Skip to main content

Abstract

While not agreeing on the mechanisms involved, many of the leading researchers in the field of Bioelectrochemistry/Biomagnetics agree that exogenous fields modify cellular calcium ion transport. Chiabrera et al. (1) in discussing their membrane receptor model of electric field/cell interactions state that they “adhere to the working hypothesis that when two or more receptors encounter each other, they form an encounter complex which appears to enhance calcium ion influx”, if an endogenous or exogenous electric field is present. Liboff (2), on the other hand, indicates exogenous fields cause a resonant energy transfer to potassium ion influx, which is turn causes increased calcium ion efflux via a potassium/calcium ion transmembrane exchange. Adey and his associates (3,4) have experimentally verified that calciurn-45 efflux from the external bilipid layers of chick cerebral hemisphere can be either enhanced or diminished, depending upon stimulation frequency, energy level and the type of stimulation, i.e., modulated RF or sinusoidal AC. Neumann (5) states that regions adjacent to membrane surfaces are the targets of electric field effects, altering ionic diffusion. In particular, calcium ion influx is caused by an increased concentration gradient on the external bilayer due to field-membrane interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chiabrera, A. Grattarola, M., Vivani, R., “Interrartion Between Electrornagrietic Fields & Cells: Microelectrophoretic Effects of Ligands and Surface Receptors”, Bioelectromagnetics, 5, 173, (1984).

    Article  PubMed  CAS  Google Scholar 

  2. Liboff, A. R., “Cyclotron Resonance in Membrane Transport”, in Interactions Betweeen Electromagnetic Fields and Cells”, p 281, A. Chiabrera, C. Nicolini & H.P. Schwan, ed’s., Plenum Press, New York, (1985).

    Google Scholar 

  3. Bawin, S. M., Kaczmarek, L. K., Adey, W. R., “Effects of Modulated VHF Fields on the Central Nervous System”, Ann. NY Acad. Sci., 247, 74, (1975).

    Article  PubMed  CAS  Google Scholar 

  4. Bawin, S.M., Adey, W. R., “Sensitivity of Calcium Binding in Cerebral Tissue to Weak Environmental Electric Fields Oscillating at Low Frequency”, Proc. Nat’l. Acad. Sci. USft, 73, 1999, (1976).

    Article  CAS  Google Scholar 

  5. Neumann, E., “Membranes and Electromagnetic Fields”, pl, Abstracts, 8th Ann. Bioelectromagnetics Soc. Mtg., Madison, June, (1988).

    Google Scholar 

  6. Jolley, W. B., Hinshaw, D. B., Knierim, K., Hinshaw, D. B., “Magnetic Field Effects Calcium Efflux and Insulin Secretion in Isolated Rabit Islets of Langerhans”, Bioelectromagnetics, 4, 103, (1983).

    Article  PubMed  CAS  Google Scholar 

  7. Milch, P.O., Ott, J.B., Kurtz, R. J., Findl, E., “Eletromagnetic Stimulation of the Rat Pancreas and the Lowering of Serum Glucose Levels”, Trans. firn. Soc. Artif. Intern. Organs., 27, 246, (1981).

    CAS  Google Scholar 

  8. Young, W., “Pulsed Electromagnetic Fields Alter Ca++ and Functional Recovery in Spinal Cord Injury”, N5, p 51, Abstracts, 8th Ann. Bioelectromagnetic Soc. Mtg., Madison, June, (1986).

    Google Scholar 

  9. Farndale, R. W., Maroudas, A., “Low Frequency Magnetic Fields Do Not Modify Several Aspects of Ion Transport in Biological Materials”, Bioelectrochem. Bioenerg., 14, 105, (1985).

    Article  CAS  Google Scholar 

  10. Findl, E., “Bioelectrochemistry, Electrophysiology, Electrobiology” in Modern Aspects of Electrochemistry Chap.7, Vol. 14, J. O.M. Bockris, B. E. Conway, R.E. White, ed’.s, Plenum Pub., New York, (1982).

    Google Scholar 

  11. Findl, E., “Field Cell Interaction Model”, I.E.E.E. Frontiers of Engineering and Computing in Health Care, 10.5, 203, (1984).

    Google Scholar 

  12. Gingel, D., “Cell Membrane Surface Potential as a Transducer”, in Current Topics in Membranes and Ion Transport, Vol. 3, E.E. Bittar, ed., p 317, Wiley Interscience, New York, (1971).

    Google Scholar 

  13. Theuvenet, A.P.R., Borst Pauwels, G.W.F., “Electrostatic Effects in Ion Translocation Across Biological Membranes, Effect of Al+++ on Rubidium 86 Ion Influx and Efflux by Yeast”, in Proc. 29th Int’l. Mtg. Soc. Chimie Physique, E. Roux, ed., p 73, Elsevier Pub., New York, (1977).

    Google Scholar 

  14. Bangham, A.D., Standish, M. M., Miller, N., “Cation Permeability of Phospholipid Model Membranes: Effect of Narcotics:, Nature, 208, 1295, (1965).

    Article  PubMed  CAS  Google Scholar 

  15. Strope, E. R., Findl, E., Conti, J.C., Acuff, V., “Pulsed Electric Fields and the Transmembrane Potential”, J. Bioelectricity, 3(1&2), 329, (1984).

    Google Scholar 

  16. VanderFleet, W. G., Cohen, I., “Membrane Surface Potential Changes May Alter Drug Interactions: An Example, Acetylcholine and Curare”, Science, 203, 1351, (1979).

    Article  Google Scholar 

  17. Kitzes, M.C., Berns, M. W., “Electrical Activity of Rat Myocardial Cells in Culture: La+3 Induced Alterations”, J. Am. Physiol. Soc., 6(1), C87, (1979).

    Google Scholar 

  18. Atwell, R.J., deLevie, R., “Chlosoborane Anion Adsorbs Onto Lipid Bilayer Membranes and Affects Ion Transport”, J. Electroanal. Chem., 148, 305, (1983).

    Article  CAS  Google Scholar 

  19. Kulkarni, R.D., Goddard, E.D., “Destruction of the Electrophysiological Potential of Excised Frog Skin by Surfactants”, in Bioelectrochemistry: Ions, Surface Membranes, M. Blank, ed., Am. Chem. Soc., p 445, Washington D.C., (1980).

    Google Scholar 

  20. Ayalon, A., Bahr, S., Hirsch-Ayalon, P., “Precipitation Membrane Effects in Biologic Membranes: The Role of Calcium”, J. Mernbr. Biol., 51, 7, (1979).

    Article  CAS  Google Scholar 

  21. May, L., Baumgartner, C., Cuesta, E.R., “The Effect of Electric Fields on Brain Lipid Cholesterol Films”, J. Membr. Biol., 14, 63, (1973).

    Article  PubMed  CAS  Google Scholar 

  22. Rosenberg, B., “Semiconductive and Phoconductive Properties of Biraolecular Lipid Membranes”, Disc. Faraday Soc., 51., 190, (1971).

    Article  CAS  Google Scholar 

  23. Pant, H.C., Rosenberg, B., “The Semiconducting Diode Behavior of Bimolecular Lipid Membranes”, Bioenergetics, 2, 163, (1971).

    Article  CAS  Google Scholar 

  24. Stark, G., “Rectification Phenomena in Carrier Mediated Ion Transport”, Biochem., Biophys. ficta, 298, 323, (1973).

    Article  CAS  Google Scholar 

  25. Bach, D., “Interaction of Bilayers with Basic Polypeptides”, J. Mernbr. Biol., 14, 57, (1973).

    Article  CAS  Google Scholar 

  26. Michaels, D.W., Dennis, D., “Asymmetric Phospholipid Bilayer Membranes: Formation and Electrical Characterization”, Biochem. Biophys. Res. Comm., 51 (2), 357, (1973).

    Article  Google Scholar 

  27. Miller, C., “Voltage Gated Cation Conductance Channel from Fragmented Sacroplasmic Reticulum: Steady State Electrical Properties”, J. Membr. Biol., 40, 1, (1978).

    PubMed  CAS  Google Scholar 

  28. Frankenhaeuser, B., Arhem, P., “Steady State Current Rectification in Potential Clamped Nodes of Ranvier (Xenopus laeves)”, Phil. Trans. Roy. Soc. Lond. B., 270, 515, (1975).

    Article  CAS  Google Scholar 

  29. Bier, M., “Electrokinetic Membrane Processes”, in Membrane Processes in Industry ar:d Medicine”, Martin Bier, ed., p 251, Plenum Press, NY, (1971).

    Chapter  Google Scholar 

  30. Gamier, Jai., Singer, S.J., “Bilayer Couples in Membranes and Hormonal Transduction”, in Electrical Phenomena at the Biological Membrane Level, E. Roux, ed., p 45, Elsevier Scientific Publ., NY, (1977).

    Google Scholar 

  31. Mauro, A., “Space Charge Regions in Fixed Charged Membranes and the Associated Property of Capacitance”, Biophys., J., 2, 179, (1962).

    Article  CAS  Google Scholar 

  32. Schwartz, M., Case, C.T., “Electric Impedance and Rectification of Fused Anion-Cation Membranes in Solution”, Biophys. J., 4, 137, (1964).

    Article  PubMed  CAS  Google Scholar 

  33. Coster, H.G.L., “A Quantitative analysis of the Voltage-Current Relationships of Fixed Charged Membranes and the Associated Property of Punch-Through”, Biophys. J., 5, 669, (1965).

    Article  PubMed  CAS  Google Scholar 

  34. Lovrecek, B., Kunst, B., “Rectifying Mechanism of Pressed Sandwich Type Membrane Junctions”, Electrochemica Aeta, 12, 687, (1967).

    Article  CAS  Google Scholar 

  35. Lovrecek, B., Hargula, A., “The Rectification Mechanism and the Recombination Rate on the Pressed Sandwich Contact of the Membrane System HR R’OH”, Extended Abstracts, Intern. Soc. Electrochem., 1, 435, (1980).

    Google Scholar 

  36. Krause, K., Cremer-Bartels, G-, Hennekes, R., Jannsen, K., “Earth Magnetic Field Sensitivity in the Eye: Electrophysiological Response in Humans”, p 25, Abstract BEMS 8th Arm. Mtg., June, (1986).

    Google Scholar 

  37. Hayek, A., Guardian, C., Guardian, J., Obarski, G., “Homogeneous Magnetic Fields Influence Pancreatic Islet Function in Vitro”, Biochem., Biophys. Res. Cornrn., 122(1), 191, (1984).

    Article  Google Scholar 

  38. Gorczynska, E., Wegrzynowicz, R., “The Effect of Magnetic Fields on Platelets, Blood Coagulation and Fibrinolysis in Guinea Pigs”, Physiol. Chem. Phys. Med. NMR, 15, 459, (1982).

    Google Scholar 

  39. Cremer-Bartels, G., Krause, K., Mitoskas, G., Brodersen, D., “Magnetic Fields of the Earth as Additional Zeitgeber for Endogenous Rhythm”, Naturwissenschaften, 71., 567, (1984).

    Article  PubMed  CAS  Google Scholar 

  40. Bellosi, A., Sutter-Dub, M. Th., Sutter, B. Ch., “Effects of Constant Magnetic Fields on Rate and Mice: A Study of Weight”, Aviat. Space Environ. Med., 55, 725, (1964).

    Google Scholar 

  41. Kale, P.G., Baum, J.W., “Genetic Effects of Strong Magnetic Fields in Drosphilia Melangoaster”, Mutation Res., 105, 79, (1982).

    Article  PubMed  CAS  Google Scholar 

  42. Duarte, L.R., “The Use of Ultrasound to Stimulate Non Unions Healing”, Trans. Third Ann Mtg. Bioelectric Repair & Growth Soc., 3, 31, (1983).

    Google Scholar 

  43. Duarte, L. R., “The Healing of Bone Delayed Unions by Ultrasound Stimulation”, Abstract, Bioelectromagnetics, 5, 22, (1983).

    Google Scholar 

  44. Dyson, M., “Non Thermal Cellular Effects of Ultrasound”, Brit. J. Cancer, 45, Suppl. V, 165, (1982).

    Google Scholar 

  45. Saunders, F., Yeager, E., Hvorka, F., “Ultrasonic Waves and Electrochemistry, V.: The Frequency Characteristics of the Electrokinetic and the AC Polarized Bas Electrode Effect”, J. Acoustical Soc. Am., 27(3)., 556, (1955).

    Article  CAS  Google Scholar 

  46. Penn, R., Yeager, E., Hvorka, F., “Effect of Ultrasonic Waves on Concentration Gradients”, J. Acoustical Soc. Arn., 31(10)., 1372, (1953).

    Article  Google Scholar 

  47. Zana, R., Yeager, E., “Electrolytic Vibration Potentials”, Polymer Letters, 4, 947, (1966).

    Article  CAS  Google Scholar 

  48. Zana, R., Yeager, E., “Ultrasonic Vibration Potentials and Their Use in the Determination of Ionic Partial Molai Volumes”, J. Phys. Chem., 71, 521, (1967).

    Article  CAS  Google Scholar 

  49. Adey, W.R., “The Influence of Impressed Electrical Fields at EEG Frequencies on Brain and Behavior”, in Behavior and Brain Electrical Activity, p 365, N. Burch and H.I. Altshuler, ed’s., Plenum Press, NY, (1975).

    Google Scholar 

  50. Pohl, H.A., Kaler, K., “Continuous Dielectrophoretic Separation of Cell Mixtures”, Cell Biophys., 1, 15, (1979).

    PubMed  CAS  Google Scholar 

  51. Pohl, H.A., Haler, H., Pollock, K., “The Continous Positive and Negative Dielectrophoresis of Microorganism”, J. Biol. Phys., 9, 67, (1981).

    Article  Google Scholar 

  52. Zimmerman, U., “Electric Field Mediated Fusion and Related Electric Phenomena”, Biochem. Biophys. Acta, 694, 227, (1982).

    Article  Google Scholar 

  53. Holzapfel, C., Vienken, J., Zimmerman, U., “Rotation of Cells in an Alternating Field: Theory and Experimental Proof”, J. Mernbr. Biol, 67, 13, (1982).

    Article  CAS  Google Scholar 

  54. Pilwat, G., Zimmerman, U., “Rotation of a Single Cell in a Discontinous Rotating Electric Field”, Bioelectrochem. Bioenergetics, 10, 155, (1983).

    Article  Google Scholar 

  55. Bawin, S. M., Bava las-Medici, R.J., Adey, W. R., “Effects on Modulated Very High Frequency Fields on Specific Brain Rhythms in Cats”, Brain Res., 58, 365, (1973).

    Article  PubMed  CAS  Google Scholar 

  56. Cheng, N., “Biochemical Effects of Pulsed Electromagnetic Fields”, Bioelectrochern. Bioenergetics, 14, 121, (1985).

    Article  CAS  Google Scholar 

  57. Ubeda, A., Leal, J., Trillo, M., Jimenez, M. A., Delgado, M. R., “Pulse Shape of Magnetic Fields Influences Chick Embryogenesis”, J. Anat., 137, 513, (1983).

    PubMed  Google Scholar 

  58. Goodman, R., Bassett, A., Henderson, A.S., “Pulsing Electromagnetic Fields Induce Cellular Transcription”, Science, 220, 1283, (1983).

    Article  PubMed  CAS  Google Scholar 

  59. McRobbie, D., Foster, M.A., “Thresholds for Biological Effects of Time-Varying Magnetic Fields”, Clin, Phys. Physiol. Meas., 5(2), 67, (1984).

    Article  CAS  Google Scholar 

  60. McCleod, B.R., Liboff, A.R., “Dynamic Characteristics of Membrane Ions in Multifield Configurations of Low Frequency Electromagnetic Radiation”, Bioelectroroagnetics, 7(2), 176, (1986).

    Google Scholar 

  61. Singer, S.J., Nicholson, G.L., “The Fluid Mosaic Model of the Structure of Cell Membranes”, Science, 115, 720, (1972).

    Article  Google Scholar 

  62. DePierre, J.W., Ernster, L., “Enzyme Topology of Intracellular Membranes”, Ann. Rev. Biochera., 46, 201, (1977).

    Article  CAS  Google Scholar 

  63. Korenbrot, J., “Ion Transport in Membranes: Incorporation of Biological Ion Translocating Proteins in Model Membrane Systems”, Ann. Rev. Physiol., 39, 19, (1977).

    Article  CAS  Google Scholar 

  64. Carofoli, E., Scarpa, A., “Transport ATPases”, Ann. NY Acad. Sci., 402, (1982).

    Google Scholar 

  65. Gingell, D., “Electrostatic Control of Membrane Permeability via Intramembraneous Particle Aggregation”, in Mammalian Cells, G.A. Jamieson, D.M. Robinson, ed’s., p 198, Butterworths, Boston, (1984).

    Google Scholar 

  66. Lauger, P., “Channels with Multiple Conformation States: Interrelation with Carriers and Purnps”, in Current Topics in Membranes and Transport, F. Bronner, ed., p 21, Acad. Press, NY, (1984).

    Google Scholar 

  67. Colquhoun, D., Hawkes, A. G., “On the Stochastic Properties of Sirigle Ion Channels”, Proc. Roy. Soc. (Lond.), B211, 205, (1982).

    Google Scholar 

  68. Lauger, P., “Structural Fluctuations and Current Noise in Ionic Channels”, Biophys., J., 48, 369, (1985).

    Article  CAS  Google Scholar 

  69. Sigworth, F. J., “Open Channel Noise, 1. Noise in Acetylcholine Receptor Currents Suggests Conformational Fluctuations”, Biophys. J., 407, 709, (1985).

    Article  Google Scholar 

  70. Schramm, M., Towart, R., “Minireview: Modulation of Calcium Channel Function by Drugs”, Life Sciences, 37, 1843, (1985).

    Article  PubMed  CAS  Google Scholar 

  71. Payet, M. D., Rousseau, E., Sauve, R., “Single Channel Anaysis of a Potassium Inward Rectifier in Myocytes of Newborn Rat Heart”, J. Mernbr. Biol, 86, 79, (1985).

    Article  CAS  Google Scholar 

  72. Patlak, J.B., Ortiz, M., “Slow Currents Through Single Sodium Channels of the Adult Rat Heart”, J. Gen. Physiol., 86, 89, (1985).

    Article  PubMed  CAS  Google Scholar 

  73. Nelson, M. T., “Interactions of Divalent Cations with Single Calcium Channels from Rat Brain Synaptosomes”, J. Gen. Physiol, 87, 201, (1986).

    Article  PubMed  CAS  Google Scholar 

  74. Hoshiko, T., “Fluctuation Analysis of Apical Sodium Transport” in Current Topics in Membranes and Transport, J.B. Ward and S. fi. Lewis, ed’s., Vol 20, p 31, Acad. Press, NY, (1984).

    Google Scholar 

  75. Hagiwara, S., Ohmori, H., “Studies of Single Channel Currents in Rat Clonal Pituitary Cells”, J. Physiol., 336, 649, (1983).

    PubMed  CAS  Google Scholar 

  76. Miller, C., “Voltage Gated Cation Conductance Channel from Fragmented Sarcoplasmic Reticulum; Steady State Electrical Properties”, J. Membr. Biol, 40, 1, (1978).

    PubMed  CAS  Google Scholar 

  77. Leviano, A., Sanchez, J. A., Darszon, A., “Single Channel Activity of Bilayer Derived from Sea Urchin Sperm Plasma Membranes at the Tip of a Patch Clamp Electrode”, Developmental Biol, 112, 253, (1985).

    Article  Google Scholar 

  78. Kolb, H.A., “Measuring the Properties of Single Channels in Cell Membrane”, in Current Topics in Membranes and Transport, F. Bronner, ed., Vol 21, p 133, Acad. Press, NY, (1984).

    Google Scholar 

  79. Kirber, M.T., Singer, J.J., Walsh, J. V, Jr., “Possible Forms from Dwell-time Histograms from Single Channel Current Records”, J. Theor. Biol., 116, 111, (1985).

    Article  PubMed  CAS  Google Scholar 

  80. Welsh, M., “An Apical Membrane Chloride Channel in Human Tracheal Epithelim”, Science, 232, 1648, (1986).

    Article  PubMed  CAS  Google Scholar 

  81. Russel, J.M., “Anion Transport Mechanisms in Neurons”, in Anion and Proton Transport, Ann. NY Acad. Sci., W.A. Brodsky, ed., Vol 341, p 510, N.Y. Acad. Sci., NY, (1980).

    Google Scholar 

  82. Teorell, T., “Electrokinetic Membrane Processes in Relation to Properties of Excitable Tissue”, J. Sen. Physiol., 42, 831, (1959).

    CAS  Google Scholar 

  83. Teorell, T., “Excitability Phenomena in Artificai Membranes”, Biophys. J., 2(pt 2) 27, (1962).

    PubMed  CAS  Google Scholar 

  84. Teorell, T., “Oscillatory Electrophoresis in Ion Exchange Membranes”, Arkiv Kirni, 18, 401, (1961).

    CAS  Google Scholar 

  85. Forgacs, C., “Deviation from the Steady State in Ion Transfer through Perm Selective Membranes”, Nature, 190, 339, (1961).

    Article  CAS  Google Scholar 

  86. Ribalet, B. Biegelman, P.M., “Cyclic Variation of K+ Conductance in Pancreatic Cells: Ca+2 and Voltage Dependence”, Am. J. Physio., 237(3), C137, (1979).

    CAS  Google Scholar 

  87. Ehrenstein, G., Blumenthal, R., Latorre, R., Lecar, H., “Kinetics of the Opening and Closing of Individual Excitability Inducing Material Channels in a Lipid Layer”, J. Gen. Physiol., 63, 707, (1974).

    Article  PubMed  CAS  Google Scholar 

  88. Kennedy, S., Roseks, R. W., Freeman, A. R., Watanabe, A.M., Besch, H. R. Jr., “Synthetic Peptides Form Ion Channels in Artifical Lipid Bilayer Membranes”, Science, 1976, 1341, (1977).

    Article  Google Scholar 

  89. Ferrier, J., Dixon, J., Illeman, A., Dillon, E., Smith, I., “Low Frequency Voltage Noise in a Mammalian Bone Cell Clone”, J. Cell. Physiol., 113, 267, (1982).

    Article  PubMed  CAS  Google Scholar 

  90. Gradmann, D., Slayman, C.L., “Oscillations of a Electrogenic Pump in the Plasma Membrane of Neurospora”, J. Mernbr., Biol., 23, 181, (1975).

    Article  CAS  Google Scholar 

  91. Okada, Y., Tsuchiya, W., Yada, A., “Calcium Channel and Calcium Pump Involved in Oscillatory Hyperpoiarlzing Responses of L Strain Mouse Fibroblasts”, J. Physiol, 327, 449, (1982).

    PubMed  CAS  Google Scholar 

  92. Ueda, S., Oiki, S., Okada, Y., “Cyclic Changes in Cytoplasmic Free Ca+2 During Membrane Potential Oscillations in Fibroblasts”, Biomed. Res., 4, 231, (1983).

    CAS  Google Scholar 

  93. Radenovic, C., Vucinic, Z., “Oscillations of the Bioelectric Potential Across the Membranes of Nitella Triggered by Monovalent Cations”, in Electrical Phenomena at the Biological Membrane Level”, E. Roux, ed., p 25, Elsevier Pub Co., NY, (1977).

    Google Scholar 

  94. Findl, E., “Electric and Magnetic Field-Cell Interactions at 15 Hz”, Abstract 132, Div. Coll, Surf. Chem., ACS 186th Mtg., Sept., (1983).

    Google Scholar 

  95. Gelli, M., Ferraretti, G., Cadossi, R., “Use of Low Frequency Pulsing Electromagnetic Field (PMR) in Dentistry to Promote Bone Growth”, Bioelectrochem. Bioenerg., 14, 235, (1985).

    Article  Google Scholar 

  96. Blackrnan, C.F., Elder, J.A., Weil, C.M., Benane, S.G., Eichinger, D.C, House, Q.F., “Induction of Calcium Ion Efflux from Brain Tissue by Radio Frequency Radiation; Effects of Modulation Frequency and Field Strength”, Radio Sci., 14(65), 93, (1979).

    Article  Google Scholar 

  97. Blackrnan, C.F., “The Biological Influences of Low Frequency Sinuoidal Electromagentic Signals Alone and Superimposed on R.F. Carier Waves”, in Interactions Between Electromagnetic Fields and Cells”, A. Chiabrere, C. Nicholini, H.P. Schwan, ed’s., p 521, Plenum Press, NY, (1985)

    Google Scholar 

  98. Michaelson,. S. M., “Perspective on Windows and Calcium Efflux Studies”, ibid, p 499.

    Google Scholar 

  99. Blackrnan, C.F., Benane, S.G., Rabinowitz, J. P., House. D.E., Joines, W.R., “A Role for the Magnetic Field in the Radiation Induces Efflux of Calcium Ions from Brain Tissue in Vitro”, Bioelectrornagnetics, 6, 327, (1985).

    Article  Google Scholar 

  100. Blackman, C.F., Elder, J.A., Weil, C.M., Benane, S.G., Eichinger, D.C, House, D.F, “Induction of Calcium Ion Efflux from Brain Tissue by Radio Frequency Radiations Effects of Modulaation Frequency and Field Strength”, Radio Science, 4, 93, (1979).

    Article  Google Scholar 

  101. Blackman, C.F., Benane, S.G., House, D.E., Joines, W.T., “Effects of ELF (1–120 Hz) and Modulated (50 Hz) RF Fields on the Efflux of Calcium Ions from Brain Tissue in Vitro”, Bielectromagnet ics, 6, 1, (1985).

    Article  CAS  Google Scholar 

  102. Conti, P., Gigante, G.E., Cifone, M.S., Alesse, E., Ianni, G., Reale, M., Angeltti, P. U., “Reduced Mitogenic Stimulation of Human Lymphocytes by Extremely Low Frequency Electromagnetic Fields”, Fed. Euro. Biochem. Soc., 162(1), 156, (1983).

    Article  CAS  Google Scholar 

  103. Conti, P., Gigante, G.E., Cifone, M.G., Alesse, E., Fieschi, C., Angeletti, P.U., “Effect of Electromagnetic Fields on Calcium Dependent Biological Systems”, J. Bioelectricity, 4(1), 227, (1985).

    CAS  Google Scholar 

  104. Blackman. C.F., Benane, S.G., Rabinowitz, J. R., “A Role for the Earth’s Magnetic Field in Biological Effects Caused by ELF”, Radiation Biophys., 42(2 pt 2), 244a, (1985).

    Google Scholar 

  105. Pargen, B., “Design of Crystals and Other Harmonic Oscillators”, p 113, John, Wiley & Sons, NY, (1983).

    Google Scholar 

  106. Blackman, C.F., Benane, S.G., Kinney, L.S., Joines, W. J., House, D. F., “An Effect of Weak ELF Signals on Brain Tissue in Vitro”, Biophys. J., 41((2 pt 2)), 244a, (1985).

    Google Scholar 

  107. Michaelson, S.M., “Perspective on Windows and Calcium Efflux Studies, in Interactions Between Electromagnetic Fields and Cells”, A. Chiabrera, C Nicolini & H.P. Schwan, ed’s., p 499, Plenum Press, NY, (1985).

    Google Scholar 

  108. Conti, P., Giganti, G.F., Cifone, M.G., Alesse, E., Ianni, G., Reale, M., Angeletti, P. U., “Reduced Witogenic Stimulation of Human Lymphocytes by Extremely Low Frequency Electromagnetic Fields”, Fed. Euro. Biochem. Soc., 162(1), 156, (1983).

    Article  CAS  Google Scholar 

  109. Bergman, C., “Increased Sodium Concentration Near the Inner Surface of Nodal Membrane”, Pflugers Arch. Ges. Physiol., 317, 287, (1970).

    Article  CAS  Google Scholar 

  110. Smith, S.D., Feola, J. M., “Effects of Duty-Cycle Distribution on Pulsed Magnetic Field Modulation of LGA Tumors in Mice”, J. Bioelectricity, 4(1), 15, (1985).

    Google Scholar 

  111. Surrenga, S.H.H., Whitfield, J.F., Boynton, A. L., McManus, J.P., Rayon, J.H., Sikorski, M., Tsang, B.K., Walker, P. R., “Regulation and Proliferation of Normal and Neoplastic Rat Liver Cells by Calcirn and Cyclic AMP”, Ann N.Y. Acad. Sci., 349, 294, (1985).

    Article  Google Scholar 

  112. Emilia, G., Torelli, G., Ceccherini, G., Donelli, A., Ferrari, S., Zucchini, P., Cadossi, R., “Effect of Low Frequency, Low Energy Electromagnetic Fields on the Response to Lectin Siirnulation of Human Normal and Chronic Lyrnphocytic Leukemia Lymphocytes”, J. Bioelectricity, 4(1) 145, (1985).

    CAS  Google Scholar 

  113. Smith, C. W., “Electromagnetic Phenomena in Living Biomedical Systems”, I.E.E. Frontiers of Eng. Comput, Health Card., 10.5, 176, (1984).

    Google Scholar 

  114. Murray, J. C., Farndale, W., “Modulation of Collagen Production in Cultured Fibroblasts by a Low Frequency Pulsed Magnetic Field”, Biochem. Biophys. Acta, 838, 98, (1985).

    Article  PubMed  CAS  Google Scholar 

  115. Liboff, A.R., Williams, T. Jr., Strong, D.M., Wistar, R. Jr., “Time Varying Magnetic Field Effects: Effect on DNA Synthesis”, Science, 223, 818, (1964).

    Article  Google Scholar 

  116. Cadossi, R., Emilia, G., Torelli, S., Ceccherelli, G., Ferrari, S., Ruggieri, P., “The Effect of Low Frequency Pulsing Electromagnetic Fields on Response of Normal Lymphocytes to Phytohaemaglutinin (PHAP)”, Bioelectrochem. Bioeng., 14, 115, (1985).

    Article  CAS  Google Scholar 

  117. Bookchin, R. M., Ortiz, O.E., Lew, Y. L., “Silent Intracellular Calcium in Sickle Cell Anemia Red Cells”, Chem. Biol. Res., 165, 17, (1984).

    CAS  Google Scholar 

  118. Eaton, J. W., Skelton, T. D., Swofford, H.S., Kolpin, C. E., Jacob, H.S., “Elevated Erythrocyte Calcium in Sickle Cell Disese”, Nature, 246, 105, (1973).

    Article  PubMed  CAS  Google Scholar 

  119. Brookchin, R.M., Lew Y. L., “Red Cell Abnormalities in Sickle Cell Anemia”, in Progress in Hematology, E.B. Brown, ed., p 1, Grune and Stratton, NY, (1983).

    Google Scholar 

  120. Benjamin, G. C., Sickle Cell Trait and Sickle Cell Anemia, A Review”, Military Med., 148, 701, (1983).

    CAS  Google Scholar 

  121. Trump. B.F., Berezesky, I.K., Phelphs, P.C., “Sodium and Calcium Regulation and the Role of the Cytoskeleton in the Pathogensis of Diseases A Review and Hypothesis”, Scanning Electron Microscopy, 11, 435, (1981).

    Google Scholar 

  122. Kramsch, D.M., Aspen, A. J., “Calcium Antagonists Suppress Development of Atherosclerosis and Promote Regression of Established Lesions”, Cell Caciurn, 5, 266, (1984).

    Google Scholar 

  123. Ishiura, S., “Calcium Dependent Proteolysis in Living Cells”, Life Sciences”, 29, 1079, (1981).

    Article  CAS  Google Scholar 

  124. Palmieri, G. M. A., Bertorini, T.F., Bhattacharya, S. K., Nutting, D.F., “Muscle Calcium Accumulation iri Muscular Dystrophy”, Cell Calcium, 5, 266, (1964).

    Google Scholar 

  125. Katz, S., Schoni, M. H., Bridges, M. A., “The Calcium Hypothesis of Cystic Fibrosis”, Cell Calcium, 5, 421, (1984).

    Article  PubMed  CAS  Google Scholar 

  126. Mangos, J.A., “Cystic Fibrosis: Pathogenic Role of Altered Calcium Horneostasis in Secretory and Edtheliai Cells”, Cell Calcium, 5, 279, (1984).

    Article  Google Scholar 

  127. Malaisse, W.J., “Role of Calcium in the Regulation of Hormonal Secretion”, Hormone Res., 20, 28, (1984).

    Article  PubMed  CAS  Google Scholar 

  128. Atwater, I., Frankel, B. J., Rojas, E., Grodsky, G. M., “Cell Membrane Potential and Insulin Release”, Role of Calcium and Calcium-Magnesium Ratio”, Q.J. Exper. Physiol., 68, 233, (1983).

    CAS  Google Scholar 

  129. Nanberg, E., Connolly, F., Nedergaard, J., “Presence of Ca+2 Dependent-K+ Channel in Brown Adipocytes: Possible Role in Maintenance of Adrenergic Stimulation”, Biochem. Bioohys. Acta, 844(1), 42, (1985).

    Article  CAS  Google Scholar 

  130. Pershadsingh, H.A., McDonald, J.M., “Hormone-Receptor Coupling and the Molecular Mechanism of Insulin fiction in the Adipocyte: A Paradigm for Ca+2 Homeostasis in the Intiation of the Insulin Induced Metabolic Cascade”, Cell Calcium, 5, 111, (1984)).

    Article  PubMed  CAS  Google Scholar 

  131. Whitfield, J.F., Boynton, A.L., MacManus, J.P., Rison, R. H., Sikorska, M., Tsong, B., Walker, P.R., “The Roles of Calcium and Cyclic AMP in Cell Proliferation”, in Growth Regulation by Ion Fluxes, H. Leffert, ed., Vol. 339, p 1, Ann. N.Y. Acad. Sci., NY, (1980).

    Google Scholar 

  132. Hallett, M.B., Campbell, A.K., “Is Intracelluiar Ca+2 the Trigger for Oxygen Radical Production by Polymorphonuclear Leucocytes”, Cell Calcium, 5, 1, (1984).

    Article  PubMed  CAS  Google Scholar 

  133. Motzkin, S.M., Benes, L., Block, N., Israel, B., May, N., Kuriyel, J., Birenbaum, L., Rosenthal, S., Han, G., “Effects of Low Level Millimeter Waves on Cellular and Sub Cellular Systems”, in Coherent Excitations in Biological Systems”, H. Frolich and F. Krerner, ed’s., p 54, Springer Verlag, NY, (1983).

    Google Scholar 

  134. Buch, F., Nanmark, U., Albrektsson, T., “A Vital Microscopic Description of the Effects of Electrical Stimulation on Bone Tissue”, J. Bioelectricity, 5(1), 105, (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Findl, E. (1987). Membrane Transduction of Low Energy Level Fields and the Ca++ Hypothesis. In: Blank, M., Findl, E. (eds) Mechanistic Approaches to Interactions of Electric and Electromagnetic Fields with Living Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1968-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1968-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1970-0

  • Online ISBN: 978-1-4899-1968-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics