Skip to main content

The Development of Central Auditory Processing

  • Chapter
Development of the Auditory System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 9))

Abstract

The range of acoustic features that are encoded and interpreted by the mature central auditory system has become a rapidly expanding topic of research (Bregman 1990; Handel 1990; Yost 1991). However, our understanding of the developmental processes that underlie auditory perception remains rudimentary. This chapter focuses on developmental mechanisms that contribute to central auditory processing of acoustic stimuli. The term processing will refer to the neural mechanisms by which the central auditory system represents acoustic information. In principle, this representation may take the form of a single neuron’s discharge pattern or the activity pattern of an entire central auditory structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JC, Mugnaini E (1987) Patterns of glutamate decarboxylase immunostaining in the feline cochlear nuclear complex studied with silver enhancement and electron microscopy. J Comp Neurol 262:375–401.

    PubMed  CAS  Google Scholar 

  • Alford BR, Ruben RJ (1963) Physiological, behavioral and anatomical correlates of the development of hearing in the mouse. Ann Otol Rhinol Laryngol 72:237–248.

    PubMed  CAS  Google Scholar 

  • Altschuler RA, Neises GR, Harmison GG, Wenthold RJ, Fex J (1981) Immunocytochemical localization of aspartate aminotransferase immunoreactivity in cochlear nucleus of the guinea pig. Proc Natl Acad Sci USA 78:6553–6557.

    PubMed  CAS  Google Scholar 

  • Axelsson A, Ryan A, Woolf N (1986) The early postnatal development of the cochlear vasculature in the gerbil. Acta Otolaryngol 101:75–87.

    PubMed  CAS  Google Scholar 

  • Betz WJ, Caldwell JH, Ribchester RR (1979) The size of motor units during postnatal development of rat lumbrical muscle. J Physiol 297:463–478.

    PubMed  CAS  Google Scholar 

  • Blatchley BJ, Brugge JF (1990) Sensitivity to binaural intensity and phase difference cues in kitten inferior colliculus. J Neurophysiol 64:582–597.

    PubMed  CAS  Google Scholar 

  • Blumenthal TD, Avenando A, Berg WK (1987) The startle response and auditory temporal summation in neonates. J Exp Child Psychol 44:64–79.

    PubMed  CAS  Google Scholar 

  • Born DE, Rubel EW (1988) Afferent influences on brain stem auditory nuclei of the chicken: presynaptic action potentials regulate protein synthesis in nucleus magnocellularis neurons. J Neurosci 8:901–919.

    PubMed  CAS  Google Scholar 

  • Bregman AS (1990) Auditory Scene Analysis: The Perceptual Organization of Sound. Cambridge: MIT Press.

    Google Scholar 

  • Brugge JF, O’Connor TA (1984) Postnatal functional development of the dorsal and posteroventral cohclear nuclei of the cat. J Acoust Soc Am 75:1548–1562.

    PubMed  CAS  Google Scholar 

  • Brugge JF, Javel E, Kitzes LM (1978) Signs of functional maturation of peripheral auditory system in discharge patterns of neruons in anteroventral cochlear nucleus of kitten. J Neurophysiol 41:1557–1579.

    PubMed  CAS  Google Scholar 

  • Brugge JF, Kitzes LM, Javel E (1981) Postnatal development of frequency and intensity sensitivity of neurons in the anteroventral cochlear nucleus of kittens. Hear Res 5:217–229.

    PubMed  CAS  Google Scholar 

  • Brugge JF, Orman SS, Coleman JR, Chan JCK, Phillips DP (1985) Binaural interactions in cortical area AI of cats reared with unilateral atresia of the external ear canal. Hear Res 20:275–287.

    PubMed  CAS  Google Scholar 

  • Brugge JF, Reale RA, Wilson GF (1988) Sensitivity of auditory cortical neurons of kittens to monaural and binaural high frequency sound. Hear Res 34:127–140.

    PubMed  CAS  Google Scholar 

  • Carlier E, Abonnenc M, Pujol R (1975) Maturation des responses unitaires a la stimulation tonale dans le nerf cochleaire du chaton. J Physiol Paris 70:129–138.

    PubMed  CAS  Google Scholar 

  • Carlile S (1991) Postnatal development of the spectral transfer functions and interaural level differences of the auditory periphery of the ferret. Soc Neurosci Abstr 17:232.

    Google Scholar 

  • Chiba A, Shepherd D, Murphey RK (1988) Synaptic rearrangement during postembryonic development in the cricket. Science 240:901–905.

    PubMed  CAS  Google Scholar 

  • Clarkson MG, Clifton RK, Swain IU, Perris EE (1989) Stimulus duration and repetition rate influences newborns’ head orientation towards sound. Dev Psychobiol 22:683–705.

    PubMed  CAS  Google Scholar 

  • Clements M, Kelly JB (1978) Auditory spatial responses of young guinea pigs (Cavia porcellus) during and after ear blocking. J Comp Physiol Psychol 92:34–44.

    PubMed  CAS  Google Scholar 

  • Cline HT (1991) Activity-dependent plasticity in the visual systems of frogs and fish. Trends Neurosci 14:104–111.

    PubMed  CAS  Google Scholar 

  • Clopton BM, Silverman MS (1977) Plasticity of binaural interaction. II. Critical period and changes in midline response. J Neurophysiol 40:1275–1280.

    PubMed  CAS  Google Scholar 

  • Clopton BM, Silverman MS (1978) Changes in latency and duration of neural responding following developmental auditory deprivation. Exp Brain Res 32:39–47.

    PubMed  CAS  Google Scholar 

  • Code RA, Burd GD, Rubel EW (1989) Development of GABA immunoreactivity in brainstem auditory nuclei of the chick: ontogeny of gradients in terminal staining. J Comp Neurol 284:504–518.

    PubMed  CAS  Google Scholar 

  • Coleman JR, O’Connor P (1979) Effects of monaural and binaural sound deprivation on cell development in the anteroventral cochlear nucleus of rats. Exp Neurol 64:553–566.

    PubMed  CAS  Google Scholar 

  • Conlee JW, Parks TN (1981) Age- and position-dependent effects of monaural acoustic deprivation in nucleus magnocellularis of the chicken. J Comp Neurol 202:373–384.

    PubMed  CAS  Google Scholar 

  • Conradi S, Ronnevi L-O (1975) Spontaneous elimination of synapses on cat spinal motoneurons after birth: do half of the synapses on the cell bodies disappear? Brain Res 92:505–510.

    PubMed  CAS  Google Scholar 

  • Cragg BG (1975) The development of synapses in the visual system of the cat. J Comp Neurol 160:147–166.

    PubMed  CAS  Google Scholar 

  • Deitch JS, Rubel EW (1984) Afferent influences on brain stem auditory nuclei of the chicken: time course and specificity of dendritic atrophy following deafferentation. J Comp Neurol 229:66–79.

    PubMed  CAS  Google Scholar 

  • Eggermont JJ (1991) Maturaional aspects of periodicity coding in cat primary auditory cortex. Hear Res 57:45–56.

    PubMed  CAS  Google Scholar 

  • Eggermont J J (1992) Stimulus induced and spontaneous rhythmic firing of single units in cat primary auditory cortex. Hear Res 61:1–11.

    PubMed  CAS  Google Scholar 

  • Eggermont J J (1993) Differential effects of age on click-rate and amplitude modulation-frequency coding in primary auditory cortex of the cat. Hear Res 65:175–192.

    PubMed  CAS  Google Scholar 

  • Ellingson RJ, Wilcott RC (1960) Development of evoked responses in visual and auditory cortices of kittens. J Neurophysiol 23:363–375.

    PubMed  CAS  Google Scholar 

  • Feng AS, Rogowski BA (1980) Effects of monaural and binaural occlusion on the morphology of neurons in the medial superior olivary nucleus of the rat. Brain Res 189:530–534.

    PubMed  CAS  Google Scholar 

  • Finck A, Schneck CD, Hartman AF (1972) Development of cochlear function in the neonate Mongolian gerbil (Meriones unguiculatus). J Comp Physiol Psychol 78:375–380.

    PubMed  CAS  Google Scholar 

  • Fitzakerley JL, McGee J, Walsh EJ (1991) Variability in discharge rate of cochlear nucleus neurons during development. Soc Neurosci Abstr 17:304.

    Google Scholar 

  • Fuzessery ZM, Wenstrup JJ, Pollak GD (1985) A representation of horizontal sound location in the inferior colliculus of the mustache bat (Pteronotus p. parnellii). Hear Res 20:85–89.

    PubMed  CAS  Google Scholar 

  • Godfrey DA, Carter JA, Berger SJ, Lowry OH, Matschinsky FM (1977) Quantitative histochemical mapping of candidate transmitter amino acids in cat cochlear nucleus. J Histochem Cytochem 25:417–431.

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Brown PB (1969) Responses of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32:613–636.

    PubMed  CAS  Google Scholar 

  • Gottlieb G (1980a) Development of species identification in ducklings. VI. Specific embryonic experience required to maintain species-typical perception in Peking ducklings. J Comp Physiol Psychol 94:579–587.

    PubMed  CAS  Google Scholar 

  • Gottlieb G (1980b) Development of species identification in ducklings. VII. Highly specific early experience fosters species-specific perception in wood ducklings. J Comp Physiol Psychol 94:1019–1027.

    Google Scholar 

  • Gottlieb G (1982) Development of species identification in ducklings. IX. The necessity of experiencing normal variations in embryonic auditory stimulation. Dev Psychobiol 15:507–517.

    PubMed  CAS  Google Scholar 

  • Gottlieb G (1983) Development of species identification in ducklings. X. Perceptual specificity in the wood duck embryo requires sib stimulation for maintenance. Dev Psychobiol 16:323–334.

    PubMed  CAS  Google Scholar 

  • Gray L (1991) Development of frequency dimension in chickens (Gallus gallus). J Comp Psychol 105:85–88.

    PubMed  Google Scholar 

  • Greenwood DD, Maruyama N (1965) Excitatory and inhibitory response areas of auditory neurons in the cochlear nucleus. J Neurophysiol 28:863–892.

    PubMed  CAS  Google Scholar 

  • Gummer AW, Mark RF (1994) Patterned neural activity in brain stem auditory areas of a prehearing mammal, the tammar wallaby (Macropus eugenii). Neuro-Report 5:685–688.

    CAS  Google Scholar 

  • Handel S (1990) Listening. Cambridge: MIT Press.

    Google Scholar 

  • Hashisaki GT, Rubel EW (1989) Effects of unilateral cochlea removal on antero-ventral cochlear nucleus neurons in developing gerbils. J Comp Neurol 283:465–473.

    Google Scholar 

  • Hecox K, Galambos R (1974) Brainstem auditory evoked responses in human infants and adults. Arch Otolaryngol 99:30–33.

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN, LeVay S (1977) Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond B Biol Sci 278:377–409.

    PubMed  CAS  Google Scholar 

  • Hunter C, Wenthold RJ (1993) Expression of the AMPA-selective glutamate receptor, GluRl, is limited in principal cell populations of the rat brain stem auditory nuclei. Assoc Res Otolaryngol Abstr 16:124.

    Google Scholar 

  • Hyson RL, Rubel EW (1989) Transneuronal regulation of protein synthesis in the brain-stem auditory system of the chick requires synaptic activation. J Neurosci 9:2835–2845.

    PubMed  CAS  Google Scholar 

  • Innocenti GM, Fiore L, Caminiti R (1977) Exuberent projection into the corpus callosum from the visual cortex of newborn cats. Neurosci Lett 4:237–242.

    PubMed  CAS  Google Scholar 

  • Ivy GO, Killackey HP (1982) Ontogenetic changes in the projections of neocortical neurons. J Neurosci 2:735–743.

    PubMed  CAS  Google Scholar 

  • Jackson H, Parks TN (1982) Functional synapse elimination in the developing avian cochlear nucleus with simultaneous reduction in cochlear nerve axon branching. J Neurosci 2:1736–1743.

    PubMed  CAS  Google Scholar 

  • Jackson H, Hackett JT, Rubel EW (1982) Organization and development of brain stem auditory nuclei in the chick: ontogeny of postsynaptic responses. J Comp Neurol 210:80–86.

    PubMed  CAS  Google Scholar 

  • Jenkins JJ, Walsh EJ, McGee J (1993) Developmental changes of auditory nerve responses to efferent stimulation. Soc Neurosci Abstr 19:534.

    Google Scholar 

  • Jhaveri S, Morest DK (1982a) Sequential alterations of neuronal architecture in nucleus magnocellularis of the developing chicken: a Golgi study. Neuroscience 7:837–853.

    PubMed  CAS  Google Scholar 

  • Jhaveri S, Morest DK (1982b) Sequential alterations of neuronal architecture in nucleus magnocellularis of the developing chicken: an electron miscroscope study. Neuroscience 7:855–870.

    PubMed  CAS  Google Scholar 

  • Kandler K, Friauf E (1995) Development of electrical membrane properties and discharge characteristics of superior olivary complex neurons in fetal and postnatal rats. Eur J Neurosci 7:1773–1790.

    PubMed  CAS  Google Scholar 

  • Kerr LM, Ostapoff EM, Rubel EW (1979) Influence of acoustic experience on the ontogeny of frequency generalization gradients in the chicken. J Exp Psychol 5:97–115.

    CAS  Google Scholar 

  • Kettner RE, Feng J-Z, Brugge JF (1985) Postnatal development of the phase-locked response to low frequency tones of auditory nerve fibers in the cat. J Neurosci 5:275–283.

    PubMed  CAS  Google Scholar 

  • King AJ, Carlile S (1991) Maturation of the map of auditory space in the superior colliculus of the ferret. Soc Neurosci Abstr 17:231.

    Google Scholar 

  • King AJ, Hutchings ME (1987) Spatial response properties of acoustically responsive neurones in the superior colliculus of the ferret: a map of auditory space. J Neurophysiol 57:596–624.

    PubMed  CAS  Google Scholar 

  • King AJ, Hutchings ME, Moore DR, Blakemore C (1988) Developmental plasticity in the visual and auditory representations in the mammalian superior colliculus. Nature 332:73–76.

    PubMed  CAS  Google Scholar 

  • Kitzes LM, Semple MN (1985) Single-unit responses in the inferior colliculus: effects of neonatal unilateral cochlear ablation. J Neurophysiol 53:1483–1500.

    PubMed  CAS  Google Scholar 

  • Knudsen EI (1982) Auditory and visual maps of space in the optic tectum of the owl. J Neurosci 2:1177–1194.

    PubMed  CAS  Google Scholar 

  • Knudsen EI (1983) Early auditory experience aligns the auditory map of space in the optic tectum of the barn owl. Science 222:939–942.

    PubMed  CAS  Google Scholar 

  • Knudsen EI (1985) Experience alters the spacial tuning of auditory units in the optic tectum during a sensitive period in the barn owl. J Neurosci 5:3094–3109.

    PubMed  CAS  Google Scholar 

  • Knudsen EI (1988) Early blindness results in a degraded auditory map of space in the optic tectum of the barn owl. Proc Natl Acad Sci USA 85:6211–6214.

    PubMed  CAS  Google Scholar 

  • Knudsen EI, Brainard MS (1991) Visual instruction of the neural map of auditory space in the developing optic tectum. Science 253:85–87.

    PubMed  CAS  Google Scholar 

  • Knudsen EI, Konishi M (1978) A neural map of auditory space in the owl. Science 200:793–795.

    Google Scholar 

  • Knudsen EI, Mogdans J (1992) Vision-independent adjustment of unit tuning to sound localization cues in response to monaural occlusion in developing owl optic tectum. J Neurosci 12:3485–3493.

    PubMed  CAS  Google Scholar 

  • Knudsen EI, Esterly SD, Knudsen PF (1984a) Monaural occlusion alters sound localization during a sensitive period in the barn owl. J Neurosci 4:1001–1011.

    PubMed  CAS  Google Scholar 

  • Knudsen EI, Knudsen PF, Esterly SD (1984b) A critical period for the recovery of sound localization accuracy following monaural occlusion in the barn owl. J Neurosci 4:1012–1020.

    PubMed  CAS  Google Scholar 

  • Knudsen EI, Esterly SD, du Lac S (1991) Stretched and upside-down maps of auditory space in the optic tectum of blind-reared owls; acoustic basis and behavioral correlates. J Neurosci 11:1727–1747.

    PubMed  CAS  Google Scholar 

  • Kotak VC, Sanes DH (1995) Synaptically-evoked prolonged depolarizations in the developing central auditory system. J Neurophysiol 74:1611–1620.

    PubMed  CAS  Google Scholar 

  • Kotak VC, Sanes DH (1996) Developmental influence of glycinergic transmission: regulation of NMDA receptor-mediated EPSPs. J Neurosci 16:1836–1843.

    PubMed  CAS  Google Scholar 

  • Kuhl PK, Williams KA, Lacerda F, Stevens KN, Lindblom B (1992) Linguisitic experience alters phonetic perception in infants by 6 months of age. Science 255:606–608.

    PubMed  CAS  Google Scholar 

  • Lenoir M, Shnerson A, Pujol R (1980). Cochlear receptor development in the rat with emphasis on synaptogenesis. Anat Embryol 160:253–262.

    PubMed  CAS  Google Scholar 

  • Levi-Montalcini R (1949) The development of the acoustico-vestibular centers in the chick embryo in the absence of the afferent root fibers and of descending fiber tracts. J Comp Neurol 91:209–241.

    PubMed  CAS  Google Scholar 

  • Levick WR (1973) Maintained discharge in the visual system and its role for information processing. In: Jung R (ed) Handbook of Sensory Physiology. Vol 7. New York: Springer-Verlag, pp. 575–598.

    Google Scholar 

  • Liberman MC, Brown MC (1986). Physiology and anatomy of single olivocochlear neurons in the cat. Hear Res 24:17–36.

    PubMed  CAS  Google Scholar 

  • Lichtman JW (1977) The reorganization of synaptic connexions in the rat subman-dibular ganglion during post-natal development. J Physiol (Lond) 273:155–177.

    CAS  Google Scholar 

  • Lippe W (1994) Rhythmic spontaneous activity in the developing avian auditory system. J Neurosci 14:1486–1495.

    PubMed  CAS  Google Scholar 

  • Mariani J, Changeux J-P (1981) Ontogenesis of olivocerebellar relationships. I. Studies by intracellular recordings of the multiple innervation of Pukinje cells by climbing fibers in the developing rat cerebellum. J Neurosci 1:696–702.

    PubMed  CAS  Google Scholar 

  • McMullen NT, Goldberger B, Suter CM, Glaser EM (1988) Neonatal deafening alters nonpyramidal dendrite orientation in auditory cortex: a computer micro-scopic study in the rabbit. J Comp Neurol 267:92–106.

    PubMed  CAS  Google Scholar 

  • Mikaelian D, Ruben RJ (1965) Development of hearing in the normal CBA-J mouse. Acta Otolaryngol 59:452–461.

    Google Scholar 

  • Mogdans J, Knudsen EI (1992) Adaptive adjustment of unit tuning to sound localization cues in response to monaural occlusion in developing owl optic tectum. J Neurosci 12:3473–3484.

    PubMed  CAS  Google Scholar 

  • Mogdans J, Knudsen EI (1994) Site of auditory plasticity in the brain stem (VLVp) of the owl revealed by early monaural occlusion. J Neurophysiol 72:2875–2891.

    PubMed  CAS  Google Scholar 

  • Moore DR, Irvine DRF (1981) Plasticity of binaural interaction in the cat inferior colliculus. Brain Res 208:198–202.

    PubMed  CAS  Google Scholar 

  • Moore DR, Kitzes LM (1985) Projections from the cochlear nucleus to the inferior colliculus in normal and neonatally cochlea-ablated gerbils. J Comp Neurol 240:180–195.

    PubMed  CAS  Google Scholar 

  • Moore DR, Kowalchuk NE (1988) Auditory brainstem of the ferret: effects of unilateral cochlear lesions on cochlear nucleus volume and projections to the inferior colliculus. J Comp Neurol 272:503–515.

    PubMed  CAS  Google Scholar 

  • Mourek J, Himwich WA, MysliveÄ›k J, Callison DA (1967) The role of nutrition in the development of evoked cortical responses in rat. Brain Res 6:241–251.

    PubMed  CAS  Google Scholar 

  • Nordeen KW, Killackey HP, Kitzes LM (1983) Ascending projections to the inferior colliculus following unilateral cochlear ablation in the neonatal gerbil, Meriones unguiculatus. J Comp Neurol 214:144–153.

    PubMed  CAS  Google Scholar 

  • Palmer AR, King A J (1982) The representation of auditory space in the mammalian superior colliculus. Nature 299:248–249.

    PubMed  CAS  Google Scholar 

  • Parks TN (1979) Afferent influences on the development of the brain stem auditory nuclei of the chicken: otocyst ablation. J Comp Neurol 183:665–678.

    PubMed  CAS  Google Scholar 

  • Parks TN (1981) Changes in the length and organization of nucleus laminaris dendrites after unilateral otocyst ablation in chick embryos. J Comp Neurol. 202:47–57.

    PubMed  CAS  Google Scholar 

  • Poon PW, Chen X (1992) Postnatal exposire to tones alters the tuning characteristics of inferior collicular neurons in the rat. Brain Res 585:391–394.

    PubMed  CAS  Google Scholar 

  • Poon PW, Chen XY, Hwang JC (1990) Altered sensitivities of auditory neurons in the rat midbrain following early postnatal exposure to patterned sounds. Brain Res 524:327–330.

    PubMed  CAS  Google Scholar 

  • Potashner S J (1983) Uptake and release of d-aspartate in the guinea pig cochlear nucleus. J Neurochem 41:1094–1101.

    PubMed  CAS  Google Scholar 

  • Preyer W (1908) Die Seele des Kindes, Leipzig, Germany: Grieben Verlag.

    Google Scholar 

  • Pujol R (1969) Developpement des responses a la stimulation sonore dans le colliculus inferieur chez le chat. J Physiol (Paris) 61:411–421.

    CAS  Google Scholar 

  • Pujol R (1972) Development of tone burst responses along the auditory pathway in the cat. Acta Otolaryngol 74:383–391.

    PubMed  CAS  Google Scholar 

  • Pujol R, Carlier E. Devigne C (1978) Different patterns of cochlear innervation during the development of the kitten. J Comp Neurol 177:529–536.

    PubMed  CAS  Google Scholar 

  • Rakic P (1976) Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature 261:467–471.

    PubMed  CAS  Google Scholar 

  • Rakic P, Bourgeois J-P, Eckenhoof MF, Zecevic N, Goldman-Rakic PS (1986) Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232:232–235.

    PubMed  CAS  Google Scholar 

  • RamĂłn y Cajal S (1908) TerminaciĂłn perifĂ©rica del nervio acĂşstico de las aves. Trab Lab Invest Biol Univ Madrid 6:161–176.

    Google Scholar 

  • RamĂłn y Cajal S (1919) La desorientaciĂłn inicial de las neuronas retinianas de axon corto. (Algunos hechos favorables a la concepciĂłn neurotrĂłpica.) Trab Lab Invest Biol Univ Madrid 17:65–86.

    Google Scholar 

  • Redfern PA (1970) Neuromuscular transmission in new-born rats. J Physiol (Lond) 209:701–709.

    CAS  Google Scholar 

  • Retzius G (1884) Das Gehörorgan der Wirbeltiere. II. Das Gehörorgan der Reptilien, der Vögel und Säugetiere. Stockholm: Samson and Wallin.

    Google Scholar 

  • Ricard GC, Hafter ER (1973) Detection of interaural time differences in short duration, low frequency tones. J Acoust Soc Am 53:335.

    Google Scholar 

  • Riggs GH, Walsh EJ, Schweitzer L (1995) The development of glycine-like immunoreactivity in the dorsal cochlear nucleus. Hearing Res 89:172–180.

    CAS  Google Scholar 

  • Riquimaroux H, Gaioni SJ, Suga N (1992) Inactivation of the DSCF area of the auditory cortex with muscimol disrupts frequency discrimination in the mustached bat. J Neurophysiol 68:1613–1623.

    PubMed  CAS  Google Scholar 

  • Robertson D, Gummer M (1985) Physiological and morphological characterization of efferent neurones in the guinea pig cochlea. Hear Res 20:63–77.

    PubMed  CAS  Google Scholar 

  • Romand R (1971) Maturation des potentiels cochleaires dans la periode perinatale chez le chat et chez le cobaye. J Physiol Paris 63:763–782.

    PubMed  CAS  Google Scholar 

  • Romand R (1984) Functional properties of auditory-nerve fibers during postnatal development in the kitten. Exp Brain Res 56:395–402.

    PubMed  CAS  Google Scholar 

  • Romand R, Marty R (1975) Postnatal maturation of the cochlear nuclei in the cat: a neurophysiological study. Brain Res 83:225–233.

    PubMed  CAS  Google Scholar 

  • Romand R, Granier M-R, Marty R (1973) DĂ©velopment postnatal de l’activitĂ© provoquĂ©e dans l’olive supĂ©rieure latĂ©rale chez le chat par la stimulation sonore. J Physiol Paris 66:303–315.

    PubMed  CAS  Google Scholar 

  • RĂĽbsamen R (1992) Postnatal development of central frequency maps. J Comp Physiol A Sens Neural Behav Physiol 170:129–143.

    Google Scholar 

  • Ryan AF, Woolf NK, Sharp FR (1982) Functional ontogeny in the central auditory pathway of the mongolian gerbil. Exp Brain Res 47:428–436.

    PubMed  CAS  Google Scholar 

  • Sanes DH (1984) A developmental analysis of neural activity in the mouse auditory system: its onset, the ontogeny of stimulus following, and its role during the maturation of frequency tuning curves. PhD thesis, Princeton University, Princeton, NJ.

    Google Scholar 

  • Sanes DH (1990) An in vitro analysis of sound localization mechanisms in the gerbil lateral superior olive. J Neurosci 10:3494–3506.

    PubMed  CAS  Google Scholar 

  • Sanes DH (1993) The development of synaptic function and integration in the central auditory system. J Neurosci 13:2627–2637.

    PubMed  CAS  Google Scholar 

  • Sanes DH, Constantine-Paton M (1985a) The development of stimulus following in the cochlear nerve and inferior colliculus of the mouse. Dev Brain Res 22:255–268.

    Google Scholar 

  • Sanes DH, Constantine-Paton M (1985b) The sharpening of frequency tuning curves requires patterned activity during development in the mouse, Mus musculus. J Neurosci 5:1152–1166.

    PubMed  CAS  Google Scholar 

  • Sanes DH, Chokshi P (1992) Glycinergic transmission influences the development of dendritic shape. NeuroReport 3:323–326.

    CAS  Google Scholar 

  • Sanes DH, Rubel EW (1988a) The ontogeny of inhibition and excitation in the gerbil lateral superior olive. J Neurosci 8:682–700.

    PubMed  CAS  Google Scholar 

  • Sanes DH, Rubel EW (1988b) The development of stimulus coding in the auditory system. In: Jahn E, Santos-Sacchi J (eds) Physiology of the Ear. New York: Raven Press, pp. 431–455.

    Google Scholar 

  • Sanes DH, Siverls V (1991) The development and specificity of inhibitory axonal arborizations in the lateral superior olive. J Neurobiol 22:837–854.

    PubMed  CAS  Google Scholar 

  • Sanes DH, Takacs C (1993) Activity-dependent refinement of inhibitory connections. Eur J Neurosci 5:570–574.

    PubMed  CAS  Google Scholar 

  • Sanes DH, Wooten GF (1987) Development of glycine receptor distribution in the lateral superior olive of the gerbil. J Neurosci 7:3803–3811.

    PubMed  CAS  Google Scholar 

  • Sanes DH, Markowitz S, Bernstein J, Wardlow J (1992) The influence of inhibitory afferents on the development of postsynaptic dendritic arbors. J Comp Neurol 321:637–644.

    PubMed  CAS  Google Scholar 

  • Saunders JC, Coles RB, Gates GR (1973) The development of auditory evoked responses in the cochlea and cochlear nuclei of the chick. Brain Res 63:59–74.

    PubMed  CAS  Google Scholar 

  • Saunders JC, Dolgin KG, Lowry LD (1980) The maturation of frequency selectivity in C57BL/6J mice studied with auditory evoked response tuning curves. Brain Res 187:69–79.

    PubMed  CAS  Google Scholar 

  • Schnupp JWH, King AJ, Smith AL, Thompson ID (1995) NMDA-receptor antagonists disrupt the formation of the auditory space map in the mammalian superior colliculus. J Neurosci 15:1516–1531.

    PubMed  CAS  Google Scholar 

  • Schweitzer L, Cant NB (1985b) Differentiation of the giant and fusiform cells in the dorsal cochlear nucleus of the hamster. Brain Res. 352:69–82.

    PubMed  CAS  Google Scholar 

  • Schweitzer L, Cecil T (1992) Morphology of HRP-labelled cochlear nerve axons in the dorsal cochlear nucleus of the developing hamster. Hear Res 60:34–44.

    PubMed  CAS  Google Scholar 

  • Schweitzer L, Cecil T, Walsh EJ (1993) Development of GAD-immunoreactivity in the dorsal cochlear nucleus of the hamster: light and electron microscopic observations. Hear. Res 65:240–251.

    CAS  Google Scholar 

  • Seeburg PH (1993) The molecular biology of mammalian glutamate receptor channels. Trends Neurosci 16:359–365.

    PubMed  CAS  Google Scholar 

  • Shatz CJ (1990) Impulse activity and the patterning of connections during CNS development. Neuron 5:745–756.

    PubMed  CAS  Google Scholar 

  • Sher, AE (1971) The embryonic and postnatal development of the inner ear of the mouse. Acta Otolaryngol Suppl 285:5–77.

    Google Scholar 

  • Shnerson A, Willott JF (1979) Development of inferior colliculus response properties in C57B1/6J mouse pups. Exp Brain Res 37:373–385.

    PubMed  CAS  Google Scholar 

  • Silverman MS, Clopton BM (1977) Plasticity of binaural interaction. I. Effect of early auditory deprivation. J Neurophysiol 40:1266–1274.

    PubMed  CAS  Google Scholar 

  • Simmons DD, Manson-Gieseke L, Hendrix TW, McCarter S (1990) Reconstructions of efferent fibers in the postnatal hamster cochlea. Hear Res 49:127–139.

    PubMed  CAS  Google Scholar 

  • Smith ZDJ, Gray L, Rubel EW (1983) Afferent influences on brainstem auditory nuclei of the chicken: n. laminaris dendritic length following monaural conductive hearing loss. J Comp Neurol 220:199–205.

    PubMed  CAS  Google Scholar 

  • Snead CR, Altschuler RA, Wenthold RJ (1988) A comparison of GABA- and glycine-like immunolocalization in the developing rat lower auditory brainstem. Assoc Res Otolaryngol Abstr 11:51.

    Google Scholar 

  • Snyder RL, Rebscher SJ, Cao K, Leake PA, Kelly K (1990) Chronic intracochlear electrical stimulation in the neonatally deafened cat. I: Expansion of central representation. Hear Res 50:7–34.

    PubMed  CAS  Google Scholar 

  • Sommer B, Keinanen K, Verdoorn TA, Wisden W, Burnashev N, Herb A, Kohler M, Takagi T, Sakmann B, Seeburg PH (1990) Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249:1580–1585.

    PubMed  CAS  Google Scholar 

  • Spitzer NC (1981) Development of membrane properties in vertebrates. Trends Neurosci 4:169–172.

    CAS  Google Scholar 

  • Spitzer NC (1991) A developmental handshake: neuronal control of ionic currents and their control of neuronal differentiation. J Neurobiol 22:659–673.

    PubMed  CAS  Google Scholar 

  • Sretavan DW, Shatz CJ (1986) Prenatal development of retinal ganglion cell axons: segregation into eye-specific layers within the cat’s lateral geniculate nucleus. J Neurosci 6:234–251.

    PubMed  CAS  Google Scholar 

  • Tello JF (1917) GĂ©nesis de las terminciones nerviosas motrices y sensitivas. I. En al sistema locomotor de los vertebrados superiores. Histogenesis muscular. Trab Lab Invest Biol Univ Madrid 15:101–199.

    Google Scholar 

  • Thorpe LA, Schneider BA (1987) Temporal integration in infant audition. Soc Res Child Dev Abstr 273.

    Google Scholar 

  • Tobias JV, Zerlin S (1959) Lateralization threshold as a function of stimulus duration. J Acoust Soc Am 31:1591–1594.

    Google Scholar 

  • Trune DR (1982) Influence of neonatal cochlear removal on development of mouse cochlear nucleus. II. Dendritic morphometry of its neurons. J Comp Neurol 209:425–434.

    PubMed  CAS  Google Scholar 

  • Wada T (1923) Anatomical and physiological studies on the growth of the inner ear of the albino rat. In: Memoirs of the Wistar Institute of Anatomy and Biology, Vol. 10. Philadelphia, PA: Wistar Institute, pp. 1–174.

    Google Scholar 

  • Walsh EJ, McGee J (1986) The development of function in the auditory periphery. In: Altschuler RA, Hoffman DW, Bobbin RP (eds) Neurobiology of Hearing: The Cochlea. New York: Raven Press, pp. 247–269.

    Google Scholar 

  • Walsh EJ, McGee J (1987) Postnatal development of auditory nerve and cochlear nucleus neuronal responses in kittens. Hear Res 28:97–116.

    PubMed  CAS  Google Scholar 

  • Walsh EJ, McGee J (1988) Rhythmic discharge properties of caudal cochlear nucleus neurons during postnatal development in cats. Hear Res 36:233–248.

    PubMed  CAS  Google Scholar 

  • Walsh EJ, McGee J, Wagahoff D, Scott V (1985) Myelination of auditory nerve, trapezoid, and brachium of the inferior colliculus axons in the cat. Assoc Res Otolaryngol 8:33.

    Google Scholar 

  • Walsh EJ, McGee J, Javel E (1986) Development of auditory-evoked potentials in the cat. II. Wave latencies. J Acoust Soc Am 79:725–744.

    PubMed  CAS  Google Scholar 

  • Walsh EJ, McGee J, Fitzakerley JL (1990) GABA actions within the caudal cochlear nucleus of developing kittens. J Neurophysiol 64:961–977.

    PubMed  CAS  Google Scholar 

  • Walsh EJ, McGee J, Fitzakerley JL (1993) Development of glutamate and NMDA sensitivity of neurons within the cochlear nuclear complex of kittens. J Neurophysiol 69:201–218.

    PubMed  CAS  Google Scholar 

  • Walsh EJ, McGee J, Fitzakerley JL (1995) Activity-dependent responses of developing cochlear nuclear neurons to microionophoretically-applied amino acids. Hear Res 84:194–204.

    PubMed  CAS  Google Scholar 

  • Warren EH III, Liberman MC (1989) Effects of contralateral sound on auditory-nerve responses. II. Dependence on stimulus variables. Hear Res 37:105–122.

    PubMed  Google Scholar 

  • Watson CS, Gengel RW (1969) Signal duration and signal frequency in relation to auditory sensitivity. J Acoust Soc Am 46:989–997.

    PubMed  CAS  Google Scholar 

  • Webster DB (1983) Late onset auditory deprivation does not affect brain stem auditory neuron soma size. Hear Res 12:145–147.

    PubMed  CAS  Google Scholar 

  • Webster DB, Webster M (1979) Effects of neonatal conductive hearing loss on brain stem auditory nuclei. Ann Otol Rhinol Laryngol 88:684–688.

    PubMed  CAS  Google Scholar 

  • Wenstrup JJ, Ross LS, Pollak GD (1985) A functional organization of binaural responses in the inferior colliculus. Hear Res 17:191–195.

    PubMed  CAS  Google Scholar 

  • Wenthold RJ (1978) Glutamic acid and aspartic acid in subdivisions of the cochlear nucleus after auditory nerve lesion. Brain Res 143:544–548.

    PubMed  CAS  Google Scholar 

  • Wenthold RJ (1979) Release of endogenous glutamic acid, aspartic acid and GABA from cochlear nucleus slices. Brain Res 162:338–343.

    PubMed  CAS  Google Scholar 

  • Wenthold RJ (1980) Glutaminase and aspartate aminotransferase decrease in the cochlear nucleus after lesion of the auditory nerve. Brain Res 190:293–297.

    PubMed  CAS  Google Scholar 

  • Wilmington D, Gray L, Jarsdoerfer R (1994) Binaural processing after corrected congenital unilateral conductive hearing loss. Hear Res 74:99–114.

    PubMed  CAS  Google Scholar 

  • Wisden W, Seeburg PH (1993) Mammalian ionotropic receptors. Curr Opin Neurobiol 3:291-298

    PubMed  CAS  Google Scholar 

  • Wise LZ, Irvine DRF (1985) Topographic organization of interaural intensity difference sensitivity in deep layers of cat superior colliculus: implications for auditory spatial representation. J Neurophysiol 54:185–211.

    PubMed  CAS  Google Scholar 

  • Withington-Wray DJ, Binns KE, Keating MJ (1990a) The developmental emergence of a map of auditory space in the superior colliculus of the guinea pig. Dev Brain Res 51:225–236.

    CAS  Google Scholar 

  • Withington-Wray DJ, Binns KE, Keating MJ (1990c) The maturation of the superior collicular map of auditory space in the guinea pig is disrupted by developmental visual deprivation. Eur J Neurosci 2:682–692.

    PubMed  Google Scholar 

  • Withington-Wray DJ, Binns KE, Dhanjal SG, Brickley SG, Keating MJ (1990b) The maturation of the superior collicular map of auditory space in the guinea pig is disrupted by developmental auditory deprivation. Eur J Neurosci 2:693–703.

    PubMed  Google Scholar 

  • Woolf NK, Ryan AF (1984) The development of auditory function in the cochlea of the Mongolian gerbil. Hear Res. 13:277–283.

    PubMed  CAS  Google Scholar 

  • Woolf NK, Ryan AF (1985) Ontogeny of neural discharge patterns in the ventral cochlear nucleus of the mongolian gerbil. Dev Brain Res 17:131–147.

    Google Scholar 

  • Woolf NK, Ryan AF (1988) Contributions of the middle ear to the development of function in the cochlea. Hear Res 35:131–142.

    PubMed  CAS  Google Scholar 

  • Wu SH, Oertel D (1987) Maturation of synapses and electrical properties of cells in the cochlear nuclei. Hear Res 30:99–110.

    PubMed  CAS  Google Scholar 

  • Xie Z-P, Poo M-M (1986) Initial events in the formation of neuromuscular synapse: rapid induction of acetylcholine release from embryonic neuron. Proc Natl Acad Sci USA 83:7069–7073.

    PubMed  CAS  Google Scholar 

  • Yost WA (1991) Auditory image perception and analysis: the basis for hearing. Hear Res 56:8–18.

    PubMed  CAS  Google Scholar 

  • Young S, Poo M-M (1983) Spontaneous release of transmitter from growth cone of embryonic neuron. Nature 305:634–637.

    PubMed  CAS  Google Scholar 

  • Zhou N, Parks TN (1992) Developmental changes in the effects of drugs acting at NMDA or non-NMDA receptors on synaptic transmission in the chick cochlear nucleus (nuc. magnocellularis). Dev Brain Res 67:145–152.

    CAS  Google Scholar 

  • Zhou N, Parks TN (1993) Maintenance of pharmacologically-immature glutamate receptors by aberrant synapses in the chick cochlear nucleus. Brain Res 628:149–156.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Sanes, D.H., Walsh, E.J. (1998). The Development of Central Auditory Processing. In: Rubel, E.W., Popper, A.N., Fay, R.R. (eds) Development of the Auditory System. Springer Handbook of Auditory Research, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2186-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2186-9_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7450-6

  • Online ISBN: 978-1-4612-2186-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics