Skip to main content
Log in

Granulosa Cells-Related MicroRNAs in Ovarian Diseases: Mechanism, Facts and Perspectives

  • Reproductive Biology: Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are a class of short single-stranded, noncoding RNAs that affect the translation of mRNAs by imperfectly binding to homologous 3’UTRs. Research on miRNAs in ovarian diseases is constantly expanding because miRNAs are powerful regulators of gene expression and cellular processes and are promising biomarkers. miRNA mimics, miRNA inhibitors and molecules targeting miRNAs (antimiRs) have shown promise as novel therapeutic agents in preclinical development. Granulosa cells (GCs) are supporting cells for developing oocytes in the ovary. GCs regulate female reproductive health by producing sex hormones and LH receptors. Increasing research has reported the relevance of miRNAs in GC pathophysiology. With in-depth studies of disease mechanisms, there are an increasing number of studies on the biomolecular pathways of miRNAs in gynecology and endocrinology. In the present review, we summarize the different functions of GC-related microRNAs in various ovarian disorders, such as polycystic ovary syndrome, premature ovarian insufficiency, premature ovarian failure and ovarian granulosa cell tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Lai EC. Micro RNAs are complementary to 3’ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet. 2002;30(4):363–4.

    Article  CAS  PubMed  Google Scholar 

  2. Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol. 2007;23:175–205.

    Article  CAS  PubMed  Google Scholar 

  3. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.

    Article  CAS  PubMed  Google Scholar 

  4. Reinhart BJ, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901–6.

    Article  CAS  PubMed  Google Scholar 

  5. Reinhart BJ, et al. MicroRNAs in plants. Genes Dev. 2002;16(13):1616–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jones L. Revealing micro-RNAs in plants. Trends Plant Sci. 2002;7(11):473–5.

    Article  CAS  PubMed  Google Scholar 

  7. Libri V, et al. Regulation of microRNA biogenesis and turnover by animals and their viruses. Cell Mol Life Sci. 2013;70(19):3525–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rajewsky N. microRNA target predictions in animals. Nat Genet. 2006;38(Suppl):S8-13.

    Article  CAS  PubMed  Google Scholar 

  9. Saliminejad K, et al. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol. 2019;234(5):5451–65.

    Article  CAS  PubMed  Google Scholar 

  10. Suzuki HI. Roles of MicroRNAs in Disease Biology. JMA J. 2023;6(2):104–13.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 2015;15(6):321–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liang TS, et al. MicroRNA-506 inhibits tumor growth and metastasis in nasopharyngeal carcinoma through the inactivation of the Wnt/β-catenin signaling pathway by down-regulating LHX2. J Exp Clin Cancer Res. 2019;38(1):97.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Razavi ZS, et al. Gynecologic cancers and non-coding RNAs: Epigenetic regulators with emerging roles. Crit Rev Oncol Hematol. 2021;157:103192.

    Article  PubMed  Google Scholar 

  14. Javdani H, et al. Review article epithelial to mesenchymal transition-associated microRNAs in breast cancer. Mol Biol Rep. 2022;49(10):9963–73.

    Article  CAS  PubMed  Google Scholar 

  15. Salinas-Vera YM et al. Three-dimensional organotypic cultures reshape the microRNAs transcriptional program in breast cancer cells. Cancers (Basel). 2022;14(10):2490

  16. Moghbeli M. MicroRNAs as the critical regulators of Cisplatin resistance in ovarian cancer cells. J Ovarian Res. 2021;14(1):127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hossain MS, et al. MicroRNAs expression analysis shows key affirmation of Synaptopodin-2 as a novel prognostic and therapeutic biomarker for colorectal and cervical cancers. Heliyon. 2021;7(6):e07347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ajabnoor G, et al. Computational approaches for discovering significant microRNAs, microRNA-mRNA regulatory pathways, and therapeutic protein targets in endometrial cancer. Front Genet. 2022;13:1105173.

    Article  CAS  PubMed  Google Scholar 

  19. Lu J, et al. Expression of miR-26b in ovarian carcinoma tissues and its correlation with clinicopathology. Oncol Lett. 2019;17(5):4417–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Luo J, et al. Role of microRNA-133a in epithelial ovarian cancer pathogenesis and progression. Oncol Lett. 2014;7(4):1043–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang W, et al. Five serum microRNAs for detection and predicting of ovarian cancer. Eur J Obstet Gynecol Reprod Biol X. 2019;3:100017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Su L, Liu M. Correlation analysis on the expression levels of microRNA-23a and microRNA-23b and the incidence and prognosis of ovarian cancer. Oncol Lett. 2018;16(1):262–6.

    PubMed  PubMed Central  Google Scholar 

  23. Lv Y, et al. Roles of microRNAs in preeclampsia. J Cell Physiol. 2019;234(2):1052–61.

    Article  CAS  PubMed  Google Scholar 

  24. Hume L, et al. MicroRNAs emerging coordinate with placental mammals alter pathways in endometrial epithelia important for endometrial function. iScience. 2023;26(4):106339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bjorkman S, Taylor HS. MicroRNAs in endometriosis: biological function and emerging biomarker candidates†. Biol Reprod. 2019;100(5):1135–46.

    PubMed  PubMed Central  Google Scholar 

  26. Fernández-Pérez D, et al. MicroRNA dynamics at the onset of primordial germ and somatic cell sex differentiation during mouse embryonic gonad development. RNA. 2018;24(3):287–303.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Klinge CM. miRNAs and estrogen action. Trends Endocrinol Metab. 2012;23(5):223–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Piperigkou Z, et al. Estrogen receptor beta as epigenetic mediator of miR-10b and miR-145 in mammary cancer. Matrix Biol. 2017;64:94–111.

    Article  CAS  PubMed  Google Scholar 

  29. Zierau O, et al. Role of miR-203 in estrogen receptor-mediated signaling in the rat uterus and endometrial carcinoma. J Cell Biochem. 2018;119(7):5359–72.

    Article  CAS  PubMed  Google Scholar 

  30. Havelock JC, Rainey WE, Carr BR. Ovarian granulosa cell lines. Mol Cell Endocrinol. 2004;228(1–2):67–78.

    Article  CAS  PubMed  Google Scholar 

  31. Deng Y, et al. TLR1/TLR2 signaling blocks the suppression of monocytic myeloid-derived suppressor cell by promoting its differentiation into M1-type macrophage. Mol Immunol. 2019;112:266–73.

    Article  CAS  PubMed  Google Scholar 

  32. Findlay JK, et al. Production and actions of inhibin and activin during folliculogenesis in the rat. Mol Cell Endocrinol. 2001;180(1–2):139–44.

    Article  CAS  PubMed  Google Scholar 

  33. Hsueh AJ, et al. Hormonal regulation of the differentiation of cultured ovarian granulosa cells. Endocr Rev. 1984;5(1):76–127.

    Article  CAS  PubMed  Google Scholar 

  34. Taghizabet N, et al. In vitro growth of the ovarian follicle: taking stock of advances in research. JBRA Assist Reprod. 2022;26(3):508–21.

    PubMed  PubMed Central  Google Scholar 

  35. Tu J, et al. The role of microRNAs in ovarian granulosa cells in health and disease. Front Endocrinol (Lausanne). 2019;10:174.

    Article  PubMed  Google Scholar 

  36. Li Y, et al. MicroRNAs in ovarian function and disorders. J Ovarian Res. 2015;8:51.

    Article  PubMed  PubMed Central  Google Scholar 

  37. McGinnis LK, Luense LJ, Christenson LK. MicroRNA in ovarian biology and disease. Cold Spring Harbor Perspect Med. 2015;5(9):a022962

  38. Ilie IR, Georgescu CE. Polycystic ovary syndrome-epigenetic mechanisms and aberrant microRNA. Adv Clin Chem. 2015;71:25–45.

    Article  CAS  PubMed  Google Scholar 

  39. Guo Y, Sun J, Lai D. Role of microRNAs in premature ovarian insufficiency. Reprod Biol Endocrinol. 2017;15(1):38.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nouri N, et al. Role of miRNAs interference on ovarian functions and premature ovarian failure. Cell Commun Signal. 2022;20(1):198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang B, et al. MicroRNA mediating networks in granulosa cells associated with ovarian follicular development. Biomed Res Int. 2017;2017:4585213.

    PubMed  PubMed Central  Google Scholar 

  42. Donadeu FX, Schauer SN, Sontakke SD. Involvement of miRNAs in ovarian follicular and luteal development. J Endocrinol. 2012;215(3):323–34.

    Article  CAS  PubMed  Google Scholar 

  43. Kim YJ, et al. MicroRNA profile of granulosa cells after ovarian stimulation differs according to maturity of retrieved oocytes. Geburtshilfe Frauenheilkd. 2016;76(6):704–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Maruo T, et al. Regulation of granulosa cell proliferation and apoptosis during follicular development. Gynecol Endocrinol. 1999;13(6):410–9.

    Article  CAS  PubMed  Google Scholar 

  45. Yao G, et al. MicroRNA-224 is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4. Mol Endocrinol. 2010;24(3):540–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Andreas E, et al. MicroRNA 17–92 cluster regulates proliferation and differentiation of bovine granulosa cells by targeting PTEN and BMPR2 genes. Cell Tissue Res. 2016;366(1):219–30.

    Article  CAS  PubMed  Google Scholar 

  47. Gebremedhn S, et al. MicroRNA-183-96-182 cluster regulates bovine granulosa cell proliferation and cell cycle transition by coordinately targeting FOXO1. Biol Reprod. 2016;94(6):127.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pande HO, et al. MicroRNA-424/503 cluster members regulate bovine granulosa cell proliferation and cell cycle progression by targeting SMAD7 gene through activin signalling pathway. J Ovarian Res. 2018;11(1):34.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yan G, et al. MicroRNA-145 suppresses mouse granulosa cell proliferation by targeting activin receptor IB. FEBS Lett. 2012;586(19):3263–70.

    Article  CAS  PubMed  Google Scholar 

  50. Peng JY, et al. MicroRNA-10b suppresses goat granulosa cell proliferation by targeting brain-derived neurotropic factor. Domest Anim Endocrinol. 2016;54:60–7.

    Article  CAS  PubMed  Google Scholar 

  51. Tao H, et al. MicroRNA-27a-3p targeting Vangl1 and Vangl2 inhibits cell proliferation in mouse granulosa cells. Biochim Biophys Acta Gene Regul Mech. 2023;1866(1):194885.

    Article  CAS  PubMed  Google Scholar 

  52. Hilker RE, et al. MicroRNA-21 enhances estradiol production by inhibiting WT1 expression in granulosa cells. J Mol Endocrinol. 2021;68(1):11–22.

    Article  PubMed  Google Scholar 

  53. Carletti MZ, Fiedler SD, Christenson LK. MicroRNA 21 blocks apoptosis in mouse periovulatory granulosa cells. Biol Reprod. 2010;83(2):286–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Guo L, et al. microRNA-10b promotes the apoptosis of bovine ovarian granulosa cells by targeting plasminogen activator inhibitor-1. Theriogenology. 2021;176:206–16.

    Article  CAS  PubMed  Google Scholar 

  55. Bai Y et al. MicroRNA 195–5p targets Foxo3 promoter region to regulate its expression in granulosa cells. Int J Mol Sci. 2021;22(13):6721

  56. Huo S, et al. MicroRNA 26a targets Ezh2 to regulate apoptosis in mouse ovarian granulosa cells. Syst Biol Reprod Med. 2021;67(3):221–9.

    Article  CAS  PubMed  Google Scholar 

  57. Zhou R, et al. MicroRNA-150 promote apoptosis of ovine ovarian granulosa cells by targeting STAR gene. Theriogenology. 2019;127:66–71.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang P, et al. MicroRNA-205 affects mouse granulosa cell apoptosis and estradiol synthesis by targeting CREB1. J Cell Biochem. 2019;120(5):8466–74.

    Article  CAS  PubMed  Google Scholar 

  59. Yao Y, et al. microRNA-125b regulates apoptosis by targeting bone morphogenetic protein receptor 1B in yak granulosa cells. DNA Cell Biol. 2018;37(11):878–87.

    Article  CAS  PubMed  Google Scholar 

  60. Xu L, et al. MicroRNA-145 protects follicular granulosa cells against oxidative stress-induced apoptosis by targeting Krüppel-like factor 4. Mol Cell Endocrinol. 2017;452:138–47.

    Article  CAS  PubMed  Google Scholar 

  61. Zhou J, et al. MicroRNA let-7g regulates mouse granulosa cell autophagy by targeting insulin-like growth factor 1 receptor. Int J Biochem Cell Biol. 2016;78:130–40.

    Article  CAS  PubMed  Google Scholar 

  62. Zhou J, et al. The let-7g microRNA promotes follicular granulosa cell apoptosis by targeting transforming growth factor-β type 1 receptor. Mol Cell Endocrinol. 2015;409:103–12.

    Article  CAS  PubMed  Google Scholar 

  63. Wang L, et al. MicroRNA-764-3p regulates 17β-estradiol synthesis of mouse ovarian granulosa cells by targeting steroidogenic factor-1. In Vitro Cell Dev Biol Anim. 2016;52(3):365–73.

    Article  PubMed  Google Scholar 

  64. Grossman H, et al. A novel regulatory pathway in granulosa cells, the LH/human chorionic gonadotropin-microRNA-125a-3p-Fyn pathway, is required for ovulation. Faseb j. 2015;29(8):3206–16.

    Article  CAS  PubMed  Google Scholar 

  65. Iwamune M, et al. MicroRNA-376a regulates 78-kilodalton glucose-regulated protein expression in rat granulosa cells. PLoS ONE. 2014;9(10):e108997.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Toms D, et al. Progesterone receptor expression in granulosa cells is suppressed by microRNA-378-3p. Mol Cell Endocrinol. 2015;399:95–102.

    Article  CAS  PubMed  Google Scholar 

  67. Troppmann B, et al. MicroRNA miR-513a-3p acts as a co-regulator of luteinizing hormone/chorionic gonadotropin receptor gene expression in human granulosa cells. Mol Cell Endocrinol. 2014;390(1–2):65–72.

    Article  CAS  PubMed  Google Scholar 

  68. Yao G, et al. MicroRNA-224 is involved in the regulation of mouse cumulus expansion by targeting Ptx3. Mol Cell Endocrinol. 2014;382(1):244–53.

    Article  CAS  PubMed  Google Scholar 

  69. Liang M, et al. Transcriptional cooperation between p53 and NF-κB p65 regulates microRNA-224 transcription in mouse ovarian granulosa cells. Mol Cell Endocrinol. 2013;370(1–2):119–29.

    Article  CAS  PubMed  Google Scholar 

  70. Gebremedhn S et al. Dynamics of extracellular vesicle-coupled microRNAs in equine follicular fluid associated with follicle selection and ovulation. Mol Hum Reprod. 2023;29(4):gaad009

  71. Liu J, et al. MicroRNA-26b functions as a proapoptotic factor in porcine follicular Granulosa cells by targeting Sma-and Mad-related protein 4. Biol Reprod. 2014;91(6):146.

    Article  PubMed  Google Scholar 

  72. Zhou J, Peng X, Mei S. Autophagy in ovarian follicular development and atresia. Int J Biol Sci. 2019;15(4):726–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. D’Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43(6):582–92.

    Article  PubMed  Google Scholar 

  74. Bhardwaj JK, et al. Role of autophagy in follicular development and maintenance of primordial follicular pool in the ovary. J Cell Physiol. 2022;237(2):1157–70.

    Article  CAS  PubMed  Google Scholar 

  75. Zhang Y, et al. Autophagy-related lncRNAs in tumor progression and drug resistance: A double-edged sword. Genes Dis. 2024;11(1):367–81.

    Article  CAS  PubMed  Google Scholar 

  76. Hennebold JD. Preventing granulosa cell apoptosis through the action of a single microRNA. Biol Reprod. 2010;83(2):165–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Toms D, Pan B, Li J. endocrine regulation in the ovary by MicroRNA during the estrous cycle. Front Endocrinol (Lausanne). 2017;8:378.

    Article  PubMed  Google Scholar 

  78. Sirotkin AV, et al. Involvement of microRNA Mir15a in control of human ovarian granulosa cell proliferation, apoptosis, steroidogenesis, and response to FSH. Microrna. 2014;3(1):29–36.

    Article  CAS  PubMed  Google Scholar 

  79. Fabová Z, et al. Involvement of microRNA miR-125b in the control of porcine ovarian cell functions. Gen Comp Endocrinol. 2023;334:114215.

    Article  PubMed  Google Scholar 

  80. Fabová Z, Loncová B, Sirotkin AV. MicroRNA miR-125b can suppress ovarian granulosa cell functions: Interrelationships with FSH. Cell Biochem Funct. 2023;41(2):177–88.

    Article  PubMed  Google Scholar 

  81. Pan B, Zhan X, Li J. MicroRNA-574 impacts granulosa cell estradiol production via targeting TIMP3 and ERK1/2 signaling pathway. Front Endocrinol (Lausanne). 2022;13:852127.

    Article  PubMed  Google Scholar 

  82. Li L, et al. Taurine promotes estrogen synthesis by regulating microRNA-7a2 in mice ovarian granulosa cells. Biochem Biophys Res Commun. 2022;626:129–34.

    Article  CAS  PubMed  Google Scholar 

  83. Dai A, et al. MicroRNA-133b stimulates ovarian estradiol synthesis by targeting Foxl2. FEBS Lett. 2013;587(15):2474–82.

    Article  CAS  PubMed  Google Scholar 

  84. Fiedler SD, et al. Hormonal regulation of MicroRNA expression in periovulatory mouse mural granulosa cells. Biol Reprod. 2008;79(6):1030–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yao N, et al. Follicle-stimulating hormone regulation of microRNA expression on progesterone production in cultured rat granulosa cells. Endocrine. 2010;38(2):158–66.

    Article  CAS  PubMed  Google Scholar 

  86. Xu Y, et al. TGF-β1 resulting in differential microRNA expression in bovine granulosa cells. Gene. 2018;663:88–100.

    Article  CAS  PubMed  Google Scholar 

  87. Rotterdam EA-SPCWG. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004;19(1):41–7.

    Article  Google Scholar 

  88. Zeng X, et al. Polycystic ovarian syndrome: Correlation between hyperandrogenism, insulin resistance and obesity. Clin Chim Acta. 2020;502:214–21.

    Article  CAS  PubMed  Google Scholar 

  89. Khan SH, et al. Dehydroepiandrosterone Sulfate (DHEAS) Levels in Polycystic Ovarian Syndrome (PCOS). J Coll Physicians Surg Pak. 2021;31(3):253–7.

    Article  PubMed  Google Scholar 

  90. Garg D, Tal R. The role of AMH in the pathophysiology of polycystic ovarian syndrome. Reprod Biomed Online. 2016;33(1):15–28.

    Article  CAS  PubMed  Google Scholar 

  91. Li Y, et al. Effect of luteinizing hormone vs follicular stimulating hormone ratio on anti-Müllerian hormone secretion and folliculogenesis in patients with polycystic ovarian syndrome. Zhonghua Fu Chan Ke Za Zhi. 2010;45(8):567–70.

    CAS  PubMed  Google Scholar 

  92. Adone A, Fulmali DG. Polycystic Ovarian Syndrome in Adolescents. Cureus. 2023;15(1):e34183.

    PubMed  PubMed Central  Google Scholar 

  93. Chang RJ, Cook-Andersen H. Disordered follicle development. Mol Cell Endocrinol. 2013;373(1–2):51–60.

    Article  CAS  PubMed  Google Scholar 

  94. Motahari Rad H, et al. Characterization of altered microRNAs related to different phenotypes of polycystic ovarian syndrome (PCOS) in serum, follicular fluid, and cumulus cells. Taiwan J Obstet Gynecol. 2022;61(5):768–79.

    Article  PubMed  Google Scholar 

  95. Xu C, et al. MicroRNA-1298-5p in granulosa cells facilitates cell autophagy in polycystic ovary syndrome by suppressing glutathione-disulfide reductase. Cell Tissue Res. 2023;392(3):763–78.

    Article  CAS  PubMed  Google Scholar 

  96. Shen X, Gong A. The expression of microRNA-197-3p regulates the proliferation of ovarian granulosa cells through CUL3 in polycystic ovarian syndrome. Acta Biochim Pol. 2022;69(3):599–604.

    CAS  PubMed  Google Scholar 

  97. Guo Y, et al. Long non-coding RNA-X-inactive specific transcript inhibits cell viability, and induces apoptosis through the microRNA-30c-5p/Bcl2-like protein 11 signaling axis in human granulosa-like tumor cells. Bioengineered. 2022;13(6):14107–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Li X, Zhu L, Luo Y. Long non-coding RNA HLA-F antisense RNA 1 inhibits the maturation of microRNA-613 in polycystic ovary syndrome to promote ovarian granulosa cell proliferation and inhibit cell apoptosis. Bioengineered. 2022;13(5):12289–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Xu X, et al. MicroRNA let-7i inhibits granulosa-luteal cell proliferation and oestradiol biosynthesis by directly targeting IMP2. Reprod Biomed Online. 2022;44(5):803–16.

    Article  CAS  PubMed  Google Scholar 

  100. Wan T, et al. Vitamin D deficiency inhibits microRNA-196b-5p which regulates ovarian granulosa cell hormone synthesis, proliferation, and apoptosis by targeting RDX and LRRC17. Ann Transl Med. 2021;9(24):1775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang W et al. MicroRNA-16 represses granulosa cell proliferation in polycystic ovarian syndrome through inhibition of the PI3K/Akt pathway by downregulation of Apelin13. Hum Fertil (Camb). 2023;26(3):611-21

  102. Fu X, et al. MicroRNA-16 promotes ovarian granulosa cell proliferation and suppresses apoptosis through targeting PDCD4 in polycystic ovarian syndrome. Cell Physiol Biochem. 2018;48(2):670–82.

    Article  CAS  PubMed  Google Scholar 

  103. Wu YX, et al. microRNA-194 is increased in polycystic ovary syndrome granulosa cell and induce KGN cells apoptosis by direct targeting heparin-binding EGF-like growth factor. Reprod Biol Endocrinol. 2021;19(1):170.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Yu Y, et al. MicroRNA-21 regulate the cell apoptosis and cell proliferation of polycystic ovary syndrome (PCOS) granulosa cells through target toll like receptor TLR8. Bioengineered. 2021;12(1):5789–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Aldakheel FM, et al. MicroRNA-21 inhibits ovarian granulosa cell proliferation by targeting SNHG7 in premature ovarian failure with polycystic ovary syndrome. J Reprod Immunol. 2021;146:103328.

    Article  CAS  PubMed  Google Scholar 

  106. Yang T, et al. MicroRNA-451a plays a role in polycystic ovary syndrome by regulating ovarian granulosa cell proliferation and apoptosis. Exp Ther Med. 2021;21(6):583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wei Y, et al. MicroRNA-874-3p promotes testosterone-induced granulosa cell apoptosis by suppressing HDAC1-mediated p53 deacetylation. Exp Ther Med. 2021;21(4):359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wei Y, et al. MicroRNA-135a regulates VEGFC expression and promotes luteinized granulosa cell apoptosis in polycystic ovary syndrome. Reprod Sci. 2020;27(7):1436–42.

    Article  CAS  PubMed  Google Scholar 

  109. Jiang B, et al. Down-regulated lncRNA HOTAIR alleviates polycystic ovaries syndrome in rats by reducing expression of insulin-like growth factor 1 via microRNA-130a. J Cell Mol Med. 2020;24(1):451–64.

    Article  CAS  PubMed  Google Scholar 

  110. Han XM, Tian PY, Zhang JL. MicroRNA-486-5p inhibits ovarian granulosa cell proliferation and participates in the development of PCOS via targeting MST4. Eur Rev Med Pharmacol Sci. 2019;23(17):7217–23.

    PubMed  Google Scholar 

  111. Deng J, et al. MicroRNA-125b controls growth of ovarian granulosa cells in polycystic ovarian syndrome by modulating cyclin B1 expression. Arch Med Sci. 2022;18(3):746–52.

    CAS  PubMed  Google Scholar 

  112. Sen A, et al. Androgens regulate ovarian follicular development by increasing follicle stimulating hormone receptor and microRNA-125b expression. Proc Natl Acad Sci U S A. 2014;111(8):3008–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhong Z, et al. Inhibition of microRNA-19b promotes ovarian granulosa cell proliferation by targeting IGF-1 in polycystic ovary syndrome. Mol Med Rep. 2018;17(4):4889–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Li D, et al. MicroRNA-141-3p targets DAPK1 and inhibits apoptosis in rat ovarian granulosa cells. Cell Biochem Funct. 2017;35(4):197–201.

    Article  CAS  PubMed  Google Scholar 

  115. Cai G, et al. MicroRNA-145 negatively regulates cell proliferation through targeting irs1 in isolated ovarian granulosa cells from patients with polycystic ovary syndrome. Reprod Sci. 2017;24(6):902–10.

    Article  CAS  PubMed  Google Scholar 

  116. Jiang L, et al. MicroRNA-93 promotes ovarian granulosa cells proliferation through targeting CDKN1A in polycystic ovarian syndrome. J Clin Endocrinol Metab. 2015;100(5):E729–38.

    Article  PubMed  PubMed Central  Google Scholar 

  117. He T, et al. MicroRNA-200b and microRNA-200c are up-regulated in PCOS granulosa cell and inhibit KGN cell proliferation via targeting PTEN. Reprod Biol Endocrinol. 2019;17(1):68.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Yin M, et al. Transactivation of micrornA-320 by microRNA-383 regulates granulosa cell functions by targeting E2F1 and SF-1 proteins. J Biol Chem. 2014;289(26):18239–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chen H, et al. Defective CFTR-regulated granulosa cell proliferation in polycystic ovarian syndrome. Reproduction. 2015;149(5):393–401.

    Article  CAS  PubMed  Google Scholar 

  120. Yu M, Liu J. MicroRNA-30d-5p promotes ovarian granulosa cell apoptosis by targeting Smad2. Exp Ther Med. 2020;19(1):53–60.

    CAS  PubMed  Google Scholar 

  121. Das M, et al. Granulosa cell survival and proliferation are altered in polycystic ovary syndrome. J Clin Endocrinol Metab. 2008;93(3):881–7.

    Article  CAS  PubMed  Google Scholar 

  122. Almahbobi G, et al. Functional integrity of granulosa cells from polycystic ovaries. Clin Endocrinol (Oxf). 1996;44(5):571–80.

    Article  CAS  PubMed  Google Scholar 

  123. Torrealday S, Kodaman P, Pal L. Premature Ovarian Insufficiency - an update on recent advances in understanding and management. F1000Res. 2017;6:2069.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Huhtaniemi I, et al. Advances in the molecular pathophysiology, genetics, and treatment of primary ovarian insufficiency. Trends Endocrinol Metab. 2018;29(6):400–19.

    Article  CAS  PubMed  Google Scholar 

  125. Wesevich V, Kellen AN, Pal L. Recent advances in understanding primary ovarian insufficiency. F1000Res. 2020;9:F1000 Faculty Rev-1101

  126. Welt CK. Primary ovarian insufficiency: a more accurate term for premature ovarian failure. Clin Endocrinol (Oxf). 2008;68(4):499–509.

    Article  PubMed  Google Scholar 

  127. McGee EA, Hsueh AJ. Initial and cyclic recruitment of ovarian follicles. Endocr Rev. 2000;21(2):200–14.

    CAS  PubMed  Google Scholar 

  128. Song J, et al. Exposure to multiple pyrethroid insecticides affects ovarian follicular development via modifying microRNA expression. Sci Total Environ. 2022;828:154384.

    Article  CAS  PubMed  Google Scholar 

  129. Zhang L, et al. Translation regulatory long non-coding RNA 1 (TRERNA1) sponges microRNA-23a to suppress granulosa cell apoptosis in premature ovarian failure. Bioengineered. 2022;13(2):2173–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wang C, et al. MicroRNA-125a-5p induces mouse granulosa cell apoptosis by targeting signal transducer and activator of transcription 3. Menopause. 2016;23(1):100–7.

    Article  PubMed  Google Scholar 

  131. Chen X, et al. Downregulation of microRNA-146a inhibits ovarian granulosa cell apoptosis by simultaneously targeting interleukin-1 receptor-associated kinase and tumor necrosis factor receptor-associated factor 6. Mol Med Rep. 2015;12(4):5155–62.

    Article  CAS  PubMed  Google Scholar 

  132. Zhang C, et al. MicroRNA-181a promotes follicular granulosa cell apoptosis via sphingosine-1-phosphate receptor 1 expression downregulationdagger. Biol Reprod. 2019;101(5):975–85.

    Article  PubMed  Google Scholar 

  133. Gao T et al. MicroRNA-22–3p in human umbilical cord mesenchymal stem cell-secreted exosomes inhibits granulosa cell apoptosis by targeting KLF6 and ATF4-ATF3-CHOP pathway in POF mice. Apoptosis. 2023;28(7-8):997-1011.

  134. Gao T, et al. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles carrying microRNA-29a improves ovarian function of mice with primary ovarian insufficiency by targeting HMG-Box transcription factor/Wnt/β-catenin signaling. Dis Markers. 2022;2022:5045873.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Zhang Q, et al. MicroRNA-181a suppresses mouse granulosa cell proliferation by targeting activin receptor IIA. PLoS ONE. 2013;8(3):e59667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhang X, et al. MicroRNA-127-5p impairs function of granulosa cells via HMGB2 gene in premature ovarian insufficiency. J Cell Physiol. 2020;235(11):8826–38.

    Article  CAS  PubMed  Google Scholar 

  137. Dang Y, et al. MicroRNA-379-5p is associate with biochemical premature ovarian insufficiency through PARP1 and XRCC6. Cell Death Dis. 2018;9(2):106.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Koukourakis GV, et al. Granulosa cell tumor of the ovary: tumor review. Integr Cancer Ther. 2008;7(3):204–15.

    Article  PubMed  Google Scholar 

  139. Li X, et al. Adult-type granulosa cell tumor of the ovary. Am J Cancer Res. 2022;12(8):3495–511.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Baillard P, et al. Rare DICER1 and Absent FOXL2 mutations characterize ovarian juvenile granulosa cell tumors. Am J Surg Pathol. 2021;45(2):223–9.

    Article  PubMed  Google Scholar 

  141. Guerrieri C, Hudacko R, Anderson P. Composite FOXL2 mutation-positive adult granulosa cell tumor and serous borderline tumor of the ovary. Int J Gynecol Pathol. 2023;42(5):500-507.

  142. Pierini S et al. Ovarian granulosa cell tumor characterization identifies FOXL2 as an immunotherapeutic target. JCI Insight. 2020;5(16):e136773.

  143. Pilsworth JA, et al. Adult-type granulosa cell tumor of the ovary: a FOXL2-centric disease. J Pathol Clin Res. 2021;7(3):243–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Li J, et al. Progress in the management of ovarian granulosa cell tumor: A review. Acta Obstet Gynecol Scand. 2021;100(10):1771–8.

    Article  PubMed  Google Scholar 

  145. Rosario R, Blenkiron C, Shelling AN. Comparative study of microRNA regulation on FOXL2 between adult-type and juvenile-type granulosa cell tumours in vitro. Gynecol Oncol. 2013;129(1):209–15.

    Article  CAS  PubMed  Google Scholar 

  146. Cheng WT, et al. MicroRNA profiling of ovarian granulosa cell tumours reveals novel diagnostic and prognostic markers. Clin Epigenetics. 2017;9:72.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Tu J, et al. MicroRNA-10a promotes granulosa cells tumor development via PTEN-AKT/Wnt regulatory axis. Cell Death Dis. 2018;9(11):1076.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Brandmaier A, Hou SQ, Shen WH. Cell cycle control by PTEN. J Mol Biol. 2017;429(15):2265–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Laguë MN, et al. Synergistic effects of Pten loss and WNT/CTNNB1 signaling pathway activation in ovarian granulosa cell tumor development and progression. Carcinogenesis. 2008;29(11):2062–72.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Tu J, et al. microRNA-126 is a tumor suppressor of granulosa cell tumor mediated by its host gene EGFL7. Front Oncol. 2019;9:486.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Diez-Fraile A, et al. Age-associated differential microRNA levels in human follicular fluid reveal pathways potentially determining fertility and success of in vitro fertilization. Hum Fertil (Camb). 2014;17(2):90–8.

    Article  CAS  PubMed  Google Scholar 

  152. Al-Gubory KH, Fowler PA, Garrel C. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int J Biochem Cell Biol. 2010;42(10):1634–50.

    Article  CAS  PubMed  Google Scholar 

  153. Billig H, Furuta I, Hsueh AJ. Estrogens inhibit and androgens enhance ovarian granulosa cell apoptosis. Endocrinology. 1993;133(5):2204–12.

    Article  CAS  PubMed  Google Scholar 

  154. Kaneko T, et al. Effects of controlled ovarian hyperstimulation on oocyte quality in terms of the incidence of apoptotic granulosa cells. J Assist Reprod Genet. 2000;17(10):580–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (82305011).

Author information

Authors and Affiliations

Authors

Contributions

SX and LS designed the research and were responsible for the project conception. SX drafted the manuscript, together with LS and XL. SX revised the manuscript together with JD and GY. All of the authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Xiaohong Luo or Linjiang Song.

Ethics declarations

Ethical Approval

Not applicable.

Patient Consent for Publication

Not applicable.

Conflict of Interest

All the authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, S., Du, J., Yuan, G. et al. Granulosa Cells-Related MicroRNAs in Ovarian Diseases: Mechanism, Facts and Perspectives. Reprod. Sci. (2024). https://doi.org/10.1007/s43032-024-01523-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43032-024-01523-w

Keywords

Navigation