Skip to main content
Log in

Rotation of cells in an alternating electric field theory and experimental proof

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Protoplasts ofAvena sativa rotate in an alternating electric field provided that at least two cells are located close to each other. An optimum frequency range (20 to 30 kHz) exists where rotation of all cells exposed to the field is observed. Below and above this frequency range, rotation of some cells is only occasionally observed. The angular velocity of rotation depends on the square of the electric field strength. At field strengths above the value leading to electrical breakdown of the cell membrane, rotation is no longer observed due to deterioration of the cells. The absolute value of the angular velocity of rotation at a given field strength depends on the arrangement of the cells in the electric field. A maximum value is obtained if the angle between the field direction and the line connecting the two cells is 45o. With increasing distance between the two cells the rotation speed decreases. Furthermore, if two cells of different radii are positioned close to each other the cell with the smaller radius will rotate with a higher speed than the larger one. Rotation of cells in an alternating electric field is described theoretically by interaction between induced dipoles is adjacent cells. The optimum frequency range for rotation is related to the relaxation of the polarization process in the cell. The quadratic dependence of the angular velocity of rotation on the field strength results from the fact that the torque is the product of the external field and the induced dipole moment which is itself proportional to the external field. The theoretical and experimental results may be relevant for cyclosis (rotational streaming of cytoplasm) in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, N.S., Allen, R.D. 1978. Cytoplasmic streaming in green plants.Annu. Rev. Biophys. Bioeng. 7:497–526

    PubMed  Google Scholar 

  2. Benz, R., Beckers, F., Zimmermann, U. 1979. Reversible electrical breakdown of lipid bilayer membranes: A charge-pulse relaxation study.J. Membrane Biol. 48:181–204

    Google Scholar 

  3. Benz, R., Zimmermann, U. 1980. Pulse-length dependence of the electrical breakdown in lipid bilayer membranes.Biochim. Biophys. Acta 597:637–642

    PubMed  Google Scholar 

  4. Benz, R., Zimmermann, U. 1980. Relaxation studies on cell membranes and lipid bilayers in the high electric field range.Bioelectrochem. Bioenerg. 7:723–739

    Google Scholar 

  5. Benz, R., Zimmermann, U. 1981. High electric field effects on the membrane ofHalicystis parvula.Planta 152:314–318

    Google Scholar 

  6. Berker, R. 1963. Intégration des équations du mouvement d'un fluide visqueux incompressible.In: Handbuch der Physik VIII/2. S. Flügge and C. Truesdell, editors. pp. 1–384. Springer-Verlag, Berlin-Göttingen-Heidelberg

    Google Scholar 

  7. Böttcher, C.J.F. 1973. Theory of Electric Polarization. Vol. I: Dielectrics in Static Fields. Elsevier, Amsterdam-London-New York

    Google Scholar 

  8. Böttcher, C.J.F., Bordewijk, P. 1978. Theory of Electric Polarization. Vol. II: Dielectrics in Time-Dependent Fields. Elsevier, Amsterdam-Oxford-New York

    Google Scholar 

  9. Cobbold, P.H. 1980. Cytoplasmic free calcium and amoeboid movement.Nature (London) 285:441–446

    Google Scholar 

  10. Cole, K.S. 1968. Membranes, Ions and Impulses. University of California Press, Berkeley, Los Angeles

    Google Scholar 

  11. Forde, J., Steer, M.W. 1976. Cytoplasmic streaming inElodea.Can. J. Bot. 54:2688–2694

    Google Scholar 

  12. Hampp, R., Ziegler, H. 1980. On the use ofAvena protoplasts to study chloroplast development.Planta 147:485–494

    Google Scholar 

  13. Jeltsch, E., Zimmermann, U. 1979. Particles in a homogeneous electrical field: A model for the electrical breakdown of living cells in a Coulter Counter.Bioelectrochem. Bioenerg. 6:349–384

    Google Scholar 

  14. Kamiya, N. 1959. Protoplasmic streaming.Protoplasmatologia 8:3a

    Google Scholar 

  15. Mischel, M., Lamprecht, I. 1980. Dielectrophoretic rotation in budding yeast cells.Z. Naturforsch. 35c:1111–1113

    Google Scholar 

  16. O'Brien, T.P., McCulley, M.E. 1970. Cytoplasmic fibres associated with streaming and saltatory-particle movement inHeracleum mantegazzianum.Planta (Berlin) 94:91–94

    Google Scholar 

  17. Pethig, R. 1979. Dielectric and Electronic Properties of Biological Materials. John Wiley & Sons. Chichester-New York-Brisbane-Toronto

    Google Scholar 

  18. Pohl, H.A. 1978. Dielectrophoresis. Cambridge University Press, Cambridge-London-New York-Melbourne

    Google Scholar 

  19. Pohl, H.A. 1979. Do cells in the reproductive state exhibit a Fermi-Pasta-Ulam-Fröhlich resonance and emit electromagnetic radiation?Research Note 98, Oklahoma State University

  20. Pohl, H.A. 1980. Natural electricalrf-oscillation from cells.Research Note 111, Oklahoma State University

  21. Pohl, H.A. 1981. Biological dielectrophoresis.In: Electric Field Effects in Biological Membranes. U. Zimmermann and R. Benz, editors. Springer-Verlag, Berlin-Heidelberg-New York (in press)

    Google Scholar 

  22. Pohl, H.A., Crane, J.S. 1971. Dielectrophoresis of cells.Biophys. J. 11:711–727

    PubMed  Google Scholar 

  23. Schwan, H.P. 1957. Electrical properties of tissue and cell suspensions.In: Advances in Biological and Medicine Physics. J.H. Lawrence and C.A. Tobias, editors. pp. 147–209. Academic Press Inc., New York

    Google Scholar 

  24. Schwan, H.P. 1963. Determination of biological impedances.In: Physical Techniques in Biological Research. W.L. Nastuk, editor. Vol. VI, pp. 323–407. Academic Press, New York and London

    Google Scholar 

  25. Schwarz, G. 1962. A theory of the low-frequency dielectric dispersion of colloidal particles in electrolyte solution.J. Phys. Chem. 66:2636–2642

    Google Scholar 

  26. Schwarz, G., Saito, M., Schwan, H.P. 1965. On the orientation of nonspherical particles in an alternating electrical field.J. Chem. Phys. 43:3562–3569

    Google Scholar 

  27. Simons, P.J. 1981. The role of electricity in plant movements.New Phystol. 87:11–37

    Google Scholar 

  28. Tazawa, M., Kikuyama, M., Shimmen, T. 1976. Electric characteristics and cytoplasmic streaming ofCharaceae cells lacking tonoplast.Cell Struct. Funct. 1:165–176

    Google Scholar 

  29. Tazawa, M., Kishimoto, U. 1968. Cessation of cytoplasmic streaming ofChara internodes during action potential.Plant Cell Physiol. Tokyo 9:361–368

    Google Scholar 

  30. Zimmermann, U., Beckers, F., Coster, H.G.L. 1977. The effect of pressure on the electrical breakdown in the membranes ofValonia utricularis.Biochim. Biophys. Acta 464:399–416

    PubMed  Google Scholar 

  31. Zimmermann, U., Benz, R. 1980. Dependence of the electrical breakdown voltage on the charging time inValonia utricularis.J. Membrane Biol. 53:33–43

    Google Scholar 

  32. Zimmermann, U., Groves, M., Schnabl, H., Pilwat, G. 1980. Development of a new Coulter Counter system: Measurement of the volume, internal conductivity, and dielectric breakdown voltage of a single guard cell protoplast ofVicia faba.J. Membrane Biol. 52:37–50

    Google Scholar 

  33. Zimmermann, U., Pilwat, G., Beckers, F., Riemann, F. 1976. Effects of external electrical fields on cell membranes.Bioelectrochem. Bioenerg. 3:58–83

    Google Scholar 

  34. Zimmermann, U., Scheurich, P. 1981. High frequency fusion of plant protoplasts by electric fields.Planta 151:26–32

    Google Scholar 

  35. Zimmermann, U., Vienken, J., Pilwat, G. 1981. Rotation of cells in an alternating electric field: The occurrence of a resonance frequency.Z. Naturforsch. 36c:173–177

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holzapfel, C., Vienken, J. & Zimmermann, U. Rotation of cells in an alternating electric field theory and experimental proof. J. Membrain Biol. 67, 13–26 (1982). https://doi.org/10.1007/BF01868644

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868644

Key words

Navigation