Skip to main content

Postnatal Development of Auditory Nerve Projections to the Cochlear Nucleus in Monodelphis Domestica

  • Chapter
The Mammalian Cochlear Nuclei

Part of the book series: NATO ASI series ((NSSA,volume 239))

Abstract

The external world is represented in the central nervous system by a series of topographic maps or graphs (Changeux,’ 86; Udin and Fawcett,’ 88). These maps are composed of precisely ordered sets of neurons whose organization is a function of the distribution of sensory receptors in the skin, eyes, or ears. Understanding the development of these patterned relationships between the receptor organ and its central pathway is critical to the knowledge of sensory system ontogeny.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J.C., 1979, Ascending projections to the inferior colliculus, J. Comp. Neurol., 183:519–538.

    Article  PubMed  CAS  Google Scholar 

  • Aitkin, L.M., Irvine, D.R.F., Nelson, J.E., Merzenich, M.M., and Clarey, J.C., 1986, Frequency representation in the auditory midbrain and forebrain of a marsupial, the northern native cat (Dasyurus hallucatus), Brain Behav. Evol., 29:17–28.

    Article  PubMed  CAS  Google Scholar 

  • Angulo, A., Merchan, J.A., and Merchan, M.A., 1990, Morphology of the rat cochlear primary afferents during prenatal development: a Cajal’s reduced silver and rapid Golgi study, J. Anat., 168:241–255.

    PubMed  CAS  Google Scholar 

  • Book, K.J. and Morest, D.K., 1990, Migration of neuroblasts by perikaryal translocation: role of cellular elongation and axonal outgrowth in the acoustic nuclei of the chick embryo medulla, J. Comp. Neurol., 297:55–76.

    Article  PubMed  CAS  Google Scholar 

  • Brawer, J.R., Morest, D.K., and Kane, E.C., 1974, The neuronal architecture of the cochlear nucleus of the cat, J. Comp. Neurol., 155:251–300.

    Article  PubMed  CAS  Google Scholar 

  • Brugge, J.F., 1983, Development of the lower brainstem auditory nuclei, in: “Development of Auditory and Vestibular Systems,” R. Romand, (eds.), Academic Press, Inc., New York.

    Google Scholar 

  • Cant, N.B., and Morest, D.K., 1979a, Organization of the neurons in the anterior division of the anteroventral cochlear nucleus of the cat. Light-microscopic observations, Neurosci., 4:1909–1929.

    Article  CAS  Google Scholar 

  • Cant, N.B., and Morest, D.K., 1979b, The bushy cells in the anteroventral cochlear nucleus of the cat. A study with the electron microscope, Neurosci., 4:1925–1945.

    Article  CAS  Google Scholar 

  • Changeux, J., 1986, Neuronal Man, Oxford University Press, New York.

    Google Scholar 

  • Clopton, B.M., Winfield, J.A., and Flammino, F.J., 1974, Tonotopic organization: Review and Analysis, Brain Res., 76:1–20.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, E.R.A., 1948, The development of the human auditory pathway from the cochlear ganglion to the medial geniculate body, Acta Anat., 5:99–122.

    Article  PubMed  CAS  Google Scholar 

  • Disterhoft, J.F., Perkins, R.E., and Evans, S., 1980, Neuronal morphology of the rabbit cochlear nucleus, J. Comp. Neurol., 192:687–702.

    Article  PubMed  CAS  Google Scholar 

  • Fekete, D.M., Rouiller, E.M., Liberman, M.C., and Ryugo, D.K., 1982, The central projections of intracellularly labeled auditory nerve fibers in cats, J. Comp. Neurol., 229:432–450.

    Article  Google Scholar 

  • Kane, E.C., 1973, Octopus cells in the cochlear nucleus of the cat: heterotypic synapes upon homeotypic neurons, Intern. J. Neurosci., 5:251–279.

    Article  CAS  Google Scholar 

  • Kitzes, L.M., 1990, Development of auditory system physiology, in: “Development of Sensory Systems in Mammals,” J. Coleman, eds., John Wiley & Sons, New York.

    Google Scholar 

  • Leake, P.A., and Snyder, R.L., 1989, Topographic organization of the central projections of the spiral ganglion in cats, J. Comp. Neurol., 281:612–629.

    Article  PubMed  CAS  Google Scholar 

  • Lenoir, M., Shnerson, A., and Pujol, R., 1980, Cochlear receptor development in the rat with emphasis on synaptogenesis, Anat. Embryol., 160:253–262.

    Article  PubMed  CAS  Google Scholar 

  • Lim, DJ. and M. Anniko, 1985, Developmental morphology of the mouse inner ear, Acta Otolaryngol., 422(suppl.):1–69.

    CAS  Google Scholar 

  • Lorente de No, R., 1933, Anatomy of the eighth nerve: The central projections of the nerve endings of the internal ear, The Laryngoscope, 63:1–37.

    Google Scholar 

  • Manley, G.A., 1978, Cochlear frequency sharpening-A new synthesis, Acta Otolaryngol., 85:167–176.

    PubMed  CAS  Google Scholar 

  • Morest, D.K., 1973, Auditory neurons of the brain stem, Adv. Oto-Rhino-Laryng., 20:337–356.

    CAS  Google Scholar 

  • Morest, D.K., Hutson, K.A. and Kwok, S., 1990, Cytoarchitectonic atlas of the cochlear nucleus of the chinchilla, chinchilla laniger, J. Comp. Neurol., 300:230–248.

    Article  PubMed  CAS  Google Scholar 

  • Movshon, J.A. and Kiorpes, L., 1990, The role of experience in visual development, in: “Development of Sensory Systems in Mammals,” J. Coleman, (eds.), John Wiley & Sons, New York.

    Google Scholar 

  • Oliver, D.L., 1984, Neuron types in the central nucleus of the inferior colliculus that project to the medial geniculate body, Neurosci., 11:409–424.

    Article  CAS  Google Scholar 

  • Oliver, D.L., 1987, Projections to the inferior colliculus from the anteroventral cochlear nucleus in the cat: possible substrates for binaural interaction, J. Comp. Neurol., 264:24–46.

    Article  PubMed  CAS  Google Scholar 

  • Osen, K.K., 1969, The intrinsic organization of the cochlear nuclei, Acta Otolaryngol., 67:352–359.

    Article  PubMed  CAS  Google Scholar 

  • Osen, K.K., 1970, Course and terminaton of the primary afferents in the cochlear nuclei of the cat, Arch. Ital. Biol., 108:21–51.

    PubMed  CAS  Google Scholar 

  • Rhode, W.S., Oertel, D., and Smith, P.H., 1983, Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat ventral cochlear nucleus, J. Comp. Neurol., 213:448–463.

    Article  PubMed  CAS  Google Scholar 

  • Rubel, E. and Parks, T.N., 1988, Organization and development of the avian brain-stem auditory system, in: “Auditory Function: Neurobiological Bases of Hearing,” G.M. Edelman, W.E. Gall, and W.M. Cowan, (eds.), John Wiley & Sons, New York.

    Google Scholar 

  • Ryugo, D.K., and Willard, F.H., 1985, The dorsal cochlear nucleus of the mouse: a light microscopic analysis of neurons that project to the inferior colliculus, J. Comp. Neurol., 242:381–396.

    Article  PubMed  CAS  Google Scholar 

  • Ryugo, D.K., Willard, F.H., and Fekete, D.M., 1981, Differential afferent projections to the inferior colliculus from the cochlear nucleus in the albino mouse, Brain Res., 210:342–349.

    Article  PubMed  CAS  Google Scholar 

  • Saunders, N.R., Adam, E., Reader, M., and Mollgard, K., 1989, Monodelphis domestica (grey short-tailed opossum): an accessible model for studies of early neocortical development, Anat. Embryol., 180:227–236.

    Article  PubMed  CAS  Google Scholar 

  • Scheibel, M.E. and Scheibel, A.B., 1974, Neuropil organization in the superior olive of the cat, Exp. Neurol., 43:339–348.

    Article  PubMed  CAS  Google Scholar 

  • Schweitzer, L. and Cant, N., 1984, Development of the cochlear innervation of the dorsal cochlear nucleus of the hamster, J. Comp. Neurol., 225:228–243.

    Article  PubMed  CAS  Google Scholar 

  • Shatz, C.J., 1990, Impulse activity and the patterning of connections during CNS development, Neuron, 5:745–756.

    Article  PubMed  CAS  Google Scholar 

  • Shatz, C.J., 1991, Role of neural function in fetal visual system development, Dis. Neurosci., 7:95–99.

    Google Scholar 

  • Sher, A.E., 1971, The embryonic and postnatal development of the inner ear of the mouse, Acta Otolaryngol., Suppl. 285:1–77.

    CAS  Google Scholar 

  • Smith, P.H., and Rhode, W.S., 1985, Electron microscopic features of physiologically characterized, HRP-labeled fusiform cells in the cat dorsal cochlear nucleus, J. Comp. Neurol., 237:127–143.

    Article  PubMed  CAS  Google Scholar 

  • Tolbert, L.P., and Morest, D.K., 1982, The neuronal architecture of the anteroventral cochlear nucleus of the cat in the region of the cochlear nerve root: electron microscopy, Neurosci., 7:3053–3067.

    Article  CAS  Google Scholar 

  • Udin, S.B. and Fawcett, J.W., 1988, Formation of topographic maps, Ann. Rev. Neurosci., 11:289–327.

    Article  PubMed  CAS  Google Scholar 

  • Vater, M. and Feng, A.S., 1990, Functional organization of ascending and descending connections of the cochlear nucleus of horseshoe bats, J. Comp. Neurol., 292:373–395.

    Article  PubMed  CAS  Google Scholar 

  • Webster, D.B., and Trune, D.R., 1982, Cochlear nuclear complex of mice, Am. J. Anat., 163:103–130.

    Article  PubMed  CAS  Google Scholar 

  • Whitehead, M., Marangos, P., Connolly, S., and Morest, D., 1982, Synapse formation is related to the onset of neuron-specific enolase immunoreactivity in the avian auditory and vestibular systems, Dev. Neurosci., 5:298–307.

    Article  PubMed  CAS  Google Scholar 

  • Willard, F.H., 1981, Neuroanatomical studies of the auditory brain stem, Doctorial Dissertation, University of Vermont, Collaege of Medicine, Burlington, VT.

    Google Scholar 

  • Willard, F.H. and Martin, G.F., 1983, The auditory brainstem nuclei and some of their projections to the inferior colliculus in the North American opossum, Neurosci., 10:1203–1232.

    Article  CAS  Google Scholar 

  • Willard, F.H. and Martin, G.F., 1986, The development and migration of large multipolar neurons into the cochlear nucleus of the North American opossum, J. Comp. Neurol., 248:119–132.

    Article  PubMed  CAS  Google Scholar 

  • Willard, F.H. and Ryugo, D.K., 1983, Anatomy of the central auditory system, “The Auditory Psychobiology of the Mouse” J.F. Willott, (eds.), Charles C. Thomas, Springfield, IL, Springfield, IL.

    Google Scholar 

  • Willard, F.H., Ho, R.H., and Martin, G.F., 1984, The neuronal types and the distribution of 5-Hydroxytryptamine and enkephalin-like immunoreactive fibers in the dorsal cochlear nucleus of the North American opossum, Brain Res. Bull., 12:253–266.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Willard, F.H. (1993). Postnatal Development of Auditory Nerve Projections to the Cochlear Nucleus in Monodelphis Domestica . In: Merchán, M.A., Juiz, J.M., Godfrey, D.A., Mugnaini, E. (eds) The Mammalian Cochlear Nuclei. NATO ASI series, vol 239. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2932-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2932-3_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6273-9

  • Online ISBN: 978-1-4615-2932-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics