reversal by D(1) antagonists. Proc Natl Acad Sci USA 2001;98:1976–81.

    Article  PubMed  CAS  Google Scholar 

  227. Crombag HS, Grimm JW, Shaham Y. Effect of dopamine receptor antagonists on renewal of cocaine seeking by reexposure to drug-associated contextual cues. Neuropsychopharmacology 2002;27:1006–15.

    Article  PubMed  CAS  Google Scholar 

  228. Gal K, Gyertyan I. Dopamine D3 as well as D2 receptor ligands attenuate the cue-induced cocaine-seeking in a relapse model in rats. Drug Alcohol Depend 2006;81:63–70.

    Article  PubMed  CAS  Google Scholar 

  229. Di Ciano P, Underwood RJ, Hagan JJ, Everitt BJ. Attenuation of cue-controlled cocaine-seeking by a selective D3 dopamine receptor antagonist SB-277011-A. Neuropsychopharmacology 2003;28:329–38.

    Article  PubMed  CAS  Google Scholar 

  230. Gilbert JG, Newman AH, Gardner EL, et al. Acute administration of SB-277011A, NGB 2904, or BP 897 inhibits cocaine cue-induced reinstatement of drug-seeking behavior in rats: role of dopamine D3 receptors. Synapse 2005;57:17–28.

    Article  PubMed  CAS  Google Scholar 

  231. Vorel SR, Ashby CR, Jr., Paul M, et al. Dopamine D3 receptor antagonism inhibits cocaine-seeking and cocaine-enhanced brain reward in rats. J Neurosci 2002;22:9595–603.

    PubMed  CAS  Google Scholar 

  232. Xi ZX, Gilbert J, Campos AC, et al. Blockade of mesolimbic dopamine D3 receptors inhibits stress-induced reinstatement of cocaine-seeking in rats. Psychopharmacology 2004;176:57–65.

    Article  PubMed  CAS  Google Scholar 

  233. Schmidt HD, Anderson SM, Pierce RC. Stimulation of D1-like or D2 dopamine receptors in the shell, but not the core,of the nucleus accumbens reinstates cocaine-seeking behaviour in the rat. Eur J Neurosci 2006;23:219–28.

    Article  PubMed  Google Scholar 

  234. Anderson SM, Famous KR, Sadri-Vakili G, et al. CaMKII: a biochemical bridge linking accumbens dopamine and glutamate systems in cocaine seeking. Nat Neurosci 2008;11:344–53.

    Article  PubMed  CAS  Google Scholar 

  235. Self DW, Genova LM, Hope BT, Barnhart WJ, Spencer JJ, Nestler EJ. Involvement of cAMP-dependent protein kinase in the nucleus accumbens in cocaine self-administration and relapse of cocaine-seeking behavior. J Neurosci 1998;18:1848–59.

    PubMed  CAS  Google Scholar 

  236. Ito R, Dalley JW, Howes SR, Robbins TW, Everitt BJ. Dissociation in conditioned dopamine release in the nucleus accumbens core and shell in response to cocaine cues and during cocaine-seeking behavior in rats. J Neurosci 2000;20:7489–95.

    PubMed  CAS  Google Scholar 

  237. Schmidt HD, Pierce RC. Cooperative activation of D1-like and D2-like dopamine receptors in the nucleus accumbens shell is required for the reinstatement of cocaine-seeking behavior in the rat. Neuroscience 2006;142:451–61.

    Article  PubMed  CAS  Google Scholar 

  238. Pontieri FE, Tanda G, Di Chiara G. Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the "shell" as compared with the "core" of the rat nucleus accumbens. Proc Natl Acad Sci USA 1995;92:12304–8.

    Article  PubMed  CAS  Google Scholar 

  239. Hedou G, Feldon J, Heidbreder CA. Effects of cocaine on dopamine in subregions of the rat prefrontal cortex and their efferents to subterritories of the nucleus accumbens. Eur J Pharmacol 1999;372:143–55.

    Article  PubMed  CAS  Google Scholar 

  240. Anderson SM, Bari AA, Pierce RC. Administration of the D1-like dopamine receptor antagonist SCH-23390 into the medial nucleus accumbens shell attenuates cocaine priming-induced reinstatement of drug-seeking behavior in rats. Psychopharmacology 2003;168:132–8.

    Article  PubMed  CAS  Google Scholar 

  241. Anderson SM, Schmidt HD, Pierce RC. Administration of the D2 dopamine receptor antagonist sulpiride into the shell, but not the core, of the nucleus accumbens attenuates cocaine priming-induced reinstatement of drug seeking. Neuropsychopharmacology 2006;31:1452–61.

    Article  PubMed  CAS  Google Scholar 

  242. Di Ciano P. Drug seeking under a second-order schedule of reinforcement depends on dopamine D3 receptors in the basolateral amygdala. Behav Neurosci 2008;122(1):129–39.

    Article  PubMed  CAS  Google Scholar 

  243. See RE, Kruzich PJ, Grimm JW. Dopamine, but not glutamate, receptor blockade in the basolateral amygdala attenuates conditioned reward in a rat model of relapse to cocaine-seeking behavior. Psychopharmacology 2001;154:301–10.

    Article  PubMed  CAS  Google Scholar 

  244. Sun W, Rebec GV. The role of prefrontal cortex D1-like and D2-like receptors in cocaine-seeking behavior in rats. Psychopharmacology 2005;177:315–23.

    Article  PubMed  CAS  Google Scholar 

  245. Capriles N, Rodaros D, Sorge RE, Stewart J. A role for the prefrontal cortex in stress- and cocaine-induced reinstatement of cocaine seeking in rats. Psychopharmacology 2003;168:66–74.

    Article  PubMed  CAS  Google Scholar 

  246. Di Pietro NC, Mashhoon Y, Heaney C, Yager LM, Kantak KM. Role of dopamine D1 receptors in the prefrontal dorsal agranular insular cortex in mediating cocaine self-administration in rats. Psychopharmacology 2008;200:81–91.

    Article  PubMed  CAS  Google Scholar 

  247. O‘Donnell P. Dopamine gating of forebrain neural ensembles. Eur J Neurosci 2003;17:429–35.

    Article  PubMed  Google Scholar 

  248. De Vries TJ, Schoffelmeer AN, Binnekade R, Raaso H, Vanderschuren LJ. Relapse to cocaine- and heroin-seeking behavior mediated by dopamine D2 receptors is time-dependent and associated with behavioral sensitization. Neuropsychopharmacology 2002;26:18–26.

    Article  PubMed  Google Scholar 

  249. Shaham Y, Stewart J. Effects of opioid and dopamine receptor antagonists on relapse induced by stress and re-exposure to heroin in rats. Psychopharmacology 1996;125:385–91.

    Article  PubMed  CAS  Google Scholar 

  250. Tobin S, Newman AH, Quinn T, Shalev U. A role for dopamine D1-like receptors in acute food deprivation-induced reinstatement of heroin seeking in rats. Int J Neuropsychopharmacol 2008:1–10.

    Google Scholar 

  251. Duarte C, Biala G, Le Bihan C, Hamon M, Thiebot MH. Respective roles of dopamine D2 and D3 receptors in food-seeking behaviour in rats. Psychopharmacology 2003;166:19–32.

    PubMed  CAS  Google Scholar 

  252. Bossert JM, Poles GC, Wihbey KA, Koya E, Shaham Y. Differential effects of blockade of dopamine D1-family receptors in nucleus accumbens core or shell on reinstatement of heroin seeking induced by contextual and discrete cues. J Neurosci 2007;27:12655–63.

    Article  PubMed  CAS  Google Scholar 

  253. Yun IA, Nicola SM, Fields HL. Contrasting effects of dopamine and glutamate receptor antagonist injection in the nucleus accumbens suggest a neural mechanism underlying cue-evoked goal-directed behavior. Eur J Neurosci 2004;20:249–63.

    Article  PubMed  Google Scholar 

  254. Micheli F, Bonanomi G, Blaney FE, et al. 1,2,4-triazol-3-yl-thiopropyl-tetrahydroben-zazepines: a series of potent and selective dopamine D(3) receptor antagonists. J Med Chem 2007;50:5076–89.

    Article  PubMed  CAS  Google Scholar 

  255. Vengeliene V, Leonardi-Essmann F, Perreau-Lenz S, et al. The dopamine D3 receptor plays an essential role in alcohol-seeking and relapse. FASEB J 2006;20:2223–33.

    Article  PubMed  CAS  Google Scholar 

  256. Czachowski CL, Chappell AM, Samson HH. Effects of raclopride in the nucleus accumbens on ethanol seeking and consumption. Alcohol Clin Exp Res 2001;25:1431–40.

    Article  PubMed  CAS  Google Scholar 

  257. Samson HH, Chappell AM. Effects of raclopride in the core of the nucleus accumbens on ethanol seeking and consumption: the use of extinction trials to measure seeking. Alcohol Clin Exp Res 2004;28:544–9.

    Article  PubMed  CAS  Google Scholar 

  258. Liu X, Weiss F. Reversal of ethanol-seeking behavior by D1 and D2 antagonists in an animal model of relapse: differences in antagonist potency in previously ethanol-dependent versus nondependent rats. J Pharmacol Exp Ther 2002;300:882–9.

    Article  PubMed  CAS  Google Scholar 

  259. Hamlin AS, Newby J, McNally GP. The neural correlates and role of D1 dopamine receptors in renewal of extinguished alcohol-seeking. Neuroscience 2007;146:525–36.

    Article  PubMed  CAS  Google Scholar 

  260. Dalley JW, Fryer TD, Brichard L, et al. Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 2007;315:1267–70.

    Article  PubMed  CAS  Google Scholar 

  261. Morgan D, Grant KA, Gage HD, et al. Social dominance in monkeys: dopamine D2 receptors and cocaine self-administration. Nat Neurosci 2002;5:169–74.

    Article  PubMed  CAS  Google Scholar 

  262. Ahmed SH, Walker JR, Koob GF. Persistent increase in the motivation to take heroin in rats with a history of drug escalation. Neuropsychopharmacology 2000;22:413–21.

    Article  PubMed  CAS  Google Scholar 

  263. Lenoir M, Ahmed SH. Heroin-induced reinstatement is specific to compulsive heroin use and dissociable from heroin reward and sensitization. Neuropsychopharmacology 2007;32:616–24.

    Article  PubMed  CAS  Google Scholar 

  264. Ahmed SH, Koob GF. Changes in response to a dopamine receptor antagonist in rats with escalating cocaine intake. Psychopharmacology 2004;172:450–54.

    Article  PubMed  CAS  Google Scholar 

  265. Volkow ND, Fowler JS, Wang GJ, et al. Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse 1993;14:169–77.

    Article  PubMed  CAS  Google Scholar 

  266. Volkow ND, Wang GJ, Fowler JS, et al. Decreases in dopamine receptors but not in dopamine transporters in alcoholics. Alcohol Clin Exp Res 1996;20:1594–8.

    Article  PubMed  CAS  Google Scholar 

  267. Wang GJ, Volkow ND, Fowler JS, et al. Dopamine D2 receptor availability in opiate-dependent subjects before and after naloxone-precipitated withdrawal. Neuropsychopharmacology 1997;16:174–82.

    Article  PubMed  CAS  Google Scholar 

  268. Volkow ND, Chang L, Wang GJ, et al. Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex. Am J Psychiat 2001;158:2015–21.

    Article  PubMed  CAS  Google Scholar 

  269. Druhan JP, Walters CL, Aston-Jones G. Behavioral activation induced by D(2)-like receptor stimulation during opiate withdrawal. J Pharmacol Exp Ther 2000;294:531–8.

    PubMed  CAS  Google Scholar 

  270. Seeman P, Tallerico T, Ko F, Tenn C, Kapur S. Amphetamine-sensitized animals show a marked increase in dopamine D2 high receptors occupied by endogenous dopamine, even in the absence of acute challenges. Synapse 2002;46:235–9.

    Article  PubMed  CAS  Google Scholar 

  271. Seeman P, Weinshenker D, Quirion R, et al. Dopamine supersensitivity correlates with D2High states, implying many paths to psychosis. Proc Natl Acad Sci USA 2005;102:3513–8.

    Article  PubMed  CAS  Google Scholar 

  272. Seeman P, McCormick PN, Kapur S. Increased dopamine D2(High) receptors in amphetamine-sensitized rats, measured by the agonist [(3)H](+)PHNO. Synapse 2007;61:263–7.

    Article  PubMed  CAS  Google Scholar 

  273. Briand LA, Flagel SB, Seeman P, Robinson TE. Cocaine self-administration produces a persistent increase in dopamine D2 High receptors. Eur Neuropsychopharmacol 2008;18:551–6.

    Article  PubMed  CAS  Google Scholar 

  274. Martinez D, Broft A, Foltin RW, et al. Cocaine dependence and d2 receptor availability in the functional subdivisions of the striatum: relationship with cocaine-seeking behavior. Neuropsychopharmacology 2004;29:1190–202.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by United States Public Health Service Grants DA 010460 and DA 018743 and by the Wesley Gilliland Professorship in Biomedical Research (UTSW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Self .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Self, D.W. (2010). Dopamine Receptor Subtypes in Reward and Relapse. In: Neve, K. (eds) The Dopamine Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-333-6_17

Download citation

Publish with us

Policies and ethics