Skip to main content

Early Embryology of the Vertebrate Ear

  • Chapter
Development of the Auditory System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 9))

Abstract

Organogenesis of the vertebrate inner ear has been described as “one of the most remarkable displays of precision microengineering in the vertebrate body” (Swanson, Howard, and Lewis 1990). The initial morphological event in ear development in all vertebrates is the formation of the embryonic otic placode, a thickening of the head ectoderm in the region of the developing hindbrain. Through interaction with and incorporation of tissue from several other embryonic sources, the placode develops into the otocyst or otic vesicle, a differentiated structure with sharply defined borders (Noden and Van De Water 1986; Couly, Coltey, and Le Douarin 1993). The epithelium of the otic placode/vesicle also gives rise to the primary neurons of the statoacoustic ganglion, later in development called the cochleovestibular ganglion, the octaval, or the otic ganglion (probably the most appropriate terminology), which contributes to cranial nerve VIII and to the specialized sensory structures known as hair cells (Fig. 3.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelman HB (1925) The development of the neural folds and cranial ganglion of the rat. J Comp Neurol 39:19–123.

    Article  Google Scholar 

  • Akimenko M-A, Ekker M, Wegner J, Lin W, Westerfield M (1994) Combinatorial expression of three zebra fish genes related to distal-less: part of a homeobox gene code for the head. J Neurosci 14:3475–3486.

    PubMed  CAS  Google Scholar 

  • Altschuler RA, Dolan DF, Ptok M, Gholizadeh G, Bonadio J, Hawkins JE (1991) An evaluation of otopathology in the MOV-13 transgenic mutant mouse. Ann NY Acad Sci 630:249–255.

    Article  PubMed  CAS  Google Scholar 

  • Amemiya F, Kishida R, Goris RC, Onishi H, Kustinoki T (1985) Primary vestibular projections in the hagfish, Eptatretus burgeri. Brain Res 337:73–79.

    Article  PubMed  CAS  Google Scholar 

  • Andres G (1949) Untersuchungen an Chimären von Triton und Bombinator. Teil I. Entwicklung xenoplastischer Labyrinthe und Kopfganglien. Genetica 24:387–534.

    Article  Google Scholar 

  • Anniko M (1983) Embryonic development of vestibular sense organs and their innervation. In: Romand R (ed) Development of Auditory and Vestibular Systems. New York: Academic Press, pp 375–423.

    Google Scholar 

  • Ard MD, Morest DK (1984) Cell death during development of the cochlear and vestibular ganglia of the chick. Neuroscience 2:535–547.

    Google Scholar 

  • Ard MD, Morest DK, Hauger SH (1985) Trophic interactions between the cochlea-vestibular ganglion of the chick embryo and its synaptic targets in culture. Neuroscience 16:151–170.

    Article  PubMed  CAS  Google Scholar 

  • Arnold SJ, Alberch P, Csanyi V, Dawkins RC (1989) How do complex organisms evolve? In: Wake DB, Roth G (eds) Complex Organismal Functions: Integration and Evolution in Vertebrates. Chichester, UK: John Wiley and Sons, pp. 403–434.

    Google Scholar 

  • Ayer-Le Liver CS, Le Douarin NM (1982) The early development of cranial sensory ganglia and the potentialities of their component cells studied in quail-chick chimeras. Dev Biol 94:291–310.

    Article  Google Scholar 

  • Baird IL (1974) Anatomical features of the inner ear in submammalian vertebrates. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology. Vol. V/l. Auditory System. Berlin: Springer-Verlag, pp. 159–212.

    Google Scholar 

  • Balfour FM (1885) Comparative Embryology. London: Macmillan, Vol. 1, pp. 492.

    Google Scholar 

  • Balinsky BI (1925) Transplantation des Ohrbläschens bei Triton. Roux’s Arch Dev Biol 143:718–731.

    Google Scholar 

  • Barald KF (1989) Culture conditions affect the cholinergic development of an isolated subpopulation of chick mesencephalic neural crest cells. Dev Biol 135:349–366.

    Article  PubMed  CAS  Google Scholar 

  • Barlow LA, Northcutt RG (1995) Embryonic origin of amphibian taste buds. Dev Biol 169:273–285.

    Article  PubMed  CAS  Google Scholar 

  • Bianchi LM, Cohan CS (1993) Effects of the neurotrophins and CNTF on developing statoacoustic neurons: comparison with an otocyst-derived factor. Dev Biol 159:353–365.

    Article  PubMed  CAS  Google Scholar 

  • Bryant SV, French V, Bryant PJ (1981) Distal regeneration and symmetry. Science 212:993–1002.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter EM, Goddard JM, Chisaka O, Manley NR, Capecchi MR (1993) Loss of Hox-Al (Hox-1.6) functions results in the reorganization of the murine hind-brain. Development 118:1063–1075.

    PubMed  CAS  Google Scholar 

  • Chalepakis G, Stoykova A, Wijnholds J, Tremblay P, Gruss P (1993) Pax: gene regulators in the developing nervous system. J Neurobiol 24:1367–1384.

    Article  PubMed  CAS  Google Scholar 

  • Chapman B, Fraser SE (1993) Locations of vestibular hair cells in developing zebrafish embryos visualized with a fluorescent vital dye. Soc Neurosci Abstr 19:1580.

    Google Scholar 

  • Chisaka O, Musci TS, Capecchi MR (1992) Developmental defects of the ear, cranial nerves, and hindbrain resulting from targeted disruption of the mouse homeobox gene Hox-1.6. Nature 355:516–520.

    Article  PubMed  CAS  Google Scholar 

  • Cho H, Yamada Y, Yoo TJ (1991) Ultrastructural changes of cochlea in mice with hereditary chondrodysplasia (cho/cho). Ann NY Acad Sci 630:259–261

    Article  PubMed  CAS  Google Scholar 

  • Cohen GM, Cotanche DA (1992) Development of the sensory receptors and their innervation in the chick cochlea. In: Romand R (ed) Development of Auditory and Vestibular Systems 2. Amsterdam: Elsevier, pp. 101–138.

    Google Scholar 

  • Cohn MJ, Izipisua-Belmonte JC, Abud H, Heath JK, Tickle C (1995) Fibroblast growth factors induce additional limb development from the flank of chick embryos. Cell 80:739–746.

    Article  PubMed  CAS  Google Scholar 

  • Cole KS, Robertson D (1992) Early efferent innervation of the developing rat cochlea studied with a carbocyanine dye. Brain Res 575:223–230.

    Article  PubMed  CAS  Google Scholar 

  • Cordes SP, Barsh GS (1994) The mouse segmentation gene kr encodes a novel basic domain-leucine zipper transcription factor. Cell 79:1025–1034.

    Article  PubMed  CAS  Google Scholar 

  • Corey DP, Breakefield XO (1994) Transcription factors in inner ear development. Proc Natl Acad Sci USA 91:433–436.

    Article  PubMed  CAS  Google Scholar 

  • Corwin, JT, Cotanche DA (1989) Development of location-specific hair cell stereocilia in denervated embryonic ears. J Comp Neurol 288:529–537.

    Article  PubMed  CAS  Google Scholar 

  • Cotanche DA, Corwin JT (1991) Stereociliary bundles reorient during hair cell development and regeneration in the chick cochlea. Hear Res 52:379–402.

    Article  PubMed  CAS  Google Scholar 

  • Couly GF, Coltey PM, Le Douarin NM (1993) The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Development 117:409–429.

    PubMed  CAS  Google Scholar 

  • Damas H (1944) Research on the development of the lamprey (Lampetra fluviatilis L.) Arch Biol 55:1–284.

    Google Scholar 

  • D’Amico-Martel A (1982) Temporal patterns of neurogenesis in avian cranial sensory and autonomic ganglia. Am J Anat 163:351–372.

    Article  PubMed  Google Scholar 

  • D’Amico-Martel A, Noden DM (1983) Contribution of placode and neural crest cells to avian cranial peripheral ganglia. Am J Anat 166:445–468.

    Article  PubMed  Google Scholar 

  • De Burlet HM (1934) Vergleichende Anatomie des statoakustischen Organs, a) Die innere Ohrsphäre; b) Die mittlere Ohrsphäre. In: Bolk L, Göppert E, Kallius E, Lubosch W (eds). Handbuch der Vergleichenden Anatomie der Wirbeltiere. Vol. 2. Berlin: Urban and Schwarzenberg, pp. 1293–1432.

    Google Scholar 

  • Deol MS (1964) The abnormalities of the inner ear in kreisler mice. J Embryol Exp Morphoal 12:475–490.

    CAS  Google Scholar 

  • Deol MS (1983) Development of auditory and vestibular systems in mutant mice. In: Romand R (ed) Development of Auditory and Vestibular Systems. New York: Academic Press, pp. 309–333.

    Google Scholar 

  • Detwiler SR, Van Dyke RH (1950) The role of the medulla in the differentiation of the otic vesicle. J Exp Zool 113:179–199.

    Article  Google Scholar 

  • Dolle P, Lufkin T, Krumlauf R, Mark M, Dubolle D, Chambon P (1992) Local alterations of Krox-20 and Hox gene expression in the hindbrain suggest lack of rhombomeres 4 and 5 in homozygote null Hoxa-1 (Hox-1.6) mutant embryos. Proc Nat Acad Sci USA 90:7666–7670.

    Article  Google Scholar 

  • Dressler GR, Douglas EC (1992) Pax-2 is a DNA-binding protein expressed in embryonic kidney and Wilms tumor. Proc Nat Acad Sci USA. 89:1179–1183.

    Article  PubMed  CAS  Google Scholar 

  • Dressler GR, Deutsch U, Chowdhury K, Nornes HO, Gruss, P. (1990) Pax2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development 109:787–795.

    PubMed  CAS  Google Scholar 

  • Duyk G, Gastier JM, Mueller RF (1992) Traces of her workings. Nature Genet 2:5–8.

    Article  PubMed  CAS  Google Scholar 

  • Ekker M, Akimenko MA, Bremiller R, Westerfield M (1992a) Regional expression of three homeobox transcripts in the inner ear of zebra fish embryos. Neuron 9:27–35.

    Article  PubMed  CAS  Google Scholar 

  • Ekker M, Wegner J, Akimenko M-A, Westerfield M (1992b) Coordinate embryonic expression of three zebrafish engrailed genes. Development 116:1001–1010.

    PubMed  CAS  Google Scholar 

  • Emmerling MR, Sobkowicz HM, Levenick CV, Scott GL, Slapnick SM, Rose JE (1990) Biochemical and morphological differentiation of acetylcholineesterase-positive efferent fibers in the mouse cochlea. J Electron Microsc Technol 15:123–143.

    Article  CAS  Google Scholar 

  • Erickson RP (1990) Mapping dysmorphic syndromes with the aid of human/mouse homology map. Am J Hum Genet 46:1013–1016.

    PubMed  CAS  Google Scholar 

  • Ernfors P, Lee K-F, Jaenisch R (1994) Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature 368:147–150.

    Article  PubMed  CAS  Google Scholar 

  • Ernfors P, Van De Water T, Loring J, Jaenisch R (1995) Complementary roles of BDNF and NT-3 in vestibular and auditory development. Neuron 14:1153–1164.

    Article  PubMed  CAS  Google Scholar 

  • Farbman AI, Mbiene J-P (1991) Early development and innevation of taste bud-bearing papillae on the rat tongue. J Comp Neurol 304:172–186.

    Article  PubMed  CAS  Google Scholar 

  • Farinas I, Jones, KR, Backus C, Wang X-Y, Reichardt GF (1994) Severe sensory and sympathetic deficits in mice lacking neurotrophin-3. Nature 369:658–661.

    Article  PubMed  CAS  Google Scholar 

  • Fekete DM (1996) Cell fate specification in the inner ear. Curr Op Neurobiol 6:533–541.

    Article  PubMed  CAS  Google Scholar 

  • Fell HB (1928) The development in vitro of the isolated otocyst of the embryonic fowl. Arch Exp Zellforsch Besonders Gewebezuech 7:69–81.

    Google Scholar 

  • Fischer FP (1992) Quantitative analysis of the innervation of the chicken basilar papilla. Hear Res 61:167–178.

    Article  PubMed  CAS  Google Scholar 

  • Fleischman RA (1993) From white spots to stem cells: the role of the kit receptor in mammalian development. Trends Genet 9:285–290.

    Article  PubMed  CAS  Google Scholar 

  • Frenz DA, Van De Water TR (1991) Epithelial control of periotic mesenchyme chondrogenesis. Dev Biol 144:38–46.

    Article  PubMed  CAS  Google Scholar 

  • Friedmann I (1956) In vitro culture of the isolated otocyst of the embryonic fowl. Ann Otol 65:98–107.

    CAS  Google Scholar 

  • Fritz A, Westerfield M (1996) Analysis of two mutants affecting neuroectodermal patterning in zebrafish. CSH, Zebrafish Development & Genetics, p. 216.

    Google Scholar 

  • Fritzsch B (1992) The water-to-land transition: evolution of the tetrapod basilar papilla, middle ear, and auditory nuclei. In Webster DB, Popper AN, Fay RR (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 351–375.

    Google Scholar 

  • Fritzsch B (1993) Evolutionary gain and loss of non-teleostean electroreceptors. J Comp Physiol 173:710–712.

    Google Scholar 

  • Fritzsch B (1995) Evolution of the ancestral vertebrate brain. In: Arbib MA (ed) The Handbook of Brain Theory and Neural Networks. Cambridge, MA: MIT Press, pp. 373–377.

    Google Scholar 

  • Fritzsch B (1996a) Similarities and differences in lancelet and craniate nervous systems. Israel J Zool, 42:147–160.

    Google Scholar 

  • Fritzsch B (1996b) Development of the labyrinthine efferent system. Ann NY Acad Sci 781:21–33.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch, B, Silos-Santiago I, Bianchi L, Farinas I (1997) The role of neurotrophic factors in regulating inner ear innervation. TINS 20:159–164.

    PubMed  CAS  Google Scholar 

  • Fritzsch B, Nichols DH (1993) Dil reveals a prenatal arrival of efferents at developing ears of mice. Hear Res 65:51–60.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch B, Northcutt RG (1993) Cranial and spinal nerve organization in amphioxus and lampreys. Acta Anat 148:96–110.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch B, Wake MH (1988) The inner ear of gymnophione amphibians and its nerve supply: a comparative study of regressive events in a complex sensory system. Zoomorphology 108 210–217.

    Article  Google Scholar 

  • Fritzsch B, Zakon HH, Sanchez DY (1990) Time course of structural changes in regenerating electroreceptors of a weakly electric fish. J Comp Neurol 300:386–404.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch B, Christensen MA, Nichols DH (1993) Fiber pathways and positional changes in efferent perikarya of 2.5 to 7 day chick embryos as revealed with DiI and dextran amines. J Neurobiol 24:1481–1499.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch B, Silos-Santiago I, Smeyne D, Fagan A, Barbacid M (1995) Reduction and loss of inner ear innervation in trkB and trkC receptor knock out mice: a whole mount DiI and SEM analysis. Aud Neurosci 1:401–417.

    Google Scholar 

  • Frohman MA, Martin GR, Cordes SP, Halamek LP (1993) Altered rhombomere-specific gene expression and hyoid bone differentiation in the mouse segmentation mutant, kreisler (kr). Development 117:925–936.

    PubMed  CAS  Google Scholar 

  • Garcia-Fernàndez J, Holland PWH (1994) Archetypal organization of the lancelet Hox gene cluster. Nature, 370:563–566.

    Article  PubMed  Google Scholar 

  • Gardner CA, Barald KF (1992) Expression patterns of engrailed-like proteins in the chick embryo Dev Dyn 193:370–388.

    Article  PubMed  CAS  Google Scholar 

  • George KM, Leonard MW, Roth MW, Lieuw KH, Kloussis D, Grosveld F, Engel JD (1994) Embryonic expression and cloning of the murine GATA-3 gene. Development 120:2673–2686.

    PubMed  CAS  Google Scholar 

  • Gibson F, Walsh H, Mburu P, Varea A, Brown KA, Autonio M, Beisel KW, Steel KP, Brown, SD A (1995) A type VII myosin is encoded by the mouse deafness gene shaker-1. Nature 374:62–64.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert SF (1991) Developmental Biology. Sunderland: (USA) Sinauer, pp. 891.

    Google Scholar 

  • Gilland E, Baker R (1993) Conservation of neuroepithelial and mesodermal segments in the embryonic vertebrate head. Acta Anat 148:110–123.

    Article  PubMed  CAS  Google Scholar 

  • Goulding MD, Lumsden A, Gruss P (1993) Signals from the notochord, floor plate regulate the region-specific expression of two Pax genes in the spinal cord. Development 117:1001–1016.

    PubMed  CAS  Google Scholar 

  • Graham A, Heyman I, Lumsden A (1993) Even-numbered rhombomeres control the apoptotic elimination of neural crest cells from odd-numbered rhombomeres in the chick hind brain. Development 119:233–245.

    PubMed  CAS  Google Scholar 

  • Graham A, Francis-West P, Brickell P, Lumsden A (1994). The signalling molecule BMP4 mediates apoptosis in the rhombencephalic neural crest. Nature 372:684–686.

    Article  PubMed  CAS  Google Scholar 

  • Grainger RM, Henry J J, Henderson RA (1988) Reinvestigation of the role of the optic vesicle in embryonic lens induction. Development 102:517–526.

    PubMed  CAS  Google Scholar 

  • Gruss P, Walther C (1992) Pax in development. Cell 69:719–722.

    Article  PubMed  CAS  Google Scholar 

  • Guthrie S (1995) The status of the neural segment. Trends Neurosci 200:74–79.

    Article  Google Scholar 

  • Gutknecht D, Fritzsch B (1990) Lithium induces multiple ear vesicles in Xenopus laevis embryos. Naturwissenschaften, 77:235–237.

    Article  PubMed  CAS  Google Scholar 

  • Haddon CM, Lewis JH (1991) Hyaluronan as a propellant for epithelial movement: the development of semicircular canals in the inner ear of Xenopus. Development 112:541–550.

    PubMed  CAS  Google Scholar 

  • Haddon C, Lewis J (1996) Early ear development in the embryo of the zebrafish, Danio rerio. J. Comp Neurol 365:113–128.

    Article  PubMed  CAS  Google Scholar 

  • Haider G, Calaerts P, Gehring WJ (1995) Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267:1788–1792.

    Article  Google Scholar 

  • Hall BK (1987) Tissue interactions in the development and evolution of the vertebrate head. In: Maderson PFA (ed) Developmental and Evolutionary Aspects of the Neural Crest. New York: John Wiley and Sons, pp. 215–259.

    Google Scholar 

  • Hall BK (1991) Cellular interactions during cartilage and bone development. J Craniofac Genet Dev Biol 11:238–250.

    PubMed  CAS  Google Scholar 

  • Hallböök F, Ibanez CF, Ebendal T, Persson H (1993). Cellular localization of brain-derived neurotrophic factor and neurotrophin-3 mRNA expression in early chick embryo. Eur J Neurosci 5:1–14.

    Article  PubMed  Google Scholar 

  • Harris WA, Hartenstein V (1991) Neuronal determination without cell division in Xenopus embryos. Neuron 6:499–515.

    Article  PubMed  CAS  Google Scholar 

  • Harrison RG (1936) Relations of symmetry in the developing ear of Amblystoma punctatum. Proc Natl Acad Sci USA 22:238–247.

    Article  PubMed  CAS  Google Scholar 

  • Harrison RG (1945) Relations of symmetry in the developing embryo. Trans Conn Acad Arts Sci 36:277–330.

    Google Scholar 

  • Hemond SG, Morest DK (1991) Ganglion formation from the otic placode and the otic crest in the chick embryo: mitosis, migration, and the basal lamina. Anat Embryol 184:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Hemond SG, Morest DK (1992). Trophic effects of otic epithelium on cochle-vestibular ganglion fiber growth in vitro. Anat Rec 232:273–284.

    Article  PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou A, Thomsen G (1995) Ventral mesoderm patterning in Xenopus embryos: the expression patterns and activities of BMP-2 and BMP-4. Dev Genet 17:78–89.

    Article  PubMed  CAS  Google Scholar 

  • Henson OW (1974) Comparative anatomy of the middle ear. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology. Vol. V/l. Auditory System. Berlin: Springer-Verlag, pp. 40–110.

    Google Scholar 

  • Hertwig P (1942) Neue Mutationen und Kopplungsgruppen bei der Hausmaus. Z Indukt Abstammungs Vererbungsl 80:220–247.

    Article  Google Scholar 

  • Hilfer SR, Randolph GJ (1993) Immunolocalization of basal lamina components during development of chick otic and optic primordia. Anat Rec 235:443–452.

    Article  PubMed  CAS  Google Scholar 

  • Hilfer SR, Esteves RA, Sanzo JF (1989) Invagination of the otic placode: normal development and experimental manipulation. J Exp Zool 251:253–264.

    Article  PubMed  CAS  Google Scholar 

  • Hill R, Von Heyningen V (1992) Mouse mutations, human disorders are paired. Trends Genet 8:119–120.

    Article  PubMed  CAS  Google Scholar 

  • Hogan B, Wright C (1992) The making of the ear. Nature 355:494–495.

    Article  PubMed  CAS  Google Scholar 

  • Holland PWH, Holland LZ, Williams NA, Holland ND (1992) An amphioxus homeobox gene: sequence conservation, spatial expression during development and insights into vertebrate evolution. Development 116:653–661.

    PubMed  CAS  Google Scholar 

  • Hoth CF, Milunsky A, Lipsky N, Sheffer R, Clarren SK, Baldwin CT (1993) Mutations in the paired domain of the human Pax3 gene cause Klein-Waardenburg syndrome (WS-III) as well as Waardenburg syndrome type I (WS-I). Am J Hum Genet 52:455–462.

    PubMed  CAS  Google Scholar 

  • Huschke E (1831) Erste Bildungsgeschichte des Auges und des Ohres. (Versammlung Naturforscher und Ärzte zu Hamburg). Isis von Oken 1831. (As cited in Rubel [1978].)

    Google Scholar 

  • Jackson IJ, Raymond S (1994) Manifestations of microphthalmia. Nature Genet 8:209–210.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson AG (1963) The determination and positioning of the nose, lens and ear. I. Interactions within the ectoderm, and between ectoderm and underlying tissue. J Exp Zool 154:273–284.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson AG (1966) Inductive processes in embryonic development. Science 152:25–34.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson AG (1988) Somitomeres: mesodermal segments of vertebrate embryos. Development 104:209–220.

    PubMed  Google Scholar 

  • Jacobson AG (1991) Experimental analysis of the shaping of the neural plate and tube. Am Zool 311:628–643.

    Google Scholar 

  • Jacobson AG, Sater AK (1988) Features of embryonic induction. Development 104:341–359.

    PubMed  CAS  Google Scholar 

  • Kaan H (1930) The relation of the developing auditory vesicle to the formation of the cartilage capsule in Amblystoma punctatum. J Exp Zool 55:263–291.

    Article  Google Scholar 

  • Katayama A, Corwin JT (1989) Cell production in the chicken cochlea. J Comp Neurol 281:129–135.

    Article  PubMed  CAS  Google Scholar 

  • Keller R, Shish J, Sater A (1992) The cellular basis of the convergence and extension of the Xenopus neural plate. Dev Dyn 193:199–217.

    Article  PubMed  CAS  Google Scholar 

  • Keller SA, Jones JM, Boyle A, Barrow LL, Killen PD, Green DG, Kapousta NV, Hitchcock PF, Swank RT, Meisler MH (1994) Kidney and retinal defects (Krd), a transgene-induced mutation with a deletion of mouse chromosome 19 that includes the Pax2 locus. Genomics 23:309–320.

    Article  PubMed  CAS  Google Scholar 

  • Kelley MW, Corwin JT (1992) Development of hair cell structure and function in fish and amphibians. In: Romand R (ed) Development of Auditory and Vestibular Systems 2. Amsterdam: Elsevier, pp. 139–159.

    Google Scholar 

  • Kessel M (1992) Respecification of vertebral identities by retinoic acid. Development 115:487–501.

    PubMed  CAS  Google Scholar 

  • Keynes R, Krumlauf R (1994) Hox genes and regionalization of the nervous system. Ann Rev Neurosci 17:109–132.

    Article  PubMed  CAS  Google Scholar 

  • Knowlton VY (1967) Correlation of the development of membraneous and bony labyrinths, acoustic ganglia, nerves, and brain centers of the chick embryo. J Morphol 121:179–208.

    Article  Google Scholar 

  • Kornhauser JM, Leonard MW, Yamamoto M, LaVail JH, Mayo KE, Engel JD (1994) Temporal, spatial changes in GATA transcription factor expression are coincident with development of the chicken optic tectum. Mol Brain Res 23:100–110.

    Article  PubMed  CAS  Google Scholar 

  • Krauss S, Johansen T, Korzh V, Fjose A (1991) Expression pattern of zebrafish pax genes suggest a role in early brain regionalization. Nature 353:267–270.

    Article  PubMed  CAS  Google Scholar 

  • Krauss S, Maden M, Holder N, Wilson S (1992) Zebrafish pax[b] is involved in the formation of the midbrain-hind brain boundary. Nature 360:87–89.

    Article  PubMed  CAS  Google Scholar 

  • Lewis ER, Leverenz EL, Bialek W (1985) The verebrate inner ear. Boca Raton, FL: CRC Press, pp. 256.

    Google Scholar 

  • Li CW, McPhee J (1979) Influences on the coiling of the cochlea. Ann Otol Rhinol Laryngol 88:280–287.

    PubMed  CAS  Google Scholar 

  • Li CW, Van De Water TR, Ruben RJ, Shea CA (1978) The fate mapping of the eleventh and twelfth day mouse otocyst: an “in vitro” study of the sites of origin of the embryonic inner ear sensory structures. J Morphol 157:249–268.

    Article  PubMed  CAS  Google Scholar 

  • Lim DJ, Rueda J (1992) Structural development of the cochlea. In: Romand R (ed) Development of Auditory and Vestibular Systems 2. Amsterdam: Elsevier, pp. 33–58.

    Google Scholar 

  • Lindberg KH, Lomax MI, Hegeman AD, Barald KF (1995) Pax-2: An early marker of otic placode induction that defines otocyst development in the chick. Mid-winter Meet Assoc Otolaryngol, pp.

    Google Scholar 

  • Lowenstein O, Thornhill RA (1970) The labyrinth of Myxine: anatomy, ultrastructure and electrophysiology. Proc R Soc Lond B Biol Sci 176:21–42.

    Article  Google Scholar 

  • Lufkin T, Dierich A, LeMeur M, Mark M, Chambon P (1991) Disruption of the Hox-1.6 homeobox gene results in defects in a region corresponding to its rostral domain of expression. Cell 66:1105–1119.

    Article  PubMed  CAS  Google Scholar 

  • Lumsden A, Krumlauf R (1996) Patterning the vertebrate axis. Science 274: 1109–1115.

    Article  PubMed  CAS  Google Scholar 

  • Mahmood R, Kiefer P, Guthrie S, Dickson C, Mason J (1995) Multiple roles for FGF-3 during cranial neural development in the chicken. Development 121:1399–1410.

    PubMed  CAS  Google Scholar 

  • Malicki J, Schier AF, Solnica-Krezel L, Stemple DL, Neuhaus SCF, Stainier DYR, Abdelilah S, Rangini Z, Zwartkruis F, Driever W (1996) Mutations affecting development of the zebrafish ear. Development 123:275–283.

    PubMed  CAS  Google Scholar 

  • Manns M, Fritzsch B (1992) Retinoic acid affects the organization of reticulospinal neurons in developing Xenopus. Neurosci Lett 139:253–256.

    Article  PubMed  CAS  Google Scholar 

  • Mansour SL, Goddard JM, Capecchi MR (1993) Mice homozygous for a targeted disruption of the proto-oncogene int-2 have developmental defects in the tail and inner ear. Development 117:13–28.

    PubMed  CAS  Google Scholar 

  • Mark M, Lufkin T, Vonesch J-L, Ruberte E, Olivo J-C, Dolle P, Gorry P, Lumsden A, Chambon P (1992) Two rhombomeres are altered in Hoxa-1 mutant mice. Development 119:319–338.

    Google Scholar 

  • Marshall H, Nonchev S, Sham MH, Muchamore I (1992) Retinoic acid alters hindbrain Hox code and induces transformation of rhombomeres 2/3 into 4/5 identity. Nature 360:737–741.

    Article  PubMed  CAS  Google Scholar 

  • McKay IJ, Muchamore I, Krumlauf R, Maden M, Lumsden A, Lewis J (1994) The kreisler mouse: a hindbrain segmentation mutant that lacks two rhombomeres. Development 120:2199–2211.

    PubMed  CAS  Google Scholar 

  • McKay IJ, Lewis J, Lumsden A (1996) The role of FGF-3 in early inner ear development: an analysis in normal and kreisler mutant mice. Dev Viol 174:370–378.

    CAS  Google Scholar 

  • Meier S (1978) Development of the embryonic chick otic placode. II. Electron microscopic analysis. Anat Rec 191:459–465.

    Article  PubMed  CAS  Google Scholar 

  • Moase CE, Trasler DG (1990) Splotch locus mouse mutants: model for neural tube defects, Waardenburg syndrome type I in humans. Teratology 42:171–182.

    Article  PubMed  CAS  Google Scholar 

  • Model PG, Jarret LS, Bonazzoli R (1981) Cellular contacts between hindbrain and prospective ear during inductive interaction in the axolotl embryo. J Embryol Exp Morphol 66:27–41.

    PubMed  CAS  Google Scholar 

  • Moens CB, Kimmel CB (1995) Hindbrain patterning in the zebrafish embryo. Soc Neurosci Abstr 21:277.

    Google Scholar 

  • Moens CB, Yan Y-L, Appel B, Force A, Kimmel CB (1996) valentino: a zebrafish gene required for normal hindbrain segmentation. Development 122:3981–3990.

    PubMed  CAS  Google Scholar 

  • Morell R, Friedman TB, Moeljopawiro S, Soewito H, Hartono, Soewilo, JH Jr. (1992) A frameshift mutation in the HuP2 paired domain of the probable human homolog of murine Pax-3 is responsible for Waardenburg syndrome type I in an Indonesian family. Hum Mol Genet 1:43–59.

    Article  Google Scholar 

  • Morriss-Kay GM (1993) Retinoic acid and craniofacial development: molecules and morphogenesis. BioEssays 15:9–15.

    Article  PubMed  CAS  Google Scholar 

  • Muthukumar S, Fekete DM (1994) Hair cells and supporting cells share a common progenitor in the developing chicken inner ear. Soc Neurosci Abstr 20:1079.

    Google Scholar 

  • Neal HV (1918) The history of the eye muscles. J Morphol 30:433–453.

    Article  Google Scholar 

  • Neary TJ, Fritzsch B (1992) Stage and concentration specific effects of retinoic acid on the differentiation of Xenopus hindbrain and ear. Soc Neurosci Abstr 18:328.

    Google Scholar 

  • Nieuwkoop PD, Faber J (1967) Normal table of Xenopus laevis (Daudin). Amsterdam: North-Holland Press, pp. 252.

    Google Scholar 

  • Noden DM (1991) Vertebrate craniofacial development: the relation between ontogenetic process and morphological outcome. Brain Beh Evol 38:190–225.

    Article  CAS  Google Scholar 

  • Noden DM, Van De Water TR (1986) The developing ear: tissue orgins and interactions. In: Ruben RJ, Van De Water TR, Rubel EW (eds) The Biology of Change in Otolaryngology. Amsterdam: Elsevier, pp. 15–46.

    Google Scholar 

  • Noden DM, Van De Water TR (1992) Genetic analyses of mammalian ear development. Trends Neurosci 15:235–237.

    Article  PubMed  CAS  Google Scholar 

  • Noll M (1993) Evolution and role of Pax genes. Curr Opin Genet Dev 3:595–605.

    Article  PubMed  CAS  Google Scholar 

  • Nornes HO, Dressier GR, Knapik EW, Deutsch U, Gruss P (1990) Spatially and temporally restricted expression of Pax2 during murine neurogenesis. Development 109:797–809.

    PubMed  CAS  Google Scholar 

  • Norris HW (1892) Studies on the development of the ear in Amblystoma. I. Development of the auditory vesicle. J Morphol 7:23–34.

    Article  Google Scholar 

  • Northcutt RG (1992) The phylogeny of octavolateralis ontogenies: a reaffirmation of Garstang’s phylogenetic hypothesis. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 21–47.

    Google Scholar 

  • Northcutt RG, Gans C (1983) The genesis of neural crest and epidermal placodes: a reinterpretation of vertebrate origin. Q Rev Biol 58:1–28.

    Article  PubMed  CAS  Google Scholar 

  • Northcutt RG, Brändle K, Fritzsch B (1995) Electroreceptors and mechanosensory lateral line organs arise from single placodes in axolotls. Dev Biol 168:358–373.

    Article  PubMed  CAS  Google Scholar 

  • Nüsslein-Vollhard C (1994) Of flies and fishes. Science 266:572–574.

    Article  Google Scholar 

  • Oh, SH, Johnson R, Wu DK (1996) Differential expression of bone morphogenetic proteins in the developing vestibular and auditory sensory organs. J Neurosci 15:6463–6475.

    Google Scholar 

  • Oppenheim RW (1991) Cell death during development of the nervous system. Ann Rev Neurosci 14:453–503.

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim RW, Qin-Wei Y, Prevette D, Yan Q (1992). Brain-derived neurotrophic factor rescues developing avian motoneurons from cell death. Nature 360: 755–757.

    Article  PubMed  CAS  Google Scholar 

  • Orr MF (1981) Anatomical development of the embryonic chick otocyst in organ culture. Anat Rec 199:188A.

    Google Scholar 

  • Orr MF (1986) Development of acoustic ganglia in tissue cultures of embryonic chick otocysts. Exp Cell Res 40:68–77.

    Article  Google Scholar 

  • Papalopulu N, Clarke JD, Bradley L, Wilkinson D, Kramlauf R, Holder N (1991) Retinoic acid causes abnormal development and segmental patterning of the anterior hind brain in Xenopus embryos. Development 113:1145–1158.

    PubMed  CAS  Google Scholar 

  • Pierpoint JW, Erickson RP (1993) Facts on Pax. Am J Hum Genet 52:451–454.

    Google Scholar 

  • Pijnappel WWM, Hendriks HFK, Folkers GE, Van Den Brink CE, Durston T (1993) The retinoid ligand 4-oxo-retinoic acid is a highly active modulator of positional specification. Nature 366:340–344.

    Article  PubMed  CAS  Google Scholar 

  • Pirvola U, Lehtonen E, Ylikoski J (1991) Spatiotemporal development of cochlear innervation and hair cell differentiation in the rat. Hear Res 52:345–355.

    Article  PubMed  CAS  Google Scholar 

  • Pirvola U, Ylikoski J, Palgi J, Lehtonen E, Arumae U, Saarma M (1992) Brain-derived neurotrophic factor and neurotrophin 3 mRNAs in the peripheral target fields of developing inner ear ganglia. Proc Natl Acad Sci USA 89:9915–9919.

    Article  PubMed  CAS  Google Scholar 

  • Pirvola U, Arumae U, Moshnyakov M, Palgi J, Saarma M, Ylikoski J (1994) Coordinated expression and function of neurotrophins and their receptors in the rat inner ear during target innervation. Hear Res 75:131–144.

    Article  PubMed  CAS  Google Scholar 

  • Pujol R (1986) Synaptic plasticity in the developing cochlea. In: Ruben RJ, Van De Water TR, Rubel EW (eds) The Biology of Change in Otolaryngology. Amsterdam: Elsevier, pp. 47–54.

    Google Scholar 

  • Ramirez F, Solursh M (1993) Expression of vertebrate homologs of the Drosophila msh gene during early craniofacial development. Am Zool 33:457–461.

    Google Scholar 

  • Represa J, Bernd P (1989) Nerve growth factor and serum differentially regulate development of embryonic otic vesicle and vestibular ganglion in vitro, Dev Biol 134:21–29.

    Article  PubMed  CAS  Google Scholar 

  • Represa J, Sanchez A, Miner C, Lewis J, Giraldez F (1990) Retinoic acid modulation of the early development of the inner ear is associated with the control of c-fos expression. Development 110:1081–1090.

    PubMed  CAS  Google Scholar 

  • Represa J, Leon Y, Miner C, Giraldez F (1991) The int-2 proto-oncogene is responsible for induction of the inner ear. Nature 353:561–563.

    Article  PubMed  CAS  Google Scholar 

  • Retzius, G. (1884) Das Gehörorgan der Wirbeltiere: II. Das Gehörorgan der Amnioten. Stockholm: Samson und Wallin, pp. 345.

    Google Scholar 

  • Richardson GP, Crossin KL, Chuong, CM, Edelman GM (1987) Expression of cell adhesion molecules during embryonic induction. III. Development of the otic placode. Dev Biol 119:217–230.

    Article  PubMed  CAS  Google Scholar 

  • Riley BB, Savage MP, Simandl BK, Olwin BB, Fallon JF (1993) Retroviral expression of FGF-2 (bFGF) affects patterning in chick limb bud. Development 118:95–104.

    PubMed  CAS  Google Scholar 

  • Roberts BL, Meredith GE (1992). The efferent innervation of the ear: variations on an enigma. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 182–210.

    Google Scholar 

  • Robinson A, Mahon KA (1994) Differential and overlapping expression domains of Dlx-2 and Dlx-3 suggest distinct roles for Distal-less homeobox genes in cranio-facial development. Mech Dev 48:199–215.

    Article  PubMed  CAS  Google Scholar 

  • Rubel EW (1978) Ontogeny of structure and function in the vertebrate auditory system. In: Jacobson M (ed) Development of Sensory Systems. Berlin: Springer-Verlag, pp. 135–237.

    Google Scholar 

  • Ruben RJ (1967) Development of the inner ear of the mouse: a radioautographic study of terminal mitosis. Acta Otolaryngol 220:1–44.

    Google Scholar 

  • Ruben RJ, Van De Water TR, Steel KP (1991) Genetics of hearing impairment. Ann NY Acad Sci 630:329.

    Article  Google Scholar 

  • Rueda J, De La Sen D, Juiz JM, Merchan JA (1987) Neuronal loss in the spiral ganglion of young rats. Acta Otolaryngol 104:417–421.

    Article  PubMed  CAS  Google Scholar 

  • Sanyanusin P, Schimmenti LA, McNoe LA, Ward TA, Pierpont ME, Sullivan MJ, Dobyns WB, Eccles MR (1995) Mutation of the Pax2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nature Genetics 9:358–364.

    Article  PubMed  CAS  Google Scholar 

  • Schellart NAM, Popper AN (1992) Functional aspects of the evolution of the auditory system of actinopterygian fish. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 295–321.

    Google Scholar 

  • Sechrist J, Scherson T, Bronner-Fraser M (1994) Rhombomere rotation reveals that multiple mechanisms contribute to the segmental pattern of hind brain neural crest migration. Development 120:1777–1790.

    PubMed  CAS  Google Scholar 

  • Sher AE (1971) The embryonic and postnatal development of the inner ear of the mouse. Acta Otolaryngol 285:1–77.

    CAS  Google Scholar 

  • Shnerson A, Devigne C, Pujol R (1982) Age-related changes in the C57BL/6J mouse cochlea. II Ultrastructural findings. Dev Brain Res 2:77–88.

    Article  Google Scholar 

  • Sive HL, Cheng PF (1991) Retinoic acid perturbs the expression of Xhox.lab genes and alters mesodermal determination in Xenopus laevis. Genes Dev 5:1321–1332.

    Article  PubMed  CAS  Google Scholar 

  • Sobkowicz HM (1992) The development of innervation in the organ of Corti. In: Romand R (ed) Development of Auditory and Vestibular Systems 2. Amsterdam: Elsevier, pp. 59–100.

    Google Scholar 

  • Sobkowicz HM, Rose JE (1983) Innervation of the organ of Corti of the fetal mouse in culture. In: Romand R (ed) Development of Auditory and Vestibular Systems. New York: Academic Press, pp. 27–45.

    Google Scholar 

  • Sobkowicz HM, Bereman B, Rose JE (1975) Organotypic development of the organ of Corti in tissue culture. J Neurocytol 4:543–572.

    Article  PubMed  CAS  Google Scholar 

  • Sobkowicz HM, Rose JE, Scott GL, Levenick CV (1986) Distribution of synaptic ribbons in the developing organ of Corti. J Neurocytol 15:693–714.

    Article  PubMed  CAS  Google Scholar 

  • Sokolowski BHA, Stahl LM, Fuchs PA (1993) Morphological and physiological development of vestibular hair cells in the organ-cultured otocyst of the chick. Dev Biol 155:134–146.

    Article  PubMed  CAS  Google Scholar 

  • Song D-L, Chalepakis G, Gruss P, Joyner AL (1996) Two Pax binding sites are required for early embryonic brain expression of engrailed-2 transgene. Development 122:627–635.

    PubMed  CAS  Google Scholar 

  • Spritz RA, Holmes SA, Ramesar R, Greenberg J, Curtis D, Beighton P (1992) Mutations of the KIT (mast/stem cell growth factor receptor) proto-oncogene account for a continuous range in phenotypes in human piebaldism. Am J Hum Genet 51:1058–1065.

    PubMed  CAS  Google Scholar 

  • Stadler HS, Solursh M (1994) Characterization of the homeobox-containing gene GH6 identified novel regions of homeobox gene expression in the developing chick embryo. Dev Biol 161:251–262.

    Article  PubMed  Google Scholar 

  • Steel KP, Barkway C (1989) Another role for melanocytes: their importance for normal stria vascularis development in the mammalian ear. Development 107:453–463.

    PubMed  CAS  Google Scholar 

  • Steel KP, Brown SKM (1994) Genes and deafness. Trends Genet 10:428–435.

    Article  PubMed  CAS  Google Scholar 

  • Steel KP, Harvey G (1992) Development of auditory function in mutant mice. In: Romand R (ed) Development of Auditory and Vestibular systems 2. Amsterdam: Elsevier, pp. 221–241.

    Google Scholar 

  • Steel KP, Kimberling W (1996) Approaches to understanding the molecular genetics of hearing and deafness. In: Van De Water, TR, Popper AN, Fay RR (eds) Clinical Aspects of Hearing. New York: Springer-Verlag, pp. 10–40.

    Chapter  Google Scholar 

  • Steel KP, Smith RJH (1992) Normal hearing in Splotch (Sp/+), the mouse homologue of Waardenburg syndrome type I. Nature Genet 2:75–79.

    Article  PubMed  CAS  Google Scholar 

  • Stone LM, Finger TE, Tarn PPL, Tan S-S (1995) Taste receptor cells arise from local epithelium, not neurogenic ectoderm. Proc Natl Acad Sci USA 92: 1916–1920.

    Article  PubMed  CAS  Google Scholar 

  • Stoykova A, Gruss P (1994) Role of Pax genes in developing and adult brain as suggested by expression patterns. J Neurosci 14:1395–1412.

    PubMed  CAS  Google Scholar 

  • Sulik KK, Cotanche DA (1994) Embryology of the ear. In: Toriello H, Choen MM, Gorlin RJ (eds). Hereditary Hearing Loss and Its Syndromes. New York: Oxford University Press, pp. 22–42.

    Google Scholar 

  • Swanson GJ, Howard M, Lewis J (1990) Epithelial autonomy in the development of the inner ear of a bird embryo. Dev Biol 137:243–257.

    Article  PubMed  CAS  Google Scholar 

  • Szepsenwol J (1933) Recherches sur les centres organisateurs de vésicules auditives chez des embryons de poulets omphlocephales obtenus experimentalement. Arch Anat Microsc Morphol Exp 29:5–94.

    Google Scholar 

  • Tabin C (1995) The initiation of the limb bud: growth factors, Hox genes, and retinoids. Cell 80:67–67.

    Article  Google Scholar 

  • Tachibana M, Wilcox E, Yokotani N, Schneider M, Fex J (1992) Selective amplification and partial sequencing of cDNAs encoding G protein A subunits from cochlear tissues. Hear Res 62:892–898.

    Google Scholar 

  • Tannahill D, Isaacs, HV, Close MJ, Peters G, Slack JMW (1992) Developmental expression of the Xenopus int-2 (FGF-3) gene: activation by mesodermal and neural induction. Development 115:695–702.

    PubMed  CAS  Google Scholar 

  • Tassabehji M, Newton VE, Read AP (1994) Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Nature Genet 8:251–255.

    Article  PubMed  CAS  Google Scholar 

  • Tello JF (1931) Le reticule des cellules ciliees du labyrinth chez la souris et son independance des terminaisons nerveuses de la huitième paire. Trav Lab Rech Biol 27:151–186.

    Google Scholar 

  • Thaller C, Hofman C, Eichele G (1993) 9-CIS-Retinoic acid, a potent inducer of digit pattern duplications in the chick wing bud. Development 118:957–965.

    PubMed  CAS  Google Scholar 

  • Tickle C, Alberts BM, Wolpert L, Lee J (1982) Local application of retinoic acid to the limb bud mimics the action of the polarizing region. Nature 296:564–565.

    Article  PubMed  CAS  Google Scholar 

  • Tilney LG, Cotanche DA, Tilney MS (1992) Actin filaments, stereocilia and hair cells of the bird cochlea. VI. How the number and arrangment of stereocilia are determined. Development 116:213–226.

    PubMed  CAS  Google Scholar 

  • Torres M, Gomez-Pardo E, Gruss P (1996) Pax2 contributes to inner ear patterning and optic nerve trajectory. Development 122:3381–3391.

    PubMed  CAS  Google Scholar 

  • Van Bergeijk WA (1967) The evolution of vertebrate hearing. In: Neff WD (ed) Contributions to Sensory Physiology. New York: Academic Press, pp. 1–49.

    Google Scholar 

  • Van De Water TR (1983) Embryogenesis of the inner ear: “in vitro studies.” In: Romand R (ed) Development of Auditory and Vestibular Systems. New York: Academic Press, pp. 337–374.

    Google Scholar 

  • Van De Water TR, Represa J (1991) Tissue interactions and growth factors that control development of the inner ear. Ann NY Acad Sci 630:116–128.

    Article  PubMed  Google Scholar 

  • Van De Water TR, Frenz DA, Giraldez F, Represa J, Lefebvre PP, Rogister B, Moonen G (1992) Growth factors and development of the stato-acoustic system. In: Romand R (ed) Development of Auditory and Vestibular Systems 2. Amsterdam: Elsevier, pp. 1–32.

    Google Scholar 

  • Von Bartheld CS, Patterson SL, Heuer JG, Wheeler EF, Bothwel M (1991) Expression of nerve growth factor (NGF) receptors in the developing inner ear of chick and rat. Development 113:455–470.

    Google Scholar 

  • Von Kupffer C (1895) Studien zur vergleichenden Entwicklungsgeschichte des Kopfes der Kranioten. Vol 3. Die Entwicklug der Kopfnerven von Ammocoetes planeri. Munich, Lehmann, pp. 80.

    Google Scholar 

  • Von Kupffer C (1900) Studien zur vergleichenden Entwicklungsgeschichte des Kopfes der Kranioten. Vol 4. Zur Kopfentwicklung von Bdellostoma. Munich, Lehmann, pp. 87.

    Google Scholar 

  • Waddington CH (1937) The determination of the auditory placode in the chick. J Exp Biol 14:232–239.

    Google Scholar 

  • Warr WB (1992) Organization of olivocochlear efferent systems in mammals. In: Fay RR, Popper AN, Webster DB (eds). The Anatomy of the Mammalian Auditory Pathways. New York: Springer-Verlag, pp. 410–448.

    Google Scholar 

  • Waterman AJ (1925) The development of the inner ear rudiment of the rabbit embryo in a foreign environment. Am J Anat 63:161–219.

    Article  Google Scholar 

  • Webb JF, Noden DM (1993) Ectodermal placodes: contributions to the development of the vertebrate head. Am Zool 33:434–447.

    Google Scholar 

  • Werner G. (1960) Das Labyrinth der Wirbeltiere. Jena: (Germany) Fischer Verlag, pp. 309.

    Google Scholar 

  • Wever, EG (1974) The evolution of vertebrate hearing. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology. Vol. V/l: Auditory System. Berlin: Springer-Verlag, pp. 423–454.

    Google Scholar 

  • Whitehead MC, Morest DK (1985) The development of innervation patterns in the avian cochlea. Neuroscience 14:255–276.

    Article  PubMed  CAS  Google Scholar 

  • Whitfield, TT, Granato M, van Eeden FJM, Schach U, Brand M, Furutani-Seiki M, Haffter P, Hammerschmidt M, Heisenberg C-P, Jiang Y-J, Kane DA, Kelsh RN, Mullins MC, Odenthal J, Nüsslein-Volhard C (1996) Mutations affecting development of the zebrafish inner ear and lateral line. Development 123:241–254.

    PubMed  CAS  Google Scholar 

  • Wilkinson DG, Bhatt S, McMahon AP (1989) Expression pattern of the FGF-related proto-oncogene int-2 suggests a multiple role in fetal development. Development 105:131–136.

    PubMed  CAS  Google Scholar 

  • Winklbauer R, Hausen P (1983) Development of the lateral line system in Xenopus laevis. I. Normal development and cell movement in the supraorbital system. J Embryol Exp Morphol 76:283–296.

    PubMed  CAS  Google Scholar 

  • Wu DK, Oh SH (1996) Sensory organ generation in the chick inner ear. J Neurosci 15:6454–6462.

    Google Scholar 

  • Yamamoto M, Ko LJ, Leonard MW, Beug H, Orkin SH, Enge JD (1990) Activity and tissue-specific expression of the transcription factor NF-E1 multigene family. Genes Dev 4:1650–1662.

    Article  PubMed  CAS  Google Scholar 

  • Yntema CL (1939) Self-differentiation of heterotopic ear ectoderm in the embryo of Amblystoma punctatum. J Exp Zool 80:1–17.

    Article  Google Scholar 

  • Yntema CL (1950) An analysis of induction of the ear from foreign ectoderm in the salamander embryo. J Exp Zool 113:211–244.

    Article  Google Scholar 

  • Yntema CL (1955) Ear and nose. In: Willier BH, Weiss PA, Hamburger V (eds) Analysis of Development. Philadelphia PA: Saunders, pp. 415–428.

    Google Scholar 

  • Yoo TJ, Cho H, Yamada Y (1991) Hearing impairment in mice with the cmd/cmd (cartilage matrix deficiency) mutant gene. Ann NY Acad Sci 630:265–267.

    Article  PubMed  CAS  Google Scholar 

  • Zwilling E (1941) The determination of the otic vessicle in Rana pipiens. J Exp Zool 86:333–342.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Fritzsch, B., Barald, K.F., Lomax, M.I. (1998). Early Embryology of the Vertebrate Ear. In: Rubel, E.W., Popper, A.N., Fay, R.R. (eds) Development of the Auditory System. Springer Handbook of Auditory Research, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2186-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2186-9_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7450-6

  • Online ISBN: 978-1-4612-2186-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics