Skip to main content

Advertisement

Log in

MiRNAs related in signaling pathways of women’s reproductive diseases: an overview

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

One of the main health issues that can affect women's health is reproductive diseases, such as polycystic ovary syndrome (PCOS), endometriosis (EMs), uterine leiomyomas (ULs), and ovarian cancer (OC). Although these diseases are very common, we do not have a complete understanding of their underlying cellular and molecular mechanisms. It is important to mention that the majority of patients are diagnosed with these diseases at later stages because of the absence of early diagnostic techniques and dependable molecular indicators. Hence, it is crucial to discover novel and non-invasive biomarkers that have prognostic, diagnostic and therapeutic capabilities. MiRNAs, also known as microRNAs, are small non-coding RNAs that play a crucial role in regulating gene expression at the post-transcriptional level. They are short in length, typically consisting of around 22 nucleotides, and are highly conserved across species. Numerous studies have shown that miRNAs are expressed differently in various diseases and can act as either oncogenes or tumor suppressors.

Methods

The author conducted a comprehensive review of all the pertinent papers available in web of science, PubMed, Google Scholar, and Scopus databases.

Results

We achieved three goals: providing readers with better information, enhancing search results, and making peer review easier.

Conclusions

This review focuses on the investigation of miRNAs and their involvement in various reproductive disorders in women, including their molecular targets. Additionally, it explores the role of miRNAs in the development and progression of these disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

MiRNAs:

MicroRNAs

PCOS:

Polycystic ovarian syndrome

IR:

Insulin resistance

KGN:

Human granulosa tumor cells

CDKI:

Cyclin-dependent kinase inhibitor

GC:

Granulosa cell

PDCD4:

Programmed cell death protein 4

TNF-α:

Tumor necrosis factor α

ESR2:

Estrogen receptor 2

CYP11A1:

Cytochrome P450 family 11A1

OD:

Oocyte donor

VDR:

Vitamin D receptors

ET-1:

Endothelin-1

Foxa1:

Forkhead box A1

GLUT4:

Glucose transporter type 4

IRS1:

Insulin receptor substrate 1

IGF-1:

Insulin-like growth factor 1

EMs:

Endometriosis

ESCs:

Endometrial stromal cells

TLR-4:

Toll-like receptor 4

LAMC2:

Laminin-2

TFAP2C:

Transcription factor AP-2

UPK1B:

Uroplakin1B

FRAS1:

Fraser syndrome 1

COL3A:

Collagen type III A

ECSCs:

Endometriotic cyst stromal cells

SMARCD1:

Chromatin subfamily D member 1

MMP1:

Matrix metallopeptidase 1

MMP-2:

Matrix metalloproteinase-2

MMP-9:

Matrix metalloproteinase-9

SIRT1:

Sirtuin 1

KLF-12:

Kruppel-like factor 12

KLF4:

Krüppel-like factor 4

ZEB1:

Zinc finger E-box binding homeobox 1

ZEB2:

Zinc finger E-box binding homeobox 2

MALAT1:

Metastasis-associated lung adenocarcinoma transcript 1

HOXA9:

Homeobox A9

HOXA10:

Homeobox A10

NTN4:

Netrin-4

FGFR1:

Fibroblast growth factor receptor

RTK:

Receptor tyrosine kinase

PGR:

Progesterone receptor

KLF9:

Krüppel-like factor 9

ULs:

Uterine leiomyomas

AUB:

Abnormal uterine bleeding

ECM:

Extracellular matrix

HMGA2:

High motility group A2

OncomiR:

Oncogenic miRNA

PKB:

Protease kinase B

PAI-1:

Plasminogen activator inhibitor-1

TF3:

Tissue factor 3

CTGF:

Connective tissue growth factor

IL-8:

Interleukin-8

E2F1:

E2F transcription factor 1

CCND1:

Cyclin D1

IGFBP5:

Insulin-like growth factor binding proteins 5

EMT:

Epithelial-mesenchymal transition

LPCs:

Leiomyoma progenitor cells

OC:

Ovarian cancer

PARP:

Poly ADP-ribose polymerase

PLK1:

Polo-like kinase-1

RAD51AP1:

RAD51-associated protein 1 gene

EAOC:

Endometriosis-associated ovarian cancer

SOC:

Serous ovarian cancer

OCCC:

Ovarian clear cell cancer

ATG7:

Autophagy-related protein 7

IGT:

Impaired glucose tolerance

AR:

Antiandrogenic

HEECs:

Human endometrial epithelial cells

FOXP3:

Forkhead box P3

References

  1. Wang J, Chen J, Sen S (2016) MicroRNA as biomarkers and diagnostics. J Cell Physiol 231(1):25–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Friedman RC et al (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Berezikov E et al (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120(1):21–24

    Article  CAS  PubMed  Google Scholar 

  4. O’Brien J et al (2018) Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 9:402

    Article  CAS  Google Scholar 

  5. Nagaraja AK et al (2010) A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer. Mol Endocrinol 24(2):447–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Azimi T et al (2021) Pap Smear miR-92a-5p and miR-155-5p as potential diagnostic biomarkers of squamous intraepithelial cervical cancer. Asian Pac J Cancer Prev APJCP 22(4):1271

    Article  CAS  PubMed  Google Scholar 

  7. Mansouri S et al (2020) Alteration in expression of miR-32 and FBXW7 tumor suppressor in plasma samples of patients with T-cell acute lymphoblastic leukemia. Cancer Manag Res 12:1253–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tafti A et al (2023) A systems biology approach and in vitro experiment indicated Rapamycin targets key cancer and cell cycle-related genes and miRNAs in triple-negative breast cancer cells. Mol Carcinog. https://doi.org/10.1002/mc.23628

    Article  PubMed  Google Scholar 

  9. Bagheri M, Sarabi PZ, Mondanizadeh M (2022) The role of miRNAs as a big master regulator of signaling pathways involved in lymphoblastic leukemia. J Cell Physiol 237(4):2128–2139

    Article  CAS  PubMed  Google Scholar 

  10. Mouillet JF et al (2015) MicroRNAs in placental health and disease. Am J Obstet Gynecol 213(4):S163–S172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Condrat CE et al (2020) miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. Cells 9(2):276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pan Q, Chegini N (2008) MicroRNA signature and regulatory functions in the endometrium during normal and disease states. Semin Reprod Med. https://doi.org/10.1055/s-0028-1096128

    Article  PubMed  PubMed Central  Google Scholar 

  13. Vannuccini S et al (2016) Infertility and reproductive disorders: impact of hormonal and inflammatory mechanisms on pregnancy outcome. Hum Reprod Update 22(1):104–115

    Article  CAS  PubMed  Google Scholar 

  14. Gebremedhn S et al (2021) MicroRNA-mediated gene regulatory mechanisms in mammalian female reproductive health. Int J Mol Sci 22(2):938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Teng Y et al (2019) Effect of microRNA-409 on the pathogenesis of polycystic ovary syndrome. Eur Rev Med Pharmacol Sci 23(5):1874–1881

    PubMed  Google Scholar 

  16. Ohlsson Teague EMC, Print CG, Hull ML (2010) The role of microRNAs in endometriosis and associated reproductive conditions. Human Reprod Update 16(2):142–165

    Article  CAS  Google Scholar 

  17. Filigheddu N et al (2010) Differential expression of microRNAs between eutopic and ectopic endometrium in ovarian endometriosis. J Biomed Biotechnol 2010:1–29

    Article  Google Scholar 

  18. McWilliams MM, Chennathukuzhi VM (2017) Recent advances in uterine fibroid etiology. Semin Reprod Med 35:181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang L et al (2008) Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc Natl Acad Sci 105(19):7004–7009

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zaman MS et al (2012) Current status and implications of microRNAs in ovarian cancer diagnosis and therapy. J Ovarian Res 5(1):1–11

    Article  ADS  Google Scholar 

  21. Hunter MP et al (2008) Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE 3(11):e3694

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  22. Azziz R (2016) Introduction: determinants of polycystic ovary syndrome. Fertil Steril 106(1):4–5

    Article  PubMed  Google Scholar 

  23. Liu AL et al (2016) New insights into mTOR signal pathways in ovarian-related diseases: polycystic ovary syndrome and ovarian cancer. Asian Pac J Cancer Prev APJCP 17(12):5087

    PubMed  Google Scholar 

  24. Khan MJ, Ullah A, Basit S (2019) Genetic basis of polycystic ovary syndrome (PCOS): current perspectives. Appl Clin Genet 12:249

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yildiz BO (2015) Approach to the patient: contraception in women with polycystic ovary syndrome. J Clin Endocrinol Metab 100(3):794–802

    Article  CAS  PubMed  Google Scholar 

  26. Butler AE et al (2020) microRNA expression in women with and without polycystic ovarian syndrome matched for body mass index. Front Endocrinol 11:206

    Article  Google Scholar 

  27. Long W et al (2014) Characterization of serum microRNAs profile of PCOS and identification of novel non-invasive biomarkers. Cell Physiol Biochem 33(5):1304–1315

    Article  CAS  PubMed  Google Scholar 

  28. Shen H et al (2017) Pathway and network-based analysis of genome-wide association studies and RT-PCR validation in polycystic ovary syndrome. Int J Mol Med 40(5):1385–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang X et al (2019) MiR-222 promotes the progression of polycystic ovary syndrome by targeting p27 Kip1. Pathol Res Pract 215(5):918–923

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Lloyd RV et al (1999) p27kip1: a multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. Am J Pathol 154(2):313–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fu X et al (2018) MicroRNA-16 promotes ovarian granulosa cell proliferation and suppresses apoptosis through targeting PDCD4 in polycystic ovarian syndrome. Cell Physiol Biochem 48(2):670–682

    Article  CAS  PubMed  Google Scholar 

  32. Wang W et al (2023) MicroRNA-16 represses granulosa cell proliferation in polycystic ovarian syndrome through inhibition of the PI3K/Akt pathway by downregulation of Apelin13. Hum Fertil 26(3):611–621

    Article  CAS  Google Scholar 

  33. Song Y et al (2019) Altered miR-186 and miR-135a contribute to granulosa cell dysfunction by targeting ESR2: a possible role in polycystic ovary syndrome. Mol Cell Endocrinol 494:110478

    Article  CAS  PubMed  Google Scholar 

  34. Chan MC et al (2010) Molecular basis for antagonism between PDGF and the TGFβ family of signalling pathways by control of miR-24 expression. EMBO J 29(3):559–573

    Article  CAS  PubMed  Google Scholar 

  35. Sørensen AE et al (2016) MicroRNA species in follicular fluid associating with polycystic ovary syndrome and related intermediary phenotypes. J Clin Endocrinol Metab 101(4):1579–1589

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nanda D et al (2020) Evaluation of serum miRNA-24, miRNA-29a and miRNA-502-3p expression in PCOS subjects: correlation with biochemical parameters related to PCOS and insulin resistance. Indian J Clin Biochem 35(2):169–178

    Article  CAS  PubMed  Google Scholar 

  37. Kong F, Du C, Wang Y (2019) MicroRNA-9 affects isolated ovarian granulosa cells proliferation and apoptosis via targeting vitamin D receptor. Mol Cell Endocrinol 486:18–24

    Article  CAS  PubMed  Google Scholar 

  38. Rashad NM et al (2019) Association of miRNA−320 expression level and its target gene endothelin-1 with the susceptibility and clinical features of polycystic ovary syndrome. J Ovarian Res 12(1):1–10

    Article  CAS  Google Scholar 

  39. Flammer J, Konieczka K (2015) Retinal venous pressure: the role of endothelin. EPMA J 6(1):1–12

    Article  Google Scholar 

  40. Li C, Sun Y, Liu B (2003) The relationship between endothelin and tumor. Foreign Med Oncol Branch 30:360–362

    Google Scholar 

  41. Yuan W-N, Tan L (2017) MicroRNA-320 inhibits insulin resistance in patients with PCOS through regulating ERK1/2 signaling pathway. Biomed Res 28(11):4946–4949

    CAS  Google Scholar 

  42. Sang Q et al (2013) Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J Clin Endocrinol Metab 98(7):3068–3079

    Article  CAS  PubMed  Google Scholar 

  43. Cui X et al (2020) miR-132 is upregulated in polycystic ovarian syndrome and inhibits granulosa cells viability by targeting Foxa1. Mol Med Rep 22(6):5155–5162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fu X et al (2019) FOXA1 upregulation promotes enhancer and transcriptional reprogramming in endocrine-resistant breast cancer. Proc Natl Acad Sci 116(52):26823–26834

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gou L, Zou H, Li B (2019) Long noncoding RNA MALAT1 knockdown inhibits progression of anaplastic thyroid carcinoma by regulating miR-200a-3p/FOXA1. Cancer Biol Ther 20(11):1355–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen YH et al (2013) miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes 62(7):2278–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shepherd PR, Kahn BB (1999) Glucose transporters and insulin action—implications for insulin resistance and diabetes mellitus. N Engl J Med 341(4):248–257

    Article  CAS  PubMed  Google Scholar 

  48. Cai G et al (2017) MicroRNA-145 negatively regulates cell proliferation through targeting IRS1 in isolated ovarian granulosa cells from patients with polycystic ovary syndrome. Reprod Sci 24(6):902–910

    Article  CAS  PubMed  Google Scholar 

  49. Xia H, Zhao Y (2020) miR-155 is high-expressed in polycystic ovarian syndrome and promotes cell proliferation and migration through targeting PDCD4 in KGN cells. Artif Cells Nanomed Biotechnol 48(1):197–205

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  50. Tam W (2001) Identification and characterization of human BIC, a gene on chromosome 21 that encodes a noncoding RNA. Gene 274(1–2):157–167

    Article  CAS  PubMed  Google Scholar 

  51. Arancio W et al (2018) Serum miRNAs in women affected by hyperandrogenic polycystic ovary syndrome: the potential role of miR-155 as a biomarker for monitoring the estroprogestinic treatment. Gynecol Endocrinol 34(8):704–708

    Article  CAS  PubMed  Google Scholar 

  52. Yang H-S et al (2004) A novel function of the MA-3 domains in transformation and translation suppressor Pdcd4 is essential for its binding to eukaryotic translation initiation factor 4A. Mol Cell Biol 24(9):3894–3906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang H-S et al (2003) The transformation suppressor Pdcd4 is a novel eukaryotic translation initiation factor 4A binding protein that inhibits translation. Mol Cell Biol 23(1):26–37

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ding L et al (2016) Higher PDCD4 expression is associated with obesity, insulin resistance, lipid metabolism disorders, and granulosa cell apoptosis in polycystic ovary syndrome. Fertil Steril 105(5):1330-1337.e3

    Article  CAS  PubMed  Google Scholar 

  55. Geng Y et al (2019) MiRNA-99a can regulate proliferation and apoptosis of human granulosa cells via targeting IGF-1R in polycystic ovary syndrome. J Assist Reprod Genet 36(2):211–221

    Article  ADS  PubMed  Google Scholar 

  56. Moustafa S et al (2020) Accurate diagnosis of endometriosis using serum microRNAs. Am J Obstetrics Gynecol 223(4):557.e1-557.e11

    Article  CAS  Google Scholar 

  57. Zhou CF et al (2019) miR-205-5p inhibits human endometriosis progression by targeting ANGPT2 in endometrial stromal cells. Stem Cell Res Ther 10(1):1–13

    Article  Google Scholar 

  58. Matalliotakis M et al (2017) The familial risk of endometriosis among the female relatives of patients with endometriosis in Greece. J Endometriosis Pelvic Pain Disorders 9(3):184–187

    Article  Google Scholar 

  59. Nouri K et al (2010) Family incidence of endometriosis in first-, second-, and third-degree relatives: case-control study. Reprod Biol Endocrinol 8(1):1–7

    Article  Google Scholar 

  60. Kennedy S (1999) The genetics of endometriosis. Eur J Obstet Gynecol Reprod Biol 82(2):129–133

    Article  CAS  PubMed  Google Scholar 

  61. Moen MH, Magnus P (1993) The familial risk of endometriosis. Acta Obstet Gynecol Scand 72(7):560–564

    Article  CAS  PubMed  Google Scholar 

  62. Husby GK, Haugen RS, Moen MH (2003) Diagnostic delay in women with pain and endometriosis. Acta Obstet Gynecol Scand 82(7):649–653

    Article  PubMed  Google Scholar 

  63. Giudice LC, Kao LC (2004) Endometriosis. Lancet 364(9447):1789–1799

    Article  PubMed  Google Scholar 

  64. Ohlsson Teague EMC et al (2009) MicroRNA-regulated pathways associated with endometriosis. Mol Endocrinol 23(2):265–275

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zhang J et al (2019) Endometriosis pathoetiology: the role of microRNAs in the dysregulation of endometrial functions. Reprod Develop Med 3(04):247–251

    Article  Google Scholar 

  66. Cho S et al (2015) Circulating microRNAs as potential biomarkers for endometriosis. Fertil Steril 103(5):1252-1260.e1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cosar E et al (2016) Serum microRNAs as diagnostic markers of endometriosis: a comprehensive array-based analysis. Fertil Steril 106(2):402–409

    Article  CAS  PubMed  Google Scholar 

  68. Bjorkman S, Taylor HS (2019) MicroRNAs in endometriosis: biological function and emerging biomarker candidates. Biol Reprod 101(6):1167–1178

    Article  Google Scholar 

  69. Wang W-T et al (2013) Circulating microRNAs identified in a genome-wide serum microRNA expression analysis as noninvasive biomarkers for endometriosis. J Clin Endocrinol Metab 98(1):281–289

    Article  CAS  PubMed  Google Scholar 

  70. Zhang D et al (2020) MicroRNA-202 inhibits endometrial stromal cell migration and invasion by suppressing the K-Ras/Raf1/MEK/ERK signaling pathway. Int J Mol Med 46(6):2078–2088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nematian SE et al (2018) Systemic inflammation induced by microRNAs: endometriosis-derived alterations in circulating microRNA 125b–5p and Let-7b-5p regulate macrophage cytokine production. J Clin Endocrinol Metab 103(1):64–74

    Article  PubMed  Google Scholar 

  72. Sahin C et al (2018) micro RNA Let-7b: a novel treatment for endometriosis. J Cell Mol Med 22(11):5346–5353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Grechukhina O et al (2012) A polymorphism in a let-7 microRNA binding site of KRAS in women with endometriosis. EMBO Mol Med 4(3):206–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hawkins SM et al (2011) Functional microRNA involved in endometriosis. Mol Endocrinol 25(5):821–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Long M et al (2015) miR-29c is downregulated in the ectopic endometrium and exerts its effects on endometrial cell proliferation, apoptosis and invasion by targeting c-Jun. Int J Mol Med 35(4):1119–1125

    Article  CAS  PubMed  Google Scholar 

  76. Takebayashi K et al (2020) hsa-miR-100-5p, an overexpressed miRNA in human ovarian endometriotic stromal cells, promotes invasion through attenuation of SMARCD1 expression. Reprod Biol Endocrinol 18(1):1–10

    Article  Google Scholar 

  77. Yamakuchi M, Ferlito M, Lowenstein CJ (2008) miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci 105(36):13421–13426

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rezk NA, Lashin MB, Sabbah NA (2021) MiRNA 34-a regulate SIRT-1 and Foxo-1 expression in endometriosis. Non-coding RNA Res 6(1):35–41

    Article  CAS  Google Scholar 

  79. Potente M et al (2007) SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev 21(20):2644–2658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Potente M, Dimmeler S (2008) Emerging roles of SIRT1 in vascular endothelial homeostasis. Cell Cycle 7(14):2117–2122

    Article  CAS  PubMed  Google Scholar 

  81. Rekker K et al (2015) Circulating miR-200–family micro-RNAs have altered plasma levels in patients with endometriosis and vary with blood collection time. Fertil Steril 104(4):938-946.e2

    Article  CAS  PubMed  Google Scholar 

  82. Suske G, Bruford E, Philipsen S (2005) Mammalian SP/KLF transcription factors: bring in the family. Genomics 85(5):551–556

    Article  CAS  PubMed  Google Scholar 

  83. Zhang Y, Yan J, Pan X (2019) miR-141-3p affects apoptosis and migration of endometrial stromal cells by targeting KLF-12. Eur J Physiol 471(8):1055–1063

    Article  CAS  Google Scholar 

  84. Eggers JC et al (2016) microRNA miR-200b affects proliferation, invasiveness and stemness of endometriotic cells by targeting ZEB1, ZEB2 and KLF4. Reprod Biomed Online 32(4):434–445

    Article  CAS  PubMed  Google Scholar 

  85. Liang Z et al (2017) miR-200c suppresses endometriosis by targeting MALAT1 in vitro and in vivo. Stem Cell Res Ther 8(1):1–11

    Article  MathSciNet  Google Scholar 

  86. Rekker K et al (2018) Differentially-expressed miRNAs in ectopic stromal cells contribute to endometriosis development: the plausible role of miR-139-5p and miR-375. Int J Mol Sci 19(12):3789

    Article  PubMed  PubMed Central  Google Scholar 

  87. Bashti O et al (2018) miR-31 and miR-145 as potential non-invasive regulatory biomarkers in patients with endometriosis. Cell J (Yakhteh) 20(1):84

    Google Scholar 

  88. Adammek M et al (2013) MicroRNA miR-145 inhibits proliferation, invasiveness, and stem cell phenotype of an in vitro endometriosis model by targeting multiple cytoskeletal elements and pluripotency factors. Fertil Steril 99(5):1346-1355.e5

    Article  CAS  PubMed  Google Scholar 

  89. Liu S et al (2012) Expression of miR-126 and Crk in endometriosis: miR-126 may affect the progression of endometriosis by regulating Crk expression. Arch Gynecol Obstet 285(4):1065–1072

    Article  CAS  PubMed  Google Scholar 

  90. Feng R et al (2010) miR-126 functions as a tumour suppressor in human gastric cancer. Cancer Lett 298(1):50–63

    Article  CAS  PubMed  Google Scholar 

  91. Jia SZ et al (2013) Plasma miR-17-5p, miR-20a and miR-22 are down-regulated in women with endometriosis. Hum Reprod 28(2):322–330

    Article  CAS  PubMed  Google Scholar 

  92. Zhao M et al (2014) miR-20a contributes to endometriosis by regulating NTN4 expression. Mol Biol Rep 41(9):5793–5797

    Article  CAS  PubMed  Google Scholar 

  93. Liu Y et al (2004) Novel role for Netrins in regulating epithelial behavior during lung branching morphogenesis. Curr Biol 14(10):897–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hoang S et al (2009) Netrin-4 enhances angiogenesis and neurologic outcome after cerebral ischemia. J Cereb Blood Flow Metab 29(2):385–397

    Article  CAS  PubMed  Google Scholar 

  95. Yang W et al (2017) MiR-424-5p regulates proliferation and apoptosis by targeting FGFR1 in endometriosis cells. Int J Clin Exp Med 10(1):666–674

    CAS  Google Scholar 

  96. Turner N, Grose R (2010) Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10(2):116–129

    Article  CAS  PubMed  Google Scholar 

  97. Ma L et al (2019) MicroRNA-142-3p suppresses endometriosis by regulating KLF9-mediated autophagy in vitro and in vivo. RNA Biol 16(12):1733–1748

    Article  PubMed  PubMed Central  Google Scholar 

  98. Pabona JM et al (2012) Krüppel-like factor 9 and progesterone receptor coregulation of decidualizing endometrial stromal cells: implications for the pathogenesis of endometriosis. J Clin Endocrinol Metab 97(3):E376–E392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Simmen RC et al (2004) Subfertility, uterine hypoplasia, and partial progesterone resistance in mice lacking the Krüppel-like factor 9/basic transcription element-binding protein-1 (Bteb1) gene. J Biol Chem 279(28):29286–29294

    Article  CAS  PubMed  Google Scholar 

  100. Zhou M et al (2016) miR-196a overexpression activates the MEK/ERK signal and represses the progesterone receptor and decidualization in eutopic endometrium from women with endometriosis. Hum Reprod 31(11):2598–2608

    Article  CAS  PubMed  Google Scholar 

  101. Karmon AE et al (2014) MicroRNAs in the development and pathobiology of uterine leiomyomata: does evidence support future strategies for clinical intervention? Hum Reprod Update 20(5):670–687

    Article  CAS  PubMed  Google Scholar 

  102. Giuliani E, As-Sanie S, Marsh EE (2020) Epidemiology and management of uterine fibroids. Int J Gynecol Obstet 149(1):3–9

    Article  Google Scholar 

  103. Stewart EA et al (2017) Epidemiology of uterine fibroids: a systematic review. BJOG Int J Obstet Gynaecol 124(10):1501–1512

    Article  CAS  Google Scholar 

  104. Wise LA, Laughlin-Tommaso SK (2016) Epidemiology of uterine fibroids–from menarche to menopause. Clin Obstet Gynecol 59(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ciavattini A et al (2013) Uterine fibroids: pathogenesis and interactions with endometrium and endomyometrial junction. Obstet Gynecol Int 2013:1–11

    Article  Google Scholar 

  106. Wang T et al (2007) A micro-RNA signature associated with race, tumor size, and target gene activity in human uterine leiomyomas. Genes Chromosom Cancer 46(4):336–347

    Article  CAS  PubMed  Google Scholar 

  107. Marsh EE et al (2008) Differential expression of microRNA species in human uterine leiomyoma versus normal myometrium. Fertil Steril 89(6):1771–1776

    Article  CAS  PubMed  Google Scholar 

  108. Zota AR et al (2020) Phthalate exposures and MicroRNA expression in uterine fibroids: the FORGE study. Epigen Insights 13:2516865720904057

    Google Scholar 

  109. Peng Y et al (2008) Antiproliferative effects by Let-7 repression of high-mobility group A2 in uterine leiomyoma. Mol Cancer Res 6(4):663–673

    Article  CAS  PubMed  Google Scholar 

  110. Klemke M et al (2010) Loss of let-7 binding sites resulting from truncations of the 3′ untranslated region of HMGA2 mRNA in uterine leiomyomas. Cancer Genet Cytogenet 196(2):119–123

    Article  CAS  PubMed  Google Scholar 

  111. Fitzgerald JB et al (2012) Role of microRNA-21 and programmed cell death 4 in the pathogenesis of human uterine leiomyomas. Fertil Steril 98(3):726-734.e2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Noetel A et al (2012) microRNA are central players in anti-and profibrotic gene regulation during liver fibrosis. Front Physiol 3:49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cardozo ER et al (2018) MicroRNA 21a–5p overexpression impacts mediators of extracellular matrix formation in uterine leiomyoma. Reprod Biol Endocrinol 16(1):1–11

    Article  Google Scholar 

  114. Kriegel AJ et al (2012) The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury. Physiol Genomics 44(4):237–244

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  115. Marsh EE et al (2016) Decreased expression of microRNA-29 family in leiomyoma contributes to increased major fibrillar collagen production. Fertil Steril 106(3):766–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Qiang W et al (2014) Down-regulation of miR-29b is essential for pathogenesis of uterine leiomyoma. Endocrinology 155(3):663–669

    Article  PubMed  PubMed Central  Google Scholar 

  117. Xu X et al (2018) Oxidative stress-induced miRNAs modulate AKT signaling and promote cellular senescence in uterine leiomyoma. J Mol Med 96(10):1095–1106

    Article  CAS  PubMed  Google Scholar 

  118. Chuang T-D, Khorram O (2019) Regulation of cell cycle regulatory proteins by microRNAs in uterine leiomyoma. Reprod Sci 26(2):250–258

    Article  CAS  PubMed  Google Scholar 

  119. Ciebiera M et al (2020) The role of miRNA and related pathways in pathophysiology of uterine fibroids—from bench to bedside. Int J Mol Sci 21(8):3016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Mello J et al (2018) MicroRNAs involved in the HMGA2 deregulation and its co-occurrence with MED12 mutation in uterine leiomyoma. MHR Basic Sci Reprod Med 24(11):556–563

    Article  CAS  Google Scholar 

  121. Panda H et al (2012) Endometrial miR-200c is altered during transformation into cancerous states and targets the expression of ZEBs, VEGFA, FLT1, IKKβ, KLF9, and FBLN5. Reprod Sci 19(8):786–796

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kim YJ et al (2018) Variation in microRNA expression profile of uterine leiomyoma with endometrial cavity distortion and endometrial cavity non-distortion. Int J Mol Sci 19(9):2524

    Article  PubMed  PubMed Central  Google Scholar 

  123. Wu X et al (2015) Effects of miRNA-197 overexpression on proliferation, apoptosis and migration in levonorgestrel treated uterine leiomyoma cells. Biomed Pharmacother 71:1–6

    Article  PubMed  Google Scholar 

  124. Ling J et al (2015) Upregulation of miR-197 inhibits cell proliferation by directly targeting IGFBP5 in human uterine leiomyoma cells. In Vitro Cell Dev Biol Animal 51(8):835–842

    Article  CAS  Google Scholar 

  125. Chuang T-D, Khorram O (2017) Tranilast inhibits genes functionally involved in cell proliferation, fibrosis, and epigenetic regulation and epigenetically induces miR-29c expression in leiomyoma cells. Reprod Sci 24(9):1253–1263

    Article  CAS  PubMed  Google Scholar 

  126. Momenimovahed Z et al (2019) Ovarian cancer in the world: epidemiology and risk factors. Int J Women’s Health 11:287

    Article  Google Scholar 

  127. Bray F et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  PubMed  Google Scholar 

  128. Falzone L et al (2021) A multidisciplinary approach remains the best strategy to improve and strengthen the management of ovarian cancer. Int J Oncol 59(1):1–14

    Article  Google Scholar 

  129. Dockery LE et al (2017) Tolerance and toxicity of the PARP inhibitor olaparib in older women with epithelial ovarian cancer. Gynecol Oncol 147(3):509–513

    Article  CAS  PubMed  Google Scholar 

  130. Foo T, George A, Banerjee S (2021) PARP inhibitors in ovarian cancer: an overview of the practice-changing trials. Genes Chromosom Cancer 60(5):385–397

    Article  CAS  PubMed  Google Scholar 

  131. Jiang X et al (2019) Current status and future prospects of PARP inhibitor clinical trials in ovarian cancer. Cancer Manag Res 11:4371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Aletti GD et al (2017) Multidisciplinary approach in the management of advanced ovarian cancer patients: a personalized approach. Results from a specialized ovarian cancer unit. Gynecol Oncol 144(3):468–473

    Article  PubMed  Google Scholar 

  133. Bengrine L et al (2022) Multi-disciplinary care planning of ovarian cancer in older patients: general statement—a position paper from SOFOG-GINECO-FRANCOGYN-SFPO. Cancers 14(5):1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Koutsaki M, Spandidos DA, Zaravinos A (2014) Epithelial–mesenchymal transition-associated miRNAs in ovarian carcinoma, with highlight on the miR-200 family: Prognostic value and prospective role in ovarian cancer therapeutics. Cancer Lett 351(2):173–181

    Article  CAS  PubMed  Google Scholar 

  135. Korpal M et al (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283(22):14910–14914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Leskelä S et al (2011) The miR-200 family controls β-tubulin III expression and is associated with paclitaxel-based treatment response and progression-free survival in ovarian cancer patients. Endocr Relat Cancer 18(1):85–95

    Article  PubMed  Google Scholar 

  137. Person F et al (2017) Prevalence of βIII-tubulin (TUBB3) expression in human normal tissues and cancers. Tumor Biol 39(10):1010428317712166

    Article  Google Scholar 

  138. Ferrandina G et al (2006) Class III β-tubulin overexpression is a marker of poor clinical outcome in advanced ovarian cancer patients. Clin Cancer Res 12(9):2774–2779

    Article  CAS  PubMed  Google Scholar 

  139. Yang N et al (2008) MicroRNA microarray identifies Let-7i as a novel biomarker and therapeutic target in human epithelial ovarian cancer. Can Res 68(24):10307–10314

    Article  CAS  Google Scholar 

  140. Johnson SM et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120(5):635–647

    Article  CAS  PubMed  Google Scholar 

  141. Büssing I, Slack FJ, Großhans H (2008) Let-7 microRNAs in development, stem cells and cancer. Trends Mol Med 14(9):400–409

    Article  PubMed  Google Scholar 

  142. Johnson CD et al (2007) The let-7 microRNA represses cell proliferation pathways in human cells. Can Res 67(16):7713–7722

    Article  CAS  Google Scholar 

  143. Schultz J et al (2008) MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res 18(5):549–557

    Article  CAS  PubMed  Google Scholar 

  144. Corney DC et al (2010) Frequent downregulation of miR-34 family in human ovarian cancers. Clin Cancer Res 16(4):1119–1128

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  145. Suzuki HI et al (2009) Modulation of microRNA processing by p53. Nature 460(7254):529–533

    Article  ADS  CAS  PubMed  Google Scholar 

  146. Peng D-X et al (2012) Prognostic implications of microRNA-100 and its functional roles in human epithelial ovarian cancer. Oncol Rep 27(4):1238–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Mabuchi S et al (2009) mTOR is a promising therapeutic target both in cisplatin-sensitive and cisplatin-resistant clear cell carcinoma of the ovary. Clin Cancer Res 15(17):5404–5413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Guo LM et al (2009) MicroRNA-9 inhibits ovarian cancer cell growth through regulation of NF-κB1. FEBS J 276(19):5537–5546

    Article  CAS  PubMed  Google Scholar 

  149. Miles GD et al (2012) Identifying microRNA/mRNA dysregulations in ovarian cancer. BMC Res Notes 5(1):1–10

    Article  ADS  Google Scholar 

  150. Wilson CA et al (2005) HER-2 overexpression differentially alters transforming growth factor-β responses in luminal versus mesenchymal human breast cancer cells. Breast Cancer Res 7(6):1–22

    Article  ADS  Google Scholar 

  151. Yang H et al (2008) MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Can Res 68(2):425–433

    Article  CAS  Google Scholar 

  152. Paul A, Sadek ST, Mahesan AM (2019) The role of microRNAs in human embryo implantation: a review. J Assist Reprod Genet 36(2):179–187

    Article  PubMed  Google Scholar 

  153. Cuman C et al (2015) Human blastocyst secreted microRNA regulate endometrial epithelial cell adhesion. EBioMedicine 2(10):1528–1535

    Article  PubMed  PubMed Central  Google Scholar 

  154. Kuokkanen S et al (2010) Genomic profiling of microRNAs and messenger RNAs reveals hormonal regulation in microRNA expression in human endometrium. Biol Reprod 82(4):791–801

    Article  CAS  PubMed  Google Scholar 

  155. Kresowik JD et al (2014) MicroRNA-31 is significantly elevated in both human endometrium and serum during the window of implantation: a potential biomarker for optimum receptivity. Biol Reprod 91(1):1–6

    Article  Google Scholar 

  156. Tochigi H et al (2017) Loss of miR-542-3p enhances IGFBP-1 expression in decidualizing human endometrial stromal cells. Sci Rep 7(1):1–10

    Google Scholar 

  157. Kresowik J et al (2012) microRNA 31 is upregulated in serum during the window of implantation. Fertil Steril 98(3):S187

    Article  Google Scholar 

  158. Fang L et al (2022) MiR-17–5P regulates autophagy of ovarian granulosa cells in patients with polycystic ovary syndrome via targeting ATG7.

  159. Zhao W et al (2022) Effects of miRNA-199a-5p on cell proliferation and apoptosis of uterine leiomyoma by targeting MED12. Open Med 17(1):151–159

    Article  CAS  Google Scholar 

  160. Ahn SH et al (2021) MicroRNA-139-5p regulates fibrotic potentials via modulation of collagen type 1 and phosphorylated p38 MAPK in uterine leiomyoma. Yonsei Med J 62(8):726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Wuerkenbieke D et al (2015) miRNA-150 downregulation promotes pertuzumab resistance in ovarian cancer cells via AKT activation. Arch Gynecol Obstet 292(5):1109–1116

    Article  CAS  PubMed  Google Scholar 

  162. Lan H et al (2015) miR-140-5p inhibits ovarian cancer growth partially by repression of PDGFRA. Biomed Pharmacother 75:117–122

    Article  CAS  PubMed  Google Scholar 

  163. Chen Z et al (2019) Role of microRNA in the pathogenesis of polycystic ovary syndrome. DNA Cell Biol 38(8):754–762

    Article  CAS  PubMed  Google Scholar 

  164. Echevarría-Vargas IM, Valiyeva F, Vivas-Mejía PE (2014) Upregulation of miR-21 in cisplatin resistant ovarian cancer via JNK-1/c-Jun pathway. PLoS ONE 9(5):e97094

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  165. Kiba A et al (2016) Differential micro ribonucleic acid expression profiling in ovarian endometrioma with leuprolide acetate treatment. J Obstet Gynaecol Res 42(12):1734–1743

    Article  CAS  PubMed  Google Scholar 

  166. Lu L et al (2011) MicroRNA let-7a: a potential marker for selection of paclitaxel in ovarian cancer management. Gynecol Oncol 122(2):366–371

    Article  CAS  PubMed  Google Scholar 

  167. Li G et al (2022) Long non-coding RNA placenta-specific protein 2 regulates micorRNA-19a/tumor necrosis factor α to participate in polycystic ovary syndrome. Bioengineered 13(1):856–862

    Article  CAS  PubMed  Google Scholar 

  168. Roth LW et al (2014) Altered microRNA and gene expression in the follicular fluid of women with polycystic ovary syndrome. J Assist Reprod Genet 31:355–362

    Article  PubMed  PubMed Central  Google Scholar 

  169. Pei T et al (2018) miR-194-3p represses the progesterone receptor and decidualization in eutopic endometrium from women with endometriosis. Endocrinology 159(7):2554–2562

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Deputy for research and technology, Arak University of Medical Sciences, Iran for providing spiritual support to accomplish the present study. This study was approved by the Ethics Committee of Arak University of Medical Sciences with the No: IR.ARAKMU.REC.1402.007.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: BK, SA, and MM; Investigation: MB, BK, SA, and MM; Resources: MM, MB, and MA; Writing—original draft preparation: MM and MB; Writing review and editing: MA, MB and MM. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Mahdieh Mondanizadeh.

Ethics declarations

Competing interests

The authors declare that there are no conflicts of interest.

Ethical approval

No applicable.

Informed consent

Not applicable.

Consent for publications

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, M., Khansarinejad, B., Mondanizadeh, M. et al. MiRNAs related in signaling pathways of women’s reproductive diseases: an overview. Mol Biol Rep 51, 414 (2024). https://doi.org/10.1007/s11033-024-09357-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09357-0

Keywords

Navigation