Skip to main content
Log in

Biomechanics of cell membrane under low-frequency time-varying magnetic field: a shell model

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Cell membrane deforms in the electromagnetic field, suggesting an interesting control of cellular physiology by the field. Previous research has focused on the biomechanical analysis of membrane deformation under electric fields that are generated by electrodes. An alternative, noninvasive method to generate an electric field is the use of electromagnetic induction with a time-varying magnetic field, such as that used for transcranial magnetic stimulation (TMS). Although references reporting the magnetic control of cellular mechanics have recently emerged, theoretical analysis of the membrane biomechanics under a time-varying magnetic field is inadequate. We developed a cell model that included the membrane as a low-conductive, capacitive shell and investigated the electric pressure generated on the membrane by a low-frequency magnetic field (0–200 kHz). Our results show that externally applied magnetic field induced surface charges on both sides of the membrane. The charges interacted with the induced electric field to produce a radial pressure upon the membrane. Under the low-frequency range, the radial pressure pulled the cell membrane along the axis that was defined by the magnetically induced electric field. The radial pressure was a function of the field frequency, the conductivity ratio of the cytoplasm to the medium, and the size of the cell. It is quantitatively insignificant in deforming the membrane at the frequency used in TMS, but could be significant at a relatively higher-frequency range (>100 kHz).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

B o :

Intensity of the time-varying magnetic field (T)

E :

Intensity of the electric field induced by time-varying magnetic field (V/m)

ρ s01 :

Surface charge density on the medium/membrane interface (C/m2)

ρ s12 :

Surface charge density on the membrane/cytoplasm interface (C/m2)

Q s01 :

Net induced surface charges on the medium/membrane interface (C)

Q s12 :

Net induced surface charges on the membrane/cytoplasm interface (C)

P r01 :

Surface pressure on the medium/membrane interface (N/m2)

P r12 :

Surface pressure on the membrane/cytoplasm interface (N/m2)

P r :

Net surface pressure on the cell membrane (N/m2)

References

  1. Anninos PA, Tsagas N, Sandyk R, Derpapas K (1991) Magnetic stimulation in the treatment of partial seizures. Int J Neurosci 60(3–4):141–171

    Article  CAS  PubMed  Google Scholar 

  2. Anninos PA, Tsagas N, Jacobson JI, Kotini A (1999) The biological effects of magnetic stimulation in epileptic patients. Panminerva Med 41(3):207–215

    CAS  PubMed  Google Scholar 

  3. Aranda S, Riske KA, Lipowsky R, Dimova R (2008) Morphological transitions of vesicles induced by alternating electric fields. Biophys J 95(2):L19–L21. doi:10.1529/biophysj.108.132548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barker AT, Garnham CW, Freeston IL (1991) Magnetic nerve stimulation: the effect of waveform on efficiency, determination of neural membrane time constants and the measurement of stimulator output. Electroencephalogr Clin Neurophysiol Suppl 43:227–237

    CAS  PubMed  Google Scholar 

  5. Basser PJ, Roth BJ (1991) Stimulation of a myelinated nerve axon by electromagnetic induction. Med Biol Eng Comput 29(3):261–268

    Article  CAS  PubMed  Google Scholar 

  6. Bryant G, Wolfe J (1987) Electromechanical stresses produced in the plasma membranes of suspended cells by applied electric fields. J Membr Biol 96(2):129–139

    Article  CAS  PubMed  Google Scholar 

  7. Calvin NM, Hanawalt PC (1988) High-efficiency transformation of bacterial cells by electroporation. J Bacteriol 170(6):2796–2801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Darabi J, Guo C (2013) On-chip magnetophoretic isolation of CD4+ T cells from blood. Biomicrofluidics 7(5):54106. doi:10.1063/1.4821628

    Article  CAS  PubMed  Google Scholar 

  9. Dimova R, Riske KA, Aranda S, Bezlyepkina N, Knorr RL, Lipowsky R (2007) Giant vesicles in electric fields. Soft Matter 3(7):817–827. doi:10.1039/B703580b

    Article  CAS  Google Scholar 

  10. Djamgoz MBA, Mycielska M, Madeja Z, Fraser SP, Korohoda W (2001) Directional movement of rat prostate cancer cells in direct-current electric field: involvement of voltage-gated Na+ channel activity. J Cell Sci 114(14):2697–2705

    CAS  PubMed  Google Scholar 

  11. Engelhardt H, Sackmann E (1988) On the measurement of shear elastic moduli and viscosities of erythrocyte plasma membranes by transient deformation in high frequency electric fields. Biophys J 54(3):495–508. doi:10.1016/S0006-3495(88)82982-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Epstein CM, Davey KR (2002) Iron-core coils for transcranial magnetic stimulation. J Clin Neurophysiol 19(4):376–381

    Article  PubMed  Google Scholar 

  13. Gabriel C, Gabriel S, Corthout E (1996) The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 41(11):2231–2249

    Article  CAS  PubMed  Google Scholar 

  14. Gehl J (2003) Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand 177(4):437–447

    Article  CAS  PubMed  Google Scholar 

  15. Gimsa J, Wachner D (2001) Analytical description of the transmembrane voltage induced on arbitrarily oriented ellipsoidal and cylindrical cells. Biophys J 81(4):1888–1896. doi:10.1016/S0006-3495(01)75840-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gimsa J, Wachner D (2001) On the analytical description of transmembrane voltage induced on spheroidal cells with zero membrane conductance. Eur Biophy J EBJ 30(6):463–466

    Article  CAS  Google Scholar 

  17. Goldenberg NM, Steinberg BE (2010) Surface charge: a key determinant of protein localization and function. Cancer Res 70(4):1277–1280. doi:10.1158/0008-5472.CAN-09-2905

    Article  CAS  PubMed  Google Scholar 

  18. Griffiths DJ (1999) Introduction to electrodynamics, 3rd edn. Prentice-Hall Inc, New Jersey

    Google Scholar 

  19. Hyuga H, Kinosita K, Wakabayashi N (1991) Deformation of vesicles under the influence of strong electric-fields II. Jpn J Appl Phys 1 30(6):1333–1335. doi:10.1143/Jjap.30.1333

    Article  Google Scholar 

  20. Jen DH, Steele CR (1987) Electrokinetic model of cochlear hair cell motility. J Acoust Soc Am 82(5):1667–1678

    Article  CAS  PubMed  Google Scholar 

  21. Kamm R, Lammerding J, Mofrad M (2010) Cellular nanomechanics. In: Bhushan B (ed) Springer handbook of nanotechnology, 3rd edn. Springer, Heidelberg, Dordrecht, London, New York, pp 1171–1200

    Chapter  Google Scholar 

  22. Konings MK (2007) A new method for spatially selective, non-invasive activation of neurons: concept and computer simulation. Med Biol Eng Compu 45(1):7–24. doi:10.1007/s11517-006-0136-z

    Article  Google Scholar 

  23. Kotnik T, Miklavcic D (2000) Analytical description of transmembrane voltage induced by electric fields on spheroidal cells. Biophys J 79(2):670–679. doi:10.1016/S0006-3495(00)76325-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kotnik T, Bobanovic F, Miklavcic D (1997) Sensitivity of transmembrane voltage induced by applied electric fields—a theoretical analysis. Bioelectrochem Bioenerg 43(2):285–291

    Article  CAS  Google Scholar 

  25. Kotnik T, Bobanovic F, Miklavcic D (1997) Sensitivity of transmembrane voltage induced by applied electric fields—a theoretical analysis. Bioelectrochem Bioenerg 43(2):285–291. doi:10.1016/S0302-4598(97)00023-8

    Article  CAS  Google Scholar 

  26. Kotnik T, Miklavcic D, Slivnik T (1998) Time course of transmembrane voltage induced by time-varying electric field—a method for theoretical analysis and its application. Bioelectrochem Bioenerg 45:3–16

    Article  CAS  Google Scholar 

  27. Krasteva VT, Papazov SP, Daskalov IK (2003) Peripheral nerve magnetic stimulation: influence of tissue non-homogeneity. Biomed Eng Online 2:19. doi:10.1186/1475-925X-2-19

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lipman KM, Dodelson R, Hays RM (1966) The surface charge of isolated toad bladder epithelial cells. Mobility, effect of pH and divalent ions. J Gen Physiol 49(3):501–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mahaffy RE, Park S, Gerde E, Kas J, Shih CK (2004) Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys J 86(3):1777–1793. doi:10.1016/S0006-3495(04)74245-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McLaughlin S (1989) The electrostatic properties of membranes. Annu Rev Biophys Biophys Chem 18:113–136. doi:10.1146/annurev.bb.18.060189.000553

    Article  CAS  PubMed  Google Scholar 

  31. Momen-Heravi F, Balaj L, Alian S, Mantel PY, Halleck AE, Trachtenberg AJ, Soria CE, Oquin S, Bonebreak CM, Saracoglu E, Skog J, Kuo WP (2013) Current methods for the isolation of extracellular vesicles. Biol Chem 394(10):1253–1262. doi:10.1515/hsz-2013-0141

    Article  CAS  PubMed  Google Scholar 

  32. Olivotto M, Arcangeli A, Carla M, Wanke E (1996) Electric fields at the plasma membrane level: a neglected element in the mechanisms of cell signalling. BioEssays 18(6):495–504. doi:10.1002/bies.950180612

    Article  CAS  PubMed  Google Scholar 

  33. Pasenkiewicz-Gierula M, Takaoka Y, Miyagawa H, Kitamura K, Kusumi A (1999) Charge pairing of headgroups in phosphatidylcholine membranes: a molecular dynamics simulation study. Biophys J 76(3):1228–1240. doi:10.1016/S0006-3495(99)77286-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Polk C (1990) Electric fields and surface charges induced by ELF magnetic fields. Bioelectromagnetics 11(2):189–201

    Article  CAS  PubMed  Google Scholar 

  35. Polk C, Song JH (1990) Electric fields induced by low frequency magnetic fields in inhomogeneous biological structures that are surrounded by an electric insulator. Bioelectromagnetics 11(3):235–249

    Article  CAS  PubMed  Google Scholar 

  36. Polson MJ, Barker AT, Freeston IL (1982) Stimulation of nerve trunks with time-varying magnetic fields. Med Biol Eng Comput 20(2):243–244

    Article  CAS  PubMed  Google Scholar 

  37. Radmacher M, Cleveland JP, Fritz M, Hansma HG, Hansma PK (1994) Mapping interaction forces with the atomic force microscope. Biophys J 66(6):2159–2165. doi:10.1016/S0006-3495(94)81011-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Reilly JP (1989) Peripheral nerve stimulation by induced electric currents: exposure to time-varying magnetic fields. Med Biol Eng Comput 27(2):101–110

    Article  CAS  PubMed  Google Scholar 

  39. Riske KA, Dimova R (2006) Electric pulses induce cylindrical deformations on giant vesicles in salt solutions. Biophys J 91(5):1778–1786. doi:10.1529/biophysj.106.081620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rols MP, Delteil C, Serin G, Teissie J (1994) Temperature effects on electrotransfection of mammalian cells. Nucleic Acids Res 22(3):540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Roth BJ, Luterek A, Puwal S (2014) The movement of a nerve in a magnetic field: application to MRI Lorentz effect imaging. Med Biol Eng Comput 52(5):491–498. doi:10.1007/s11517-014-1153-y

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ruohonen J, Panizza M, Nilsson J, Ravazzani P, Grandori F, Tognola G (1996) Transverse-field activation mechanism in magnetic stimulation of peripheral nerves. Electroencephalogr Clin Neurophysiol 101(2):167–174

    Article  CAS  PubMed  Google Scholar 

  43. Sadik MM, Li J, Shan JW, Shreiber DI, Lin H (2011) Vesicle deformation and poration under strong dc electric fields. Phys Rev E Stat Nonlinear Soft Matter Phys 83(6 Pt 2):066316

    Article  CAS  Google Scholar 

  44. Sandyk R, Anninos PA, Tsagas N, Derpapas K (1992) Magnetic fields in the treatment of Parkinson’s disease. Int J Neurosci 63(1–2):141–150

    Article  CAS  PubMed  Google Scholar 

  45. Schwan HP (1957) Electrical properties of tissue and cell suspensions. Adv Biol Med Phys 5:147–209

    Article  CAS  PubMed  Google Scholar 

  46. Sotiropoulos SN, Steinmetz PN (2007) Assessing the direct effects of deep brain stimulation using embedded axon models. J Neural Eng 4(2):107–119. doi:10.1088/1741-2560/4/2/011

    Article  PubMed  Google Scholar 

  47. Vlahovska PM, Gracia RS, Aranda-Espinoza S, Dimova R (2009) Electrohydrodynamic model of vesicle deformation in alternating electric fields. Biophys J 96(12):4789–4803. doi:10.1016/j.bpj.2009.03.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Voldman J (2006) Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng 8:425–454. doi:10.1146/annurev.bioeng.8.061505.095739

    Article  CAS  PubMed  Google Scholar 

  49. Wang N, Ingber DE (1994) Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Biophys J 66(6):2181–2189. doi:10.1016/S0006-3495(94)81014-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260(5111):1124–1127

    Article  CAS  PubMed  Google Scholar 

  51. Ye H, Curcuru A (2015) Vesicle biomechanics in a time-varying magnetic field. BMC Biophys 8(1):2. doi:10.1186/s13628-014-0016-0

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ye H, Steiger A (2015) Neuron matters: electric activation of neuronal tissue is dependent on the interaction between the neuron and the electric field. J Neuroeng Rehabil 12:65. doi:10.1186/s12984-015-0061-1

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ye H, Cotic M, Carlen PL (2007) Transmembrane potential induced in a spherical cell model under low-frequency magnetic stimulation. J Neural Eng 4(3):283–293. doi:10.1088/1741-2560/4/3/014

    Article  PubMed  Google Scholar 

  54. Ye H, Cotic M, Kang EE, Fehlings MG, Carlen PL (2010) Transmembrane potential induced on the internal organelle by a time-varying magnetic field: a model study. J Neuroeng Rehabil 7:12. doi:10.1186/1743-0003-7-12

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ye H, Cotic M, Fehlings MG, Carlen PL (2011) Transmembrane potential generated by a magnetically induced transverse electric field in a cylindrical axonal model. Med Biol Eng Comput 49(1):107–119. doi:10.1007/s11517-010-0704-0

    Article  PubMed  Google Scholar 

  56. Ye H, Cotic M, Fehlings MG, Carlen PL (2012) Influence of Cellular Properties on the Electric Field Distribution Around a Single Cell. Prog Electromagn Res B 39:141–161

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Research Support Grant from Loyola University Chicago. Amanda Steiger assisted with the revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, H., Curcuru, A. Biomechanics of cell membrane under low-frequency time-varying magnetic field: a shell model. Med Biol Eng Comput 54, 1871–1881 (2016). https://doi.org/10.1007/s11517-016-1478-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1478-9

Keywords

Navigation