Skip to main content

Assembling, Connecting, and Maintaining the Cochlear Nucleus

  • Chapter
Plasticity of the Auditory System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 23))

Abstract

The cochlear nucleus (CN) is an essential synaptic intermediary in the ascending auditory pathway and the site of remarkable neuronal specializations that allow this pathway to represent most of the behaviorally relevant information available in sounds (Cant 1992; Rhode and Greenberg 1992; Romand and Avan 1997; Ryugo and Parks 2003). Because of the powerful influence that the developing ear exerts on the developing auditory central nervous system (CNS) (Rubel 1978; Parks 1997; Friauf and Lohmann 1999; Rubel and Fritzsch 2002), considerable research has been directed at understanding the basic events of normal development and the central effects of early deafness. The large literature on normal structural and functional development of the CN has been reviewed in a previous volume of this series (Cant 1998; Sanes and Walsh 1998), and various aspects of abnormal development are discussed in other chapters of the book (Friauf, Chapter 3 and Moore and King, Chapter 4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Agmon A, Yang LT, Jones EG, O’Dowd DK (1995) Topological precision in the thalamic projection to neonatal mouse barrel cortex. J Neurosci 15: 549–561.

    PubMed  CAS  Google Scholar 

  • Angulo A, Merchan JA, Merchan MA (1990) Morphology of the rat cochlear primary afferents during prenatal development: a Cajal’s reduced silver and rapid Golgi study. J Anat 168: 241–255.

    PubMed  CAS  Google Scholar 

  • Arndt K, Redies C (1996) Restricted expression of R-cadherin by brain nuclei and neural circuits of the developing chicken brain. J Comp Neurol 373: 373–399.

    Article  PubMed  CAS  Google Scholar 

  • Benson CG, Gross JS, Suneja SK, Potashner SJ (1997) Synaptophysin immunoreactivity in the cochlear nucleus after unilateral cochlear or ossicular removal. Synapse 25: 243–257.

    Article  PubMed  Google Scholar 

  • Book KJ, Morest DK (1990) Migration of neuroblasts by perikaryal translocation: role of cellular elongation and axonal outgrowth in the acoustic nuclei of the chick embryo medulla. J Comp Neurol 297: 55–76.

    Article  PubMed  CAS  Google Scholar 

  • Born DE, Rubel EW (1985) Afferent influences on brain stem auditory nuclei of the chicken: neuron number and size following cochlea removal. J Comp Neurol 231: 435–445.

    Article  PubMed  CAS  Google Scholar 

  • Born DE, Rubel EW (1988) Afferent influences on brain stem auditory nuclei of the chicken: presynaptic action potentials regulate protein synthesis in nucleus magnocellularis neurons. J Neurosci 8: 901–919.

    PubMed  CAS  Google Scholar 

  • Born DE, Durham D, Rubel EW (1991) Afferent influences on brainstem auditory nuclei of the chick: nucleus magnocellularis neuronal activity following cochlea removal. Brain Res 557: 37–47.

    Article  PubMed  CAS  Google Scholar 

  • Braun K (1990) Calcium-binding proteins in avian and mammalian central nervous system: localization, development and possible functions. Prog Histochem Cytochem 21: 1–64.

    Article  PubMed  CAS  Google Scholar 

  • Brose K, Tessier-Lavigne M (2000) Slit proteins: key regulators of axon guidance, axonal branching, and cell migration. Curr Opin Neurobiol 10: 95–102.

    Article  PubMed  CAS  Google Scholar 

  • Brumwell CL, Hossain WA, Morest DK, Bernd P (2000) Role for basic fibroblast growth factor (FGF-2) in tyrosine kinase (TrkB) expression in the early development and innervation of the auditory receptor: in vitro and in situ studies. Exp Neurol 162: 121145.

    Google Scholar 

  • Caicedo A, d’Aldin C, Eybalin M, Puel JL (1997) Temporary sensory deprivation changes calcium-binding proteins levels in the auditory brainstem. J Comp Neurol 378: 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Caicedo A, Kungel M, Pujol R, Friauf E (1998) Glutamate-induced Coe+ uptake in rat auditory brainstem neurons reveals developmental changes in Cat+ permeability of glutamate receptors. Eur J Neurosci 10: 941–954.

    Article  PubMed  CAS  Google Scholar 

  • Cant, NB (1992) The cochlear nucleus: Neuronal types and their synaptic organization. In: Webster DB, Popper AN, Fay RR (eds), The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag, pp. 66–116.

    Chapter  Google Scholar 

  • Cant, NB (1998) Structural development of the mammalian central auditory pathway. In: Rubel EW, Popper AN, Fay RR (eds), Development of the Auditory System. New York: Springer-Verlag, pp. 315–413.

    Chapter  Google Scholar 

  • Carr CE, Boudreau RE (1996) Development of the time coding pathways in the auditory brainstem of the barn owl. J Comp Neurol 373: 467–483.

    Article  PubMed  CAS  Google Scholar 

  • Clopton BM (1980) Neurophysiology of auditory deprivation. In: Garlin RJ (ed), Birth Defects: Morphogenesis and Malformations of the Ear. New York: Alan R. Liss, pp. 271–288.

    Google Scholar 

  • Cochran SL, Stone JS, Bermingham-McDonogh O, Akers SR, Lefcort F, Rubel EW (1999) Ontogenetic expression of trk neurotrophin receptors in the chick auditory system. J Comp Neurol 413: 271–288.

    Article  PubMed  CAS  Google Scholar 

  • Code RA, McDaniel AE (1998) Development of dynorphin-like immunoreactive auditory nerve terminals in the chick. Brain Res Dev Brain Res 106: 165–172.

    Article  PubMed  CAS  Google Scholar 

  • Code RA, Durham D, Rubel EW (1990) Effects of cochlea removal on GABAergic terminals in nucleus magnocellularis of the chicken. J Comp Neurol 301: 643–654.

    Article  PubMed  CAS  Google Scholar 

  • Coleman JR, O’Connor P (1979) Effects of monaural and binaural sound deprivation on cell development in the anteroventral cochlear nucleus of rats. Exp Neurol 64: 553–566.

    Article  PubMed  CAS  Google Scholar 

  • Coleman J, Blatchley BJ, Williams JE (1982) Development of the dorsal and ventral cochlear nuclei in rat and effects of acoustic deprivation. Brain Res 256: 119–123.

    PubMed  CAS  Google Scholar 

  • Cramer KS, Fraser SE, Rubel EW (2000a) Embryonic origins of auditory brain-stem nuclei in the chick hindbrain. Dev Biol 224: 138–151.

    Article  PubMed  CAS  Google Scholar 

  • Cramer KS, Rosenberger MH, Frost DM, Cochran SL, Pasquale EB, Rubel EW (2000b) Developmental regulation of EphA4 expression in the chick auditory brainstem. J Comp Neurol 426: 270–278.

    Article  PubMed  CAS  Google Scholar 

  • Cramer KS, Karam SD, Bothwell M, Cerretti DP, Pasquale EB, Rubel EW (2002) Expression of EphB receptors and EphrinB ligands in the developing chick auditory brainstem. J Comp Neurol 452: 51–64.

    Article  PubMed  CAS  Google Scholar 

  • Cramer KS, Bermingham-McDonogh OM, Kru11 CE, Rubel EW (2004) EphA4 restricts axonal connections to individual subcellular elements. Devel Biol. In press.

    Google Scholar 

  • Dallos P (1992) The active cochlea. J Neurosci 12: 4575–4585.

    PubMed  CAS  Google Scholar 

  • Dallos P, Harris D (1978) Properties of auditory nerve responses in absence of outer hair cells. J Neurophysiol 41: 365–383.

    PubMed  CAS  Google Scholar 

  • D’Amico-Martel A (1982) Temporal patterns of neurogenesis in avian cranial sensory and autonomic ganglia. Am J Ana 163: 351–372.

    Article  Google Scholar 

  • Diaz C, Glover JC (2002) Comparative aspects of the hodological organization of the vestibular nuclear complex and related neuron populations. Br Res Bull 57: 307–312.

    Article  Google Scholar 

  • Dodson HC, Charalabapoulou M (2001) PMCA2 mutation causes structural changes in the auditory system in deafwaddler mice. J Neurocytol 30: 281–292.

    Article  PubMed  CAS  Google Scholar 

  • Dodson HC, Bannister LH, Douek EE (1994) Effects of unilateral deafening on the cochlear nucleus of the guinea pig at different ages. Brain Res Dev Brain Res 80: 261–267.

    Article  PubMed  CAS  Google Scholar 

  • Doyle WJ, Webster DB (1991) Neonatal conductive hearing loss does not compromise brainstem auditory function and structure in rhesus monkeys. Hear Res 54: 145–151.

    Article  PubMed  CAS  Google Scholar 

  • Drachman DB, Witzke F (1972) Trophic regulation of acetylcholine sensitivity of muscle: effect of electrical stimulation. Science 176: 514–516.

    Article  PubMed  CAS  Google Scholar 

  • Durham D, Rubel EW (1985) Afferent influences on brain stem auditory nuclei of the chicken: changes in succinate dehydrogenase activity following cochlea removal. J Comp Neurol 231: 446–456.

    Article  PubMed  CAS  Google Scholar 

  • Durham D, Matschinsky FM, Rubel EW (1993) Altered malate dehydrogenase activity in nucleus magnocellularis of the chicken following cochlea removal. Hear Res 70: 151–159.

    Article  PubMed  CAS  Google Scholar 

  • Evans WJ, Webster DB, Cullen JK Jr (1983) Auditory brainstem responses in neonatally sound deprived CBA/J mice. Hear Res 10: 269–277.

    Article  PubMed  CAS  Google Scholar 

  • Fekete DM, Rouiller EM, Liberman MC, Ryugo DK (1984) The central projections of intracellularly labeled auditory nerve fibers in cats. J Comp Neurol 229: 432–450.

    Article  PubMed  CAS  Google Scholar 

  • Flanagan JG, Vanderhaeghen P (1998) The ephrins and Eph receptors in neural development. Annu Rev Neurosci 21: 309–345.

    Article  PubMed  CAS  Google Scholar 

  • Forster CR, Illing RB (2000) Plasticity of the auditory brainstem: cochleotomy-induced changes of calbindin-D28k expression in the rat. J Comp Neurol 416: 173–187.

    Article  PubMed  CAS  Google Scholar 

  • Friauf E (1992) Tonotopic order in the adult and developing auditory system of the rat as shown by c-fos immunocytochemistry. Eur J Neurosci 4: 798–812.

    Article  PubMed  Google Scholar 

  • Friauf E, Kandler K (1993) Cell birth, formation of efferent connections, and establishment of tonotopic order in the rat cochlear nucleus. In: Merchan, MA, Juiz M, Godfrey DA Mugnaini E (eds), The Mammalian Cochlear Nuclei: Organization and Function. New York, Plenum, pp. 19–28.

    Chapter  Google Scholar 

  • Friauf E, Lohmann C (1999) Development of auditory brainstem circuitry. Activity-dependent and activity-independent processes. Cell Tissue Res 297: 187–195.

    Google Scholar 

  • Fritzsch B (1990) Experimental reorganization in the alar plate of the clawed toad, Xenopus laevis. I. Quantitative and qualitative effects of embryonic otocyst extirpation. Brain Res Dev Brain Res 51: 113–122.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch B, Farinas I, Reichardt LF (1997) Lack of neurotrophin 3 causes losses of both classes of spiral ganglion neurons in the cochlea in a region-specific fashion. J Neurosci 17: 6213–6225.

    PubMed  CAS  Google Scholar 

  • Fritzsch B, Barald KF, Lomax MI (1998) Early embryology of the vertebrate ear. In: Rubel EW, Popper AN, Fa, RR (eds), Development of the Auditory System. New York: Springer-Verlag, pp. 80–145.

    Chapter  Google Scholar 

  • Fushimi D, Arndt K, Takeichi M, Redies C (1997) Cloning and expression analysis of cadherin-10 in the CNS of the chicken embryo. Dev Dynam 209: 269–285.

    Article  CAS  Google Scholar 

  • Garcia-Diaz JF (1999) Development of a fast transient potassium current in chick cochlear ganglion neurons. Hear Res 135: 124–134.

    Article  PubMed  CAS  Google Scholar 

  • Garden GA, Canady KS, Lurie DI, Bothwell M, Rubel EW (1994) A biphasic change in ribosomal conformation during transneuronal degeneration is altered by inhibition of mitochondrial, but not cytoplasmic protein synthesis. J Neurosci 14: 1994–2008.

    PubMed  CAS  Google Scholar 

  • Garden GA, Redeker-DeWulf V, Rubel EW (1995a) Afferent influences on brainstem auditory nuclei of the chicken: regulation of transcriptional activity following cochlea removal. J Comp Neurol 359: 412–423.

    Article  PubMed  CAS  Google Scholar 

  • Garden GA, Hartlage-Rübsamen M, Rubel EW, Bothwell MA (1995b) Protein masking of a ribosomal RNA epitope is an early event in afferent deprivation-induced neuronal death. Mol Cell Neurosci 6: 293–310.

    Article  PubMed  CAS  Google Scholar 

  • Gleich O, Strutz J (1997) Age-dependent effects of the onset of a conductive hearing loss on the volume of the cochlear nucleus subdivisions and the expression of c-fos in the mongolian gerbil (Meriones unguiculatus). Audiol Neurootol 2: 113–127.

    Article  PubMed  CAS  Google Scholar 

  • Glover JC (2001) Correlated patterns of neuron differentiation and Hox gene expression in the hindbrain: A comparative analysis. Br Res Bull 55: 683–693.

    Article  CAS  Google Scholar 

  • Gummer AW, Mark RF (1994) Patterned neural activity in brain stem auditory areas of a prehearing mammal, the tammar wallaby (Macropus eugenii). NeuroReport 5: 685688.

    Google Scholar 

  • Hack NJ, Wride MC, Charters KM, Kater SB, Parks TN (2000) Developmental changes in the subcellular localization of calretinin. J Neurosci 20:RC67.

    Google Scholar 

  • Hafidi A (1999) Distribution of BDNF, NT-3 and NT-4 in the developing auditory brain-stem. Int J Dev Neurosci 17: 285–294.

    Article  PubMed  CAS  Google Scholar 

  • Hafidi A, Moore T, Sanes DH (1996) Regional distribution of neurotrophin receptors in the developing auditory brainstem. J Comp Neurol 367: 454–464.

    Article  PubMed  CAS  Google Scholar 

  • Hartlage-Rübsamen M, Rubel EW (1996) Influence of mitochondrial protein synthesis inhibition on deafferentation-induced ultrastructural changes in nucleus magnocellularis of developing chicks. J Comp Neurol 371: 448–460.

    Article  PubMed  Google Scholar 

  • Hashisaki GT, Rubel EW (1989) Effects of unilateral cochlea removal on anteroventral cochlear nucleus neurons in developing gerbils. J Comp Neurol 283: 5–73.

    Article  PubMed  CAS  Google Scholar 

  • Hemond SG, Morest DK (1991a) Formation of the cochlea in the chicken embryo: sequence of innervation and localization of basal lamina-associated molecules. Brain Res Dev Brain Res 61: 87–96.

    Article  PubMed  CAS  Google Scholar 

  • Hemond SG, Morest DK (1991b) Ganglion formation from the otic placode and the otic crest in the chick embryo: mitosis, migration, and the basal lamina Anat Embryol (Berl) 184: 1–13.

    CAS  Google Scholar 

  • Holt CE (1984) Does timing of axon outgrowth influence initial retinotectal topography in Xenopus? J Neurosci 4: 1130–1152.

    PubMed  CAS  Google Scholar 

  • Holt CE, Harris WA (1993) Position, guidance, and mapping in the developing visual system. J Neurobiol 24: 1400–1422.

    Article  PubMed  CAS  Google Scholar 

  • Holt CE, Harris WA (1998) Target selection: invasion, mapping and cell choice. Curr Opin Neurobiol 8: 98–105.

    Article  PubMed  CAS  Google Scholar 

  • Hyde GE, Durham D (1990) Cytochrome oxidase response to cochlea removal in chicken auditory brain stem neurons. J Comp Neurol 297: 329–339.

    Article  PubMed  CAS  Google Scholar 

  • Hyde GE, Durham D (1994a) Rapid increase in mitochrondial volume in nucleus magnocellularis neurons following cochlea removal. J Comp Neurol 339: 27–48.

    Article  PubMed  CAS  Google Scholar 

  • Hyde GE, Durham D (1994b) Increased deafferentation-induced cell death in chick brain-stem auditory neurons following blockade of mitochondria) protein synthesis with chloramphenicol. J Neurosci 14: 291–300.

    PubMed  CAS  Google Scholar 

  • Hyson RL (1998) Activation of metabotropic glutamate receptors is necessary for trans-neuronal regulation of ribosomes in chick auditory neurons. Brain Res 809: 214–220.

    Article  PubMed  CAS  Google Scholar 

  • Hyson RL, Rubel EW (1989) Transneuronal regulation of protein synthesis in the brain-stem auditory system of the chick requires synaptic activation. J Neurosci 9: 2835–2845.

    PubMed  CAS  Google Scholar 

  • Hyson RL, Rubel EW (1995) Activity-dependent regulation of a ribosomal RNA epitope in the chick cochlear nucleus. Brain Res 672: 196–204.

    Article  PubMed  CAS  Google Scholar 

  • Illing RB (2001) Activity-dependent plasticity in the adult auditory brainstem. Audiol Neurootol 6: 319–345.

    Article  PubMed  CAS  Google Scholar 

  • Illing RB, Horvath M, Laszig R (1997) Plasticity of the auditory brainstem: effects of cochlear ablation on GAP-43 immunoreactivity in the rat. J Comp Neurol 382: 116–138.

    Article  PubMed  CAS  Google Scholar 

  • Inoue T, Tanaka T, Suzuki SC, Takeichi M (1998) Cadherin-6 in the developing mouse brain: expression along restricted connection systems and synaptic localization suggest a potential role in neuronal circuitry. Dev Dynam 211: 338–351.

    Article  CAS  Google Scholar 

  • Jackson H, Parks TN (1982) Functional synapse elimination in the developing avian cochlear nucleus with simultaneous reduction in cochlear nerve axon branching. J Neurosci 2: 1736–1743.

    PubMed  CAS  Google Scholar 

  • Jackson H, Parks TN (1988) Induction of aberrant functional afferents to the chick cochlear nucleus. J Comp Neurol 271: 106–114.

    Article  PubMed  CAS  Google Scholar 

  • Jackson H, Hackett JT, Rubel EW (1982) Organization and development of brain stem auditory nuclei in the chick: ontogeny of postsynaptic responses. J Comp Neurol 210: 80–86.

    Article  PubMed  CAS  Google Scholar 

  • Jhaveri SR, Morest DK (1982a) Sequential alterations of neuronal architecture in nucleus magnocellularis of the developing chicken: an electron microscope study. Neurosci 7: 855–870.

    Article  CAS  Google Scholar 

  • Jhaveri SR, Morest DK (1982b) Sequential alterations of neuronal architecture in nucleus magnocellularis of the developing chicken: a Golgi study. Neurosci 7: 837–853.

    Article  CAS  Google Scholar 

  • Kandler K, Friauf E (1995) Development of glycinergic and glutamatergic synaptic transmission in the auditory brainstem of perinatal rats. J Neurosci 15: 6890–6904.

    PubMed  CAS  Google Scholar 

  • Kato BM, Rubel EW (1999) Glutamate regulates 1P3-type and CICR stores in the avian cochlear nucleus. J Neurophysiol 81: 1587–1596.

    PubMed  CAS  Google Scholar 

  • Kato BM, Lachica EA, Rubel EW (1996) Glutamate modulates intracellular Cat+ stores in brainstem auditory neurons. J Neurophysiol 76: 646–650.

    PubMed  CAS  Google Scholar 

  • Kawano A, Seldon HL, Clark GM, Hakuhisa E, Funasaka S (1997) Effects of chronic electrical stimulation on cochlear nuclear neuron size in deaf kittens. Adv Otorhinolaryngol 52: 33–35.

    PubMed  CAS  Google Scholar 

  • Kelley MS, Lurie DI, Rubel EW (1997) Rapid regulation of cytoskeletal proteins and their mRNAs following afferent deprivation in the avian cochlear nucleus. J Comp Neurol 389: 469–483.

    Article  PubMed  CAS  Google Scholar 

  • Knowlton VY (1967) Correlation of the development of membranous and bony labyrinths, acoustic ganglia, nerves, and brain centers of the chick embryo. J Morph 121: 179–208.

    Article  Google Scholar 

  • Kubke MF, Carr CE (1998) Development of AMPA-selective glutamate receptors in the auditory brainstem of the barn owl. Microsc Res Techn 41: 176–186.

    Article  CAS  Google Scholar 

  • Kubke MF, Gauger B, Basu L, Wagner H, Carr CE (1999) Development of calretinin immunoreactivity in the brainstem auditory nuclei of the barn owl (Tyto alba). J Comp Neurol 415: 189–203.

    Article  PubMed  CAS  Google Scholar 

  • Lachica EA, Rubsamen R, Zirpel L, Rubel EW (1995) Glutamatergic inhibition of voltage-operated calcium channels in the avian cochlear nucleus. J Neurosci 15: 1724–1734.

    PubMed  CAS  Google Scholar 

  • Lachica EA, Zirpel L, Rubel EW (1996) Intracellular mechanisms involved in the afferent regulation of neurons in the avian cochlear nucleus. In: Salvi RJ, Henderson D, Coletti V, Fiorino F (eds), Auditory Systems Plasticity and Regeneration. New York: Thieme, pp. 333–353.

    Google Scholar 

  • Lawrence JJ, Trussell LO (2000) Long-term specification of AMPA receptor properties after synapse formation. J Neurosci 20: 4864–4870.

    PubMed  CAS  Google Scholar 

  • Levi-Montalcini R (1949) The development of the acoustico-vestibular centers in the chick embryo in the absence of the afferent root fibers and of descending fiber tracts. J Comp Neurol 91: 209–242.

    Article  PubMed  CAS  Google Scholar 

  • Li H, Takeda Y, Niki H, Ogawa J, Kobayashi S, Kai N, Akasaka K, Asano M, Sudo K, Iwakura Y, Watanabe K (2003) Aberrant responses to acoustic stimuli in mice deficient for neural recognition molecule NB-2. Eur J Neurosci 17: 929–936.

    Article  PubMed  Google Scholar 

  • Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am 63: 442–455.

    Article  PubMed  CAS  Google Scholar 

  • Limb CJ, Ryugo DK (2000) Development of primary axosomatic endings in the anteroventral cochlear nucleus of mice. J Assoc Res Otolaryngol 1: 103–119.

    Article  PubMed  CAS  Google Scholar 

  • Lippe WR (1991) Reduction and recovery of neuronal size in the cochlear nucleus of the chicken following aminglycoside intoxication. Hear Res 51: 193–202.

    Article  PubMed  CAS  Google Scholar 

  • Lippe WR (1994) Rhythmic spontaneous activity in the developing avian auditory system. J Neurosci 14: 1486–1495.

    PubMed  CAS  Google Scholar 

  • Lippe WR (1995) Relationship between frequency of spontaneous bursting and tonotopic position in the developing avian auditory system. Brain Res 703: 205–213.

    Article  PubMed  CAS  Google Scholar 

  • Lippe WR, Rubel EW (1985) Ontogeny of tonotopic organization of brain stem auditory brain stem auditory nuclei in the chicken: implications for development of the place principle. J Comp Neurol 238: 371–381.

    Article  Google Scholar 

  • Lippe WR, Steward O, Rubel EW (1980) The effect of unilateral basilar papilla removal upon nuclei laminaris and magnocellularis of the chick examined with [3H]2deoxyglucose autoradiography. Brain Res 196: 43–58.

    Article  PubMed  CAS  Google Scholar 

  • Lippe WR, Fuhrmann DS, Yang W, Rubel EW (1992) Aberrant projection induced by otocyst removal maintains normal tonotopic organization in the chick cochlear nucleus. J Neurosci 12: 962–969.

    PubMed  CAS  Google Scholar 

  • LOmo T, Rosenthal J (1972) Control of Ach sensitivity by muscle activity in the rat. J Physiol 221: 493–513.

    PubMed  CAS  Google Scholar 

  • Lorente de No R (1981) The Primary Acoustic Nuclei. New York: Raven Press. Lumsden A, Krumlauf R (1996) Patterning the vertebrate neuraxis. Science 274: 1109–1115.

    Google Scholar 

  • Luo L, Moore JK, Baird A, Ryan AF (1995) Expression of acidic FGF mRNA in rat auditory brainstem during postnatal maturation. Brain Res Dev Brain Res 86: 24–34.

    Article  PubMed  CAS  Google Scholar 

  • Luo L, Ryan AF, Saint Marie RL (1999) Cochlear ablation alters acoustically induced c-fos mRNA expression in the adult rat auditory brainstem. J Comp Neurol 404: 271283.

    Google Scholar 

  • Lurie DI, Pasic TR, Hockfield SJ, Rubel EW (1997) Development of Cat-301 immunoreactivity in auditory brainstem nuclei of the gerbil. J Comp Neurol 380: 319–334.

    Article  PubMed  CAS  Google Scholar 

  • Lustig LR, Leake PA, Snyder RL, Rebscher SJ (1994) Changes in the cat cochlear nucleus following neonatal deafening and chronic intracochlear electrical stimulation Hear Res 74: 29–37.

    CAS  Google Scholar 

  • Ma Q, Chen Z, del Barco Barrantes I, de la Pompa JL, Anderson DJ (1998) neurogenin 1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20: 469–482.

    Google Scholar 

  • Ma Q, Anderson DJ, Fritzsch B (2000) Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. J Assoc Res Otolaryngol 1: 129–143.

    Article  PubMed  CAS  Google Scholar 

  • Marin F, Puelles L (1995) Morpological fate of rhombomeres in quail/chick chimeras: a segmental analysis of hindbrain nuclei. Eur J Neurosci 7: 1714–1738.

    Article  PubMed  CAS  Google Scholar 

  • Martin MR, Rickets C (1981) Histogenesis of the cochlear nucleus of the mouse. J Comp Neurol 197: 169–184.

    Article  PubMed  CAS  Google Scholar 

  • Mathis L, Nicolas JF (2002) Cellular patterning of the vertebrate embryo. Trends Genet 18: 627–635.

    Article  PubMed  CAS  Google Scholar 

  • Mattox DE, Neises GR, Gulley RL (1982) A freeze—fracture study of the maturation of synapses in the anteroventral cochlear nucleus of the developing rat. Anat Rec 204: 281–287.

    Article  PubMed  CAS  Google Scholar 

  • Molea D, Rubel EW (2003) Timing and topography of nucleus magnocellularis innervation by the cochlear ganglion. J Comp Neurol 466: 577–591.

    Article  PubMed  Google Scholar 

  • Moore DR (1990) Auditory brainstem of the ferret: early cessation of developmental sensitivity of neurons in the cochlear nucleus to removal of the cochlea. J Comp Neurol 302: 810–823.

    Article  PubMed  CAS  Google Scholar 

  • Moore DR (1991) Development and plasticity of the ferret auditory system. In: Altschuler RA, Bobbin RP, Clopton BM, Hoffman DW (eds), Neurobiology of Hearing: The Central Auditory System. New York: Raven Press, pp. 461–475.

    Google Scholar 

  • Moore DR (1992) Developmental plasticity of the brainstem and midbrain auditory nuclei. In: Romand R (ed), Development of Auditory and Vestibular Systems 2. Amsterdam: Elsevier, pp. 297–320.

    Google Scholar 

  • Moore DR, Hutchings ME, King AJ, Kowalchuk NE (1989) Auditory brain stem of the ferret: some effects of rearing with a unilateral ear plug on the cochlea, cochlear nucleus, and projections to the inferior colliculus. J Neurosci 9: 1213–1222.

    PubMed  CAS  Google Scholar 

  • Moore JK, Guan YL, Shi SR (1997) Axogenesis in the human fetal auditory system, demonstrated by neurofilament immunohistochemistry. Anat Embryol (Berl) 195: 1530.

    Google Scholar 

  • Morest DK (1969) The differentiation of cerebral dendrites: A study of the post-migratory neuroblast in the medial nucleus of the trapezoid body. Z Anat Entwicklungs 128: 271–289.

    Article  CAS  Google Scholar 

  • Mostafapour SP, Lachica EA, Rubel EW (1997) Mitochondrial regulation of calcium in the avian cochlear nucleus. J Neurophysiol 78: 1928–1934.

    PubMed  CAS  Google Scholar 

  • Mostafapour SP, Cochran SL, Del Puerto NM, Rubel EW (2000) Patterns of cell death in mouse anteroventral cochlear nucleus neurons after unilateral cochlea removal. J Comp Neurol 426: 561–571.

    Article  PubMed  CAS  Google Scholar 

  • Mostafapour SP, Del Puerto NM, Rubel, EW (2002) bc1–2 overexpression eliminates deprivation-induced cell death of brainstem auditory neurons. J Neurosci 21: 4670–4674.

    Google Scholar 

  • Mueller BK (1999) Growth cone guidance: first steps towards a deeper understanding. Ann Rev Neurosci 22: 351–388.

    Article  PubMed  CAS  Google Scholar 

  • Murakami Y, Suto F, Shimizu M, Shinoda T, Kameyama T, Fujisawa H (2001) Differential expression of plexin-A subfamily members in the mouse nervous system. Dev Dynam 220: 246–258.

    Article  CAS  Google Scholar 

  • Neises GR, Mattox DE, Gulley RL (1982) The maturation of the end bulb of Held in the rat anteroventral cochlear nucleus. Anat Rec 204: 271–279.

    Article  PubMed  CAS  Google Scholar 

  • Ni D, Seldon HL, Shepherd RK, Clark GM (1993) Effect of chronic electrical stimulation on cochlear nucleus neuron size in normal hearing kittens. Acta Otolaryngol 113: 489497.

    Google Scholar 

  • Nicholls DG, Budd SL (2000) Mitochondria and neuronal survival. Physiol Rev 80: 315–360.

    PubMed  CAS  Google Scholar 

  • Niparko JK (1999) Activity influences on neuronal connectivity within the auditory pathway. Laryngoscope 109: 1721–1730.

    Article  PubMed  CAS  Google Scholar 

  • Nordeen KW, Killackey HP, Kitzes LM (1983) Ascending projections to the inferior colliculus following unilateral cochlear ablation in the neonatal gerbil, Meriones unguiculatus. J Comp Neurol 214: 144–153.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa J, Lee S, Itoh K, Nagata S, Machida T, Takeda Y, Watanabe K (2001) Neural recognition molecule NB-2 of the contactin/F3 subgroup in rat: specificity in neurite outgrowth-promoting activity and restricted expression in the brain regions. J Neurosci Res 65: 100–110.

    Article  PubMed  CAS  Google Scholar 

  • O’Leary DD, Wilkinson DG (1999) Eph receptors and ephrins in neural development. Curr Opin Neurobiol 9: 65–73.

    Article  PubMed  Google Scholar 

  • Parks TN (1979) Afferent influences on the development of the brain stem auditory nuclei of the chicken: otocyst ablation. J Comp Neurol 183: 665–677.

    Article  PubMed  CAS  Google Scholar 

  • Parks TN (1997) Effects of early deafness on development of brain stem auditory neurons. Ann Otol Rhinol Laryngol Suppl 168: 37–43.

    PubMed  CAS  Google Scholar 

  • Parks TN (2000) The AMPA receptors of auditory neurons. Hear Res 147:77–91. Parks TN, Jackson H (1984) A developmental gradient of dendritic loss in the avian cochlear nucleus occurring independently of primary afferents. J Comp Neurol 227: 459–466.

    Google Scholar 

  • Parks TN, Jackson H, Taylor DA (1990) Adaptations of synaptic form in an aberrant projection to the avian cochlear nucleus. J Neurosci 10: 975–984.

    PubMed  CAS  Google Scholar 

  • Parks TN, Code RA, Taylor DA, Solum D, Strauss KI, Jacobowitz D, Winsky L (1997) Calretinin expression in the chick brainstem auditory nuclei develops and is maintained independently of cochlear nerve input. J Comp Neurol 383: 112–121.

    Article  PubMed  CAS  Google Scholar 

  • Pasic TR, Rubel EW (1989) Rapid changes in cochlear nucleus cell size following blockade of auditory nerve electrical activity in gerbils. J Comp Neurol 283: 474–480.

    Article  PubMed  CAS  Google Scholar 

  • Pasic TR, Rubel EW (1991) Cochlear nucleus cell size is regulated by auditory nerve electrical activity. Otolaryngol Head Neck Surg 104: 6–13.

    PubMed  CAS  Google Scholar 

  • Pasini A, Wilkinson DG (2002) Stabilizing the regionalisation of the developing vertebrate central nervous system. BioEssays 24: 427–438.

    Article  PubMed  CAS  Google Scholar 

  • Perney TM, Marshall J, Martin KA, Hockfield S, Kaczmarek LK (1992) Expression of the mRNAs for the Kv3.1 potassium channel gene in the adult and developing rat brain. J Neurophysiol 68: 756–766.

    PubMed  CAS  Google Scholar 

  • Pettigrew AG, Ansselin AD, Braniley JR (1988) Development of functional innervation in the second and third order auditory nuclei of the chick. Development 104: 575–588.

    PubMed  CAS  Google Scholar 

  • Powell TPS, Erulkar SD (1962) Transneural cell degeneration in the auditory relay nuclei of the cat. J Anat 96: 249–268.

    PubMed  CAS  Google Scholar 

  • Raman IM, Trussell LO (1992) The kinetics of the response to glutamate and kainate in neurons of the avian cochlear nucleus. Neuron 9: 173–186.

    Article  PubMed  CAS  Google Scholar 

  • Raman IM, Zhang S, Trussell LO (1994) Pathway-specific variants of AMPA receptors and their contribution to neuronal signaling. J Neurosci 14: 4998–5010.

    PubMed  CAS  Google Scholar 

  • Raper JA (2000) Semaphorins and their receptors in vertebrates and invertebrates. Curr Opin Neurobiol 10: 88–94.

    Article  PubMed  CAS  Google Scholar 

  • Redd EE, Pongstaporn T, Ryugo DK (2000) The effects of congenital deafness on auditory nerve synapses and globular bushy cells in cats. Hear Res 147: 160–174.

    Article  PubMed  CAS  Google Scholar 

  • Redies C (2000) Cadherins in the central nervous system. Prog Neurobiol 61:611–648.

    Google Scholar 

  • Redies C, Puelles L (2001) Modularity in vertebrate brain development and evolution. BioEssays 23: 1100–1111.

    Article  PubMed  CAS  Google Scholar 

  • Rhode WS (1978) Some observations on cochlear mechanics. J Acoust Soc Am 64: 158–176.

    Article  PubMed  CAS  Google Scholar 

  • Rhode WS, Greenberg S (1992) Physiology of the cochlear nuclei. In: Popper AN, Fa, RR (eds), The Mammalian Auditory Pathway: Neurophysiology. New York: Springer-Verlag, pp. 94–152.

    Chapter  Google Scholar 

  • Riedel B, Friauf E, Grothe C, Unsicker K (1995) Fibroblast growth factor-2-like immunoreactivity in auditory brainstem nuclei of the developing and adult rat: correlation with onset and loss of hearing. J Comp Neurol 354: 353–360.

    Article  PubMed  CAS  Google Scholar 

  • Romand R, Avan P (1997) Anatomical and functional aspects of the cochlear nucleus. In: Ehret G, Romand R (eds), The Central Auditory System. New York: Oxford University Press, pp. 97–191.

    Google Scholar 

  • Rubel EW (1978) Ontogeny of structure and function in the vertebrate auditory system. In: Jacobson M (ed), Handbook of Sensory Physiology. Vol. IX. Development of Sensory Systems. New York: Springer-Verlag, pp. 135–137.

    Google Scholar 

  • Rubel EW, Fritzsch BF (2002) Auditory system development: primary auditory neurons and their targets. Annu Rev Neurosci 25: 51–101.

    Article  PubMed  CAS  Google Scholar 

  • Rubel EW, Parks TN (1975) Organization and development of brain stem auditory nuclei of the chicken: tonotopic organization of N. magnocellularis and N. laminais. J Comp Neurol 164: 411–434.

    Article  CAS  Google Scholar 

  • Rubel EW, Parks TN (1988) Organization and development of the avian brain-stem auditory system. In: Edelman GM, Gall WE, Cowan WM (eds), Auditory Function: Neurobiological Bases of Hearing, New York: Wiley-Interscience, pp. 3–92.

    Google Scholar 

  • Rubel EW, Smith DJ, Miller LC (1976) Organization and development of brain stem auditory nuclei of the chicken: ontogeny of n. magnocellularis and n. laminais. J Comp Neurol 166: 469–489.

    Article  PubMed  CAS  Google Scholar 

  • Rubel EW, Hyson RL, Durham D (1990) Afferent regulation of neurons in the brain stem auditory system. J Neurobiol 21: 169–196.

    Article  PubMed  CAS  Google Scholar 

  • Rubel EW, Falk PM, Canady KS, Steward 0 (1991) A cellular mechanism underlying the activity-dependent transneuronal degeneration: rapid but reversible destruction of the neuronal ribosomes. Brain Dysfunct 4: 55–74.

    Google Scholar 

  • Ruben RJ (1967) Development of the inner ear of the mouse: a radioautographic study of terminal mitoses. Acta Otolaryngol (Suppl): 1–44.

    Google Scholar 

  • Ryan AF, Woolf NK (1988) Development of tonotopic representation in the Mongolian gerbil: a 2-deoxyglucose study. Brain Res 469: 61–70.

    PubMed  CAS  Google Scholar 

  • Ryugo DK, Fekete DM (1982) Morphology of primary axosomatic endings in the anteroventral cochlear nucleus of the cat: a study of the endbulbs of Held. J Comp Neurol 210: 239–257.

    Article  PubMed  CAS  Google Scholar 

  • Ryugo DK, Parks TN (2003) Primary innervation of the avian and mammalian cochlear nucleus. Brain Res Bull 60: 435–456.

    Article  PubMed  Google Scholar 

  • Ryugo DK, Pongstaporn T, Huchton DM, Niparko JK (1997) Ultrastructural analysis of primary endings in deaf white cats: morphologic alterations in endbulbs of Held. J Comp Neurol 385: 230–244.

    Article  PubMed  CAS  Google Scholar 

  • Ryugo, DK, Rosenbaum BT, Kim PJ, Niparko JK, Saada AA (1998) Single unit recordings in the auditory nerve of congenitally deaf white cats: morphological correlates in the cochlea and cochlear nucleus. J Comp Neurol 397: 532–548.

    Article  PubMed  CAS  Google Scholar 

  • Saada AA, Niparko JK, Ryugo DK (1996) Morphological changes in the cochlear nucleus of congenitally deaf white cats. Brain Res 736: 315–328.

    Article  PubMed  CAS  Google Scholar 

  • San Jose I, Vasquez E, Garcia-Atares N, Huerta JJ, Vega JA, Represa J (1997) Differential expression of microtubule associated protein MAP-2 in developing cochleovestibular neurons and its modulation by neurotrophin-3. Int J Dev Biol 41: 509–519.

    Google Scholar 

  • Sanes DH, Rubel EW (1988) The ontogeny of inhibition and excitation in the gerbil lateral superior olive. J Neurosci 8: 682–700.

    PubMed  CAS  Google Scholar 

  • Sanes DH, Walsh EJ (1998) The development of central auditory processing. In: Rubel EW, Popper AN, Fay RR (eds), Development of the Auditory System. New York: Springer-Verlag, pp. 271–314.

    Chapter  Google Scholar 

  • Sanes DH, Merickel M, Rubel EW (1989) Evidence for an alteration of the tonotopic map in the gerbil cochlea during development. J Comp Neurol 279: 436–444.

    Article  PubMed  CAS  Google Scholar 

  • Sanes DH, Reh TA, Harris WA (2000) Development of the Nervous System. New York: Academic Press.

    Google Scholar 

  • Saunders JC, Coles RB, Gates GR (1973) The development of auditory evoked responses in the cochlea and cochlear nuclei of the chick. Brain Res 63: 59–74.

    Article  PubMed  CAS  Google Scholar 

  • Saunders JC, Adler JH, Cohen YE, Smullen S, Kazahaya K (1998) Morphometric changes in the chick nucleus magnocellularis following acoustic overstimulation. J Comp Neurol 390: 412–426.

    Article  PubMed  CAS  Google Scholar 

  • Schweitzer L, Cant NB (1984) Development of the cochlear innervation of the dorsal cochlear nucleus of the hamster. J Comp Neurol 225: 228–243.

    Article  PubMed  CAS  Google Scholar 

  • Schweitzer L, Cecil T (1992) Morphology of HRP-labelled cochlear nerve axons in the dorsal cochlear nucleus of the developing hamster. Hear Res 60: 34–44.

    Article  PubMed  CAS  Google Scholar 

  • Shaner RF (1934) The development of the nuclei and tracts related to the acoustic nerve in the pig. J Comp Neurol 60: 5–19.

    Article  Google Scholar 

  • Sie KC, Rubel EW (1992) Rapid changes in protein synthesis and cell size in the cochlear nucleus following eighth nerve activity blockade or cochlea ablation. J Comp Neurol 320: 501–508.

    Article  PubMed  CAS  Google Scholar 

  • Simon H, Lumsden A (1993) Rhombomere-specific origin of the contralateral vestibuloacoustic efferent neurons and their migration across the embryonic midline. Neuron 11: 209–220.

    Article  PubMed  CAS  Google Scholar 

  • Snyder RL, Leake PA (1997) Topography of spiral ganglion projections to cochlear nucleus during postnatal development in cats. J Comp Neurol 384: 293–311.

    Article  PubMed  CAS  Google Scholar 

  • Solum D, Hughes D, Major MS, Parks TN (1997) Prevention of normally occurring and deafferentation-induced neuronal death in chick brainstem auditory neurons by periodic blockade of AMPA/kainate receptors. J Neurosci 17: 4744–4751.

    PubMed  CAS  Google Scholar 

  • Sterbing SJ, Schmidt U, Rubsamen R (1994) The postnatal development of frequency-place code and tuning characteristics in the auditory midbrain of the phyllostomid bat, Carollia perspicillata. Hear Res 76: 133–146.

    Google Scholar 

  • Steward O, Rubel EW (1985) Afferent influences on brain stem auditory nuclei of the chicken: cessation of amino acid incorporation as an antecedent to age-dependent trans-neuronal degeneration. J Comp Neurol 231: 385–395.

    Article  PubMed  CAS  Google Scholar 

  • Studer M, Gavalas A, Marshall H, Ariza-McNaughton L, Rijli FM, Chambon P, Krumlauf R (1998) Genetic interactions between Hoxal and Hoxbl reveal new roles in regulation of early hindbrain patterning. Development 125: 1025–1036.

    PubMed  CAS  Google Scholar 

  • Sugden SG, Zirpel L, Dietrich CJ, Parks TN (2002) Development of the specialized AMPA receptors of auditory neurons. J Neurobiol 52: 189–202.

    Article  PubMed  CAS  Google Scholar 

  • Taber Pierce E (1967) Histogenesis of the dorsal ventral cochlear nuclei in the mouse. An autobiographic study. J Comp Neurol 131: 27–54.

    Article  Google Scholar 

  • Takahashi TT, Carr CE, Brecha N, Konishi M (1987) Calcium binding protein-like immunoreactivity labels the terminal field of nucleus laminaris of the barn owl. J Neurosci 7: 1843–1856.

    PubMed  CAS  Google Scholar 

  • Tierney TS, Russell FA, Moore DR (1997) Susceptibility of developing cochlear nucleus neurons to deafferentation-induced death abruptly ends just before the onset of hearing. J Comp Neurol 378: 295–306.

    Article  PubMed  CAS  Google Scholar 

  • Trune DR (1982a) Influence of neonatal cochlear removal on the development of mouse cochlear nucleus: I. Number, size, and density of its neurons. J Comp Neurol 209: 409–424.

    Article  PubMed  CAS  Google Scholar 

  • Trune DR (1982b) Influence of neonatal cochlear removal on the development of mouse cochlear nucleus: II. Dendritic morphometry of its neurons. J Comp Neurol 209: 425434.

    Google Scholar 

  • Trussell L (1998) Control of time course of glutamatergic synaptic currents. Prog Brain Res 116: 59–69.

    Article  PubMed  CAS  Google Scholar 

  • Tucci DL, Rubel EW (1985) Afferent influences on brain stem auditory nuclei of the chicken: effects of conductive and sensorineural hearing loss on n. magnocellularis. J Comp Neurol 238: 371–381.

    Article  PubMed  CAS  Google Scholar 

  • Tucci DL, Born DE, Rubel EW (1987) Changes in spontaneous activity and CNS morphology associated with conductive and sensorineural hearing loss in chickens. Ann Otol Rhinol Laryngol 96: 343–350.

    PubMed  CAS  Google Scholar 

  • Tucci DL, Cant NB, Durham D (1999) Conductive hearing loss results in a decrease in central auditory system activity in the young gerbil. Laryngoscope 109: 1359–1371.

    Article  PubMed  CAS  Google Scholar 

  • Ulatowska-Blaszyk K, Bruska M (1999) The cochlear ganglion in human embryos of developmental stages 18 and 19. Folia Morphol (Warsz) 58: 29–35.

    CAS  Google Scholar 

  • von Békésy G (1960) Experiments in Hearing. New York: American Institute of Physics.

    Google Scholar 

  • Walsh EJ, McGee J (1988) Rhythmic discharge properties of caudal cochlear nucleus neurons during postnatal development in cats. Hear Res 36: 233–247.

    Article  PubMed  CAS  Google Scholar 

  • Warchol ME, Dallos P (1990) Neural coding in the chick cochlear nucleus. J Comp Physiol A 166: 721–734.

    Article  PubMed  CAS  Google Scholar 

  • Webster DB (1983a) A critical period during postnatal auditory development of mice. Int J Pediatr Otorhinolaryngol 6: 107–118.

    Article  PubMed  CAS  Google Scholar 

  • Webster DB (1983b) Late onset of auditory deprivation does not affect brainstem auditory neuron soma size. Hear Res 12: 145–147.

    Article  PubMed  CAS  Google Scholar 

  • Webster DB (1983c) Auditory neuronal sizes after a unilateral conductive hearing loss. Exp Neurol 79: 130–140.

    Article  PubMed  CAS  Google Scholar 

  • Webster DB (1985) The spiral ganglion and cochlear nuclei of deafness mice. Hear Res 18: 19–27.

    Article  PubMed  CAS  Google Scholar 

  • Webster DB (1988) Sound amplification negates central effects of a neonatal conductive hearing loss. Hear Res 32: 193–195.

    Article  PubMed  CAS  Google Scholar 

  • Webster DB, Webster M (1977) Neonatal sound deprivation affects brain stem auditory nuclei. Arch Otolaryngol 103: 392–396.

    Article  PubMed  CAS  Google Scholar 

  • Webster DB, Webster M (1979) Effects of neonatal conductive hearing loss on brain stem auditory nuclei. Ann Otol Rhinol Laryngol 88: 684–688.

    PubMed  CAS  Google Scholar 

  • Wiesel TN, Hubel DH (1963) Single-cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophys 26: 1003–1017.

    CAS  Google Scholar 

  • Wiesel TN, Hubel DH (1965) Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J Neurophysiol 6: 1029–1040.

    Google Scholar 

  • Wilkinson BL, Sadler KA, Hyson RL (2002) Rapid deafferentation-induced upregulation of bcl-2 mRNA in the chick cochlear nucleus. Brain Res Mol Brain Res 99: 67–74.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson BL, Elam JS, Fadool DA, Hyson RL (2003) Afferent regulation of cytochrome-c and active caspase-9 in the avian cochlear nucleus. Neurosci 120: 1071–1079.

    Article  CAS  Google Scholar 

  • Wilkinson DG (2000) Eph receptors and ephrins: regulators of guidance and assembly. Int Rev Cytol 196: 177–244.

    Article  PubMed  CAS  Google Scholar 

  • Willard F (1990) Analysis of the development of the human auditory system. Sem Hearing 11: 107–123.

    Article  Google Scholar 

  • Willard F (1993) Postanatal development of auditory nerve projections to the cochlear nucleus in Monodelphis domestica. In: Merchan MA, Juiz JM, Godfrey DA, Mugnaini E (eds), The Mammalian Cochlear Nuclei: Organization and Function. New York: Plenum Press, pp. 29–42.

    Chapter  Google Scholar 

  • Willard FH (1995) Development of the mammalian auditory hindbrain. In: Malhotra S (ed), Advances in Neural Science, Vol. 2. Greenwich, CT: JAI, pp. 205–234.

    Chapter  Google Scholar 

  • Willard F, Martin GE (1986) The development and migration of large multipolar neurons into the cochlear nucleus of the North American opossum. J Comp Neurol 248: 119132.

    Google Scholar 

  • Wilson BE, Mochon E, Boxer LM (1996) Induction of bcl-2 expression by phosphorylated CREB proteins during B-cell activation and rescue from apoptosis. Mol Cell Biol 16: 5546–5556.

    PubMed  CAS  Google Scholar 

  • Windle WF, Austin MF (1936) Neurofibrillar development in the central nervous system of chick embryos up to 5 days’ incubation. J Comp Neurol 63: 431–463.

    Article  Google Scholar 

  • Winsky L, Jacobowitz DM (1995) Effects of unilateral cochlea ablation on the distribution of calretinin mRNA and immunoreactivity in the guinea pig ventral cochlear nucleus. J Comp Neurol 354: 564–582.

    Article  PubMed  CAS  Google Scholar 

  • Young SR, Rubel EW (1983) Frequency-specific projections of individual neurons in chick brainstem auditory nuclei. J Neurosci 3: 1373–1378.

    PubMed  CAS  Google Scholar 

  • Young SR, Rubel EW (1986) Embryogenesis of arborization pattern and topography of individual axons in N. laminaris of the chicken brain stem. J Comp Neurol 254: 425–459.

    CAS  Google Scholar 

  • Zhang JS, Haenggeli CA, Tempini A, Vischer MW, Moret V, Rouiller EM (1996) Electrically induced fos-like immunoreactivity in the auditory pathway of the rat: effects of survival time, duration, and intensity of stimulation. Brain Res Bull 39: 75–82.

    Article  PubMed  CAS  Google Scholar 

  • Zhou N, Parks TN (1992) Developmental changes in the effects of drugs acting at NMDA or non-NMDA receptors on synaptic transmission in the chick cochlear nucleus (nuc. magnocellularis). Brain Res Dev Brain Res 67: 145–152.

    Article  PubMed  CAS  Google Scholar 

  • Zirpel L, Parks TN (2001) Zinc inhibition of Group I mGluR-mediated calcium homeostasis in auditory neurons. J Assoc Res Otolaryngol 2: 180–187.

    PubMed  CAS  Google Scholar 

  • Zirpel L, Rubel EW (1996) Eighth nerve activity regulates intracellular calcium concentration of avian cochlear nucleus neurons via a metabotropic glutamate receptor. J Neurophysiol 76: 4127–4139.

    PubMed  CAS  Google Scholar 

  • Zirpel L, Nathanson NM, Rubel EW, Hyson RL (1994) Glutamate-stimulated phospha- tidylinositol metabolism in the avian cochlear nucleus. Neurosci Lett 168: 163–166.

    Article  PubMed  CAS  Google Scholar 

  • Zirpel L, Lachica EA, Lippe WR (1995) Deafferentation increases the intracellular calcium of cochlear nucleus neurons in the embryonic chick. J Neurophysiol 74: 1355–1357.

    PubMed  CAS  Google Scholar 

  • Zirpel L, Lachica EA, Rubel EW (1997) Afferent regulation of cochlear nucleus neurons: Intracellular mechanisms and signal transduction pathways. In: Berlin C (ed), Neurotransmission and Hearing Loss: Basic Science, Diagnosis, and Management, San Diego, Singular, pp. 47–76.

    Google Scholar 

  • Zirpel L, Lippe WR, Rubel EW (1998a) Activity-dependent regulation of [Ca2+]i in avian cochlear nucleus neurons: roles of protein kinases A and C and relation to cell death. J Neurophysiol 79: 2288–2302.

    PubMed  CAS  Google Scholar 

  • Zirpel L, Lippe WR, Rubel EW (1998b) Activity-dependent regulation of intracellular calcium in avian cochlear nucleus neurons: roles of protein kinases A and C and correlation with cell death. J Neurophysiol 79: 2288–2302.

    PubMed  CAS  Google Scholar 

  • Zirpel L, Janowiak MA, Taylor DA, Parks TN (2000a) Developmental changes in metabotropic glutamate receptor-mediated calcium homeostasis. J Comp Neurol 421: 95106.

    Article  Google Scholar 

  • Zirpel L, Janowiak MA, Veltri CA, Parks TN (2000b) AMPA receptor-mediated, calcium-dependent CREB phosphorylation in a subpopulation of auditory neurons surviving activity deprivation. J Neurosci 20: 6267–6275.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rubel, E.W., Parks, T.N., Zirpel, L. (2004). Assembling, Connecting, and Maintaining the Cochlear Nucleus. In: Parks, T.N., Rubel, E.W., Popper, A.N., Fay, R.R. (eds) Plasticity of the Auditory System. Springer Handbook of Auditory Research, vol 23. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4219-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4219-0_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1932-8

  • Online ISBN: 978-1-4757-4219-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics